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This paper studies a semi-linear errors-in-variables model of the form Y;=

X\p+g(T,)+e;,, X;=x,4+u; (1<i<n). The estimators of parameters 8, o> and of
the smooth function g are derived by using the nearest neighbor-generalized least
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1. INTRODUCTION

Consider the semi-linear errors-in-variables model as
Y=x T

{ X'p+g(T)+e (1.1)
X=x+u,

where X and x are p x 1 random vectors in R”; Y and T are random real-
valued variables such that 7 ranges over a nondegerate compact interval of
one-dimension which, without loss of generality, can be the unit interval
[0, 1]. e is an unobservable error variable and u is a p x 1 unobservable
error vector with

El(e,u')]=0, Cov[(e,u')1=0%1,,,,

where 2 >0 is an unknown parameter, f is a p x 1 vector of unknown
parameters, and g is an unknown smooth function of 7.
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The model (1.1) is often encountered in situations in which the true
values of a set of variables satisfy the exact relationship

y=x'B+gT). (1.2)

In these situations we often want to make inferences on f and g through
the values of y and x. However, what we often encounter is that y or even
both y and x are unobservable. If y is the only unobservable variable, the
well-known semiparametric model (also called the semi-linear model) is
introduced:

Y=xp+g(T)+e (1.3)

Many researchers, such as Engle e al. [7], Wahba [ 18], Heckman [10],
Chen [ 3], Robinson [ 14], Enbank and Speckman [6], Hong and Cheng
[12, 13], and Donald and Newey [ 5], have made the focus of their research
the construction of the estimators of f8, 6% and g and proving that these
estimators can attain their optimal convergence rates n~ % n "2 and
n~ "2+ (y denotes the order of smoothness of the function g), respectively.
If both x and y in (1.2) are unobservable, it is natural and necessary to
consider model (1.1).

Model (1.1) can be also be regarded as the result of generalizing the
following model by adding the nonlinear component g(7),

{Y =xf+e (1.4)
X=x+u,

where Y and X are the observable variable and the p x 1 random vector,
respectively. (e, ')’ is a measurement error vector, and S is a vector of
unknown parameter. Models (1.1) and (1.4) belong to a kind of model
called the errors-in-variables model. The errors-in-variables model may be
applied to many fields such as economics, biology, and forestry (see Sprent
[15]). Some authors have given their attention to model (1.4) and the
literature includes the work Anderson [2], Glessor [9], Fuller [8], and
Amemiya and Fuller [1].

The importance of adding the nonlinear component to model (1.4) in
order for it to become (1.1) may be the same as that of adding the non-
linear component to the linear model to allow it to become (1.3). The
objective of this paper is to discuss model (1.1) on weak conditions. The
estimators of f, ¢, and g are obtained by using the nearest neighbor-
generalized least square method. It is shown that the estimators of f and
g? are strongly consistent and asymptotically normal. The estimator of g
also achieves an optimal convergence rate of n~ ',
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2. THE CONSTRUCTION OF THE ESTIMATORS AND
MAIN RESULTS

Suppose that {X,=(X;,, X;2, ... X;))", T;, Y, 1 <i<n} is a sample of
size n from the model

<i<
X,=x,+u, (1<i<gn). (2.1)

{Yizx;‘ﬂ—i_g(Ti)—i_ei
The estimators of 8, o2, and g are obtained by the following process. For
any r€[0, 1], we arrange |T, —¢|, |T,— 1|, ..., |T,, — t| in increasing order.

|TR(1,z)—t| <|TR(2,1)—I| SRR <|TR(;1,1)—1| (2.2)

(ties are broken by comparing indices). Obviously, R(1, ), R(2, ?), ..., R(n, t)
is a permutation of {1,2,..,n}. Choose a group of fixed nonnegative
numbers {v,:1<i<n} and let k & k, be a natural number dependent
solely on n. Suppose {v,;: 1 <i<n} and k satisfy

k k
@) —————-5w, —-=0 (n—> o),
n(logn)® n4
S 1
(b) > v,=1, max vm=0<>, Y v=o(n=""?).
i=1 1<i<k k e

Now we can define a probability weight vector {w,,(¢) =w,(t; T\, T,, .., T,,),
1 <i<n} which satisfies W,z (7) =0,;, | <i<n. Obviously, 0<v,, <1,
0<w,,(t)<1, for any 1<i<n,te[0,1].

It follows from (2.1) that

Y, —xip=g(T)+e, I<i<n.

We may define the nearest neighbor pseudo-estimator of g as

n n n

&)= X 0T =) = X wa0) V= T w0, )

i=1 i=1 i=1

= &1,(1) = &,(1)" B. (2.3)

However, since f is an unknown vector, we have to estimate f at first.
Since x,’s are unobservable, the least square method may be invalid. But
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we can obtain f,, the estimator of 8, by using the generalized least square
method, that is, we can define f, as one of the solutions of

37i_ )?:',B\n 2_ i f/i_ z’a z (24)
ST asrn S /T4 al?

where X, =X,—3"_ w,(T) X,, ¥,=Y,—X"_, w,(T)) ¥, for I<i<n.
Denote
X: (Xh XZ’ seey Xn)’a Y:(Yla YZa ceey Yn),a j}:(/-X\fla za (R3] Xn )’a

’Y,:( ’ﬁ > ’}727 bl Yn )”

It follows from (2.4) that f, satisfies

l o 4
(416,17 (5 X T X5, )
oo 1o
I PR T ;
SN CH A
P\ Ly L)
n n

Remark 1. 1If p=1, from (2.5) we obtain

4 = em XY

S VY= (n) XX +4(1n) XY = (1n) VT — (1/n) X' X)

If p>2, f, has no explicit expression.
We define the estimators of g and o2 respectively as

g0 =% ) Y= T w0 ) 4, 26)
5_1g <?,»— 7ﬂ>
m-ty (B @)
RANPATAT

The following conditions are sufficient for the statement of our main results.

Condition 1. The distribution of 77, is absolutely continuous and its
density r(z) satisfies

0< inf r(¢)< sup r(t)<oo.

0<r<l1 0<r<l1

Condition 2. X =Cov(x— E(x|T)) is a positive definite matrix.
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Condition 3. E(le|*+ |x|*+ |lu, |*) < co; g and g,; are continuous func-
tions on interval [0, 1], where g,,= E(x,,;| T, =1) is the jth component of
&(t)=E(x, | T,=1) for (1< /< p).

Condition 4. E(le;|*+ |x,|*+ lu,|*)< +o00; g and g, satisfy the
Lipschitz condition and E(x] | Ty =1) is a bounded function of 7 for 1 < j < p.

Condition 4'.  E(le, >+ |lx, > + [lu, |’) < +o0; g and g,; satisfy the
Lipschitz condition and E(x? | Ty =1)is a bounded function of  for 1 < j < p.

Remark 2. Conditions 1-3 are necessary for studying the optimal
convergence rate of the nonparametric regression estimates. See Stone [ 17]
and Cheng [3]. Condition 4 guarantees the asymptotic normality of
ﬁ( ﬁn— f). Condition 4’ guarantees that the estimator g, of g can reach
its optimal convergence rate n '/,

The main results are stated as following:

THEOREM 1. Suppose that Condition 1-3 and (a), (b) hold. Then

A

N
B.— B as., g2 —0” as.

THEOREM 2. Suppose that Conditions 1, 2, 4 and (a), (b) hold and that

Q,=Cov[(e;—uy f)(xy = E(xy | Ty) +uy) + ((ey =i B)°/(L+ | BI1%) 1 is
a p x p positive definite matrix. Then

S QTVE(R,—B) = NO, 1)

where —¢ stands for convergence in distribution.

THEOREM 3. Suppose that Conditions 1, 2, 4' and (a), (b) hold and take
k= [cn®?] for some positive constant ¢ ([a] denotes the largest integer no
larger than a). Then

gi)—g(t)=0,n""7)  for te[0,1].

THEOREM 4. Suppose that Conditions 1, 2, 4 and (a), (b) hold and that
Q,=Cov[ (e, —uy$)*)/(1+[BII*)1>0. Then

S Q25252 — %) >4 N0, 1).

Remark 3. 1f we construct the estimators of f, ¢* and g by using the
kernel-type probability weight {w,,(¢)=K(T,—t)/h)/(X"_, K(T,—t)/h)):

i=1
1 <i<nj}, then, Theorems 1-4 above hold under suitablé conditions (may
be the window size i ~ (k/n)).
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3. PROOFS OF MAIN RESULTS

We first give some notations

Now we give some lemmas.

LemMa 1. (i) Suppose (a), (b) and Condition 3 are satisfied. Then

max | Y w,(T;) e, =o0(1) as. (3.1)
1<i<n =1
max | Y. w,(T,) hy|=o0(1) as. (3.2)
1<i<n s—=1
max | ). w,(T,) uy|=o(1) as. (1<j<p) (3.3)
1<i<n s=1

(ii) Suppose (a), (b) hold, E(le|'+|x|"+ |u;|') < oo, and g, g,;
(1< j< p) satisfy the Lipschitz condition. Then
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max | Y w,(T;) e,|=o0(n""""7) as. (3.4)
I1<i<n s=1

max | Y w,(T,) hy|=o(n""""?) as. (1<j<p) (3.5)
1<i<n | /2| '

max | Y w,(T)uy[=o(n'"""Pyas.  (1<j<p)  (36)
1<i<n s—1 :

for [=3 or 4.

Proof. We are going to prove (3.2) and (3.5) (for /=4) only; (3.1) and
(3.3) can be proved as (3.2), (3.4), and (3.6) can be proved as (3.5).
For any >0, set

(h— @)
g =Xyl <esm)s Xy —xvl{\x > 2512

g9)(T)=E(x{| T,), g(T)=E(x | T,),
where I denotes the indicator function of set B. Since E|/x, ||* < oo, by the

three-series theorem we obtain 3 "% [x{?| < oo.
Observe that

X

Z E |g(23)(Ts)| < Z E |xsj| I{l,vl\/|>szs'2} <872

s=1 s=1
n
—125..2 72\/ 2
X Z Ky Exsj[{‘xAﬂ)ngl/Z}SzE I’IEXU,
s=1

max |g (T,)| < max (|g21( )|+|g(1)( )|)<282 12

I1<s<n

ss<n

(for large enough n)

and that 37 _, E(g$)(T,))> <nEx},. By Bernstein inequality (see Hoffding
[11]), we have

P{ 3 18850 /nlogn]

s=1
1
{ Y [lgs)(T Elg‘f)(Tx)|]‘>26\/ﬁlogn}
s=1
e’n(log n)? }
<2ex
p{ 8[X0_1 E(85)(T))* +¢’nlogn]

<2exp { l(:pgn} 2p /16
e
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for n large enough, and then by the Borel-Cantelli lemma, 37 _, |g)(T,)|
<£\/;zlognas for 0 <e < 1/16.

Let b, £ max, ; y<, Wu(T;) =max, o; ., v,, < (c/k) for some ¢>0. We
get

n

S T2 — g2(T )| =o(1)  as.

=1

max

1<i<
isn|

If we can prove

n

max Z D(x) — g(z_ll.)(]"s))‘gg as. (n— o) (3.7)

1<i<n

§=

then (3.2) will hold.

For each i(1<i<n), let Z,,=w,(T))(x'}) — gS(T)) for 1 <s<n. Then,
given A, ={T,,T,, .., T,}, an v Zps - 2, are conditionally independent
variables. Moreover,

B(Z,|0,)=0,  max |Z,|<en'?,

1<s<n

and E(Z2 | A,) <b,21E(xfj | T,).

Set 0,=1msr_, EGAIT) <B4+ 1) - By the Bernstein inequality and condition
(a) we have

n 1 n
pomr{ U [max | 3 2u]ze] ¥ 17 <ed 1|
<y E{en 5 P{ S Z. >e|An>H
n=m i=1 s=1

< n(e/n)’
<2 Z Z Eﬁnexp{ ) s E ns|A +82n1/2bn(8/n)H

n=zm i=1

n n(e/n)?
2% YELer |- <x§,|TS>+szn'/2bn(s/n>H

nz=zm i=1
<2 YE 9 eXp )~ 1/217 Hsz Y n72-0 (38)

n=zm i=1

n=m
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as m — 0. It follows from (3.8) and the strong law of large numbers that

Z Zns

s=1

P{U{max

<i<
n>=m I1<i<n

28}}*0 as m— o0.

Hence (3.7) is true.
Next, we prove (3.5), and denote

Xi}) = xSfI{ [xgl <eZsl4yo x(sjz') = xsjl{ [xl >e2sl4)
g(T,)=E(x{ | Ty, gT)=Ex2 | T,
for 1<s<n, 1<j<p.
Note that

L Elg)(TIPS X Exg? = 3 Exglie o

s=1 s=1 s=1

n
—4 4 12 —4 4
<é z Ex@/— -8 I{\X.\j\>€2514} <2 ﬁExl_i.

s=1
Using the similar argument that was used to derive (3.6), we obtain

zwm<r,-><xg;>—g;%,><rv>>]=o<n1/4) as. (39)
=1

max

1<i<n P

for any 0 <e¢ < 1/16. If we can prove

n

Zwm<T,»><x5,‘->—g5?(ry>>\<8n”“ as. (n—>w), (3.10)

=1

max

Isisn|g

then (3.4) will hold. Since E(x7 ;| Ty=1) is a bounded function of ¢z, there
exists a positive constant M >0, such that

1
E(Z, | A,) < Mb (3.11)

n-

S |-

I M=

It follows from (3.11) and the Bernstein inequality that

n

PLU (max | S wamous) = ez zen 4 )0 as mes e,

<i<
n>m I<i<n o=

which establishes (3.10).



10 CUI AND LI

Remark 4. For any 0 <e<1/16, from (3.5) and (3.9), we have

n

max | Y w,(T)(xy —gy/(T,))|=o(n~"*)  as.

I<i<n|/ T,

Lemma 2. (i) Assume that Condition 1 holds and that f is a continuous
function on interval [0, 1], and (k/log n) - oo, (k/n) - 0(n — oo). Then

sup [Tz ) —tl=o0(1) a.s. (3.12)
0<r<l1
max |f(T)— ) w,(T) f(T,)|=o0(1) as. (3.13)
1<i<n s=1

(1)  Assume that Condition 1 holds and that f satisfies Lipschitz condition
and (k/log n) — oo, (k/n**) -0 (n— o). Then

sup |Trp. n—tl=o0(n""*)  as. (3.14)
0<r<l1
max |f(T)— ), w,(T) f(T)|=0(n""*)  as. (3.15)

1<i<n ot

Proof. Equation (3.12) is due to arguments of Hong [12]. Next we are
going to prove (3.13). Since f is continuous on interval [0, 1], then it is
uniformly continuous, and for ¢ >0, there exists a positive number J(¢)
such that if | f(z,) — f(t,)| = (&/2), then |t; —t,| = J(¢). Therefore, we have

26}

S 0 (T) = f(Taer)

AT)—S wo(T) AT,
s=1

max
1<i<n

>

&
22}9{ sup |Tri, =11 = (e)

0<r<l1

(S(T) = (T, 1)

for n large enough, and

n

AT) =3 wa(T) AT

s=1

>}

<P{ U ( sup |TR(k,t)_Z|>5(8))}_)O

n=m 0<t<1

P{U max

<i<
n>m 1<i<n
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as m — oo, which implies that (3.13) is true. We will prove (3.14). It follows
from the arguments of Hong [ 12] that

k
sup |Tree, ) —H < max |Tpy ) — ;] +=
o<r<l1 0<is<i, n

where t, = (ik/n), 1 <i<i,=[n/k]. Therefore, to prove (3.13), it suffices to
prove

max |Try.,—t|=o0(n="")  as. (3.16)

0<i<i,

In fact, by Condition 1 we know that there is a positive constant ¢, such
that

) [+

1

n n

pizp{rle{ti_/i‘?k Wkﬂ%m

for any M >0, if n is large enough. Take M > (2/c,)> and Q,,=

#({T, Ty, ..., T,} n[t;— (/Mk/n), t,+(/Mk/n)]), where # B denotes
the number of elements in set B; then

Mk . ,

2

n(p,/2)? k
S {2pi+ (pi/z)} S {5}

by the Hoffding inequality. Since (k/n**)— 0, for any &> 0 there exists a

natural number N such that if n > N then (/M k/n) <n~"*. Therefore, by
the fact that (k/log n) - + o0, we obtain

P{ max |T t|=n""%
Z { | R(k, l) |

_ 0<i<i,
iy Mk
< P{max | T R, 1y — 1] 2 }
NN 0<i<i n
to M k
<y z {ITae-11> 5 < 5 zexp{ St
n=N i= n=Ni=1

It follows from the Borel-Cantelli Lemma that (3.16) is true and then
(3.14) holds.
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For each i (1 <i<n), by the fact that f satisfies the Lipschitz condition
we obtain

n

f(Ti)_ Z W,o(T;) f(Ts) = f(Ti)_ i WhR(s, TI-)(Ti) f(TR(,\*, Ti))

s=1 s=1

n

= f(Ti)_ Z Umf(TR(x, Ti))

s=1

zvaﬂm—ﬂnmmﬂ

s=1

n
<c Z Vs | T — Tres, T,)|

s=1

1 k
sc < Z Uns"'* Z |Ti_TR(,v,T’.)|>
s>k kx:l
<c< > um,—i-osupl |TR(kq,)—t|>. (3.17)
s>k SIs
Therefore, (3.15) holds in view of (3.14), (3.17), and condition (b).

Lemma 3. Under the condition of Theorem 1, we have

| R R |
-X'X->2+01, as, -X'Y->2Xf as,
n n

1 o o
-YY->pBEB+a* as, A,—>A as.
n
where

lyy lyx

4| n A_(/)”Zﬁ+02 px >

AN U RUUIUUEE RO | B z X+a'l,)

¥y ¥y B ol
n n

Proof. First we prove (1/n)

X — 2 a.s. It suffices to check the convergence
of the (s, m) element of (1/n) X'X

)Z!
XX for 1<s,m<p.
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Observe that x;=h;+ g(7T;)(1 <i<n), and we have

1~’~ 12
<nxx>s,m < l;]'x >s,m

25 [ St (o= $ w7 22|

i=1 j=1

S

X

[ iw h,,,,+<g2m<T,) S 0, (T) gz,,,(T,,-)ﬂ

j=1

:\'—‘

Z hlshtm + R ( )
By virtue of Lemmas 1, 2 and the strong law of large numbers, we have

Z hixhim - Eh lshlm a.s. Rln(sﬂ m) - 0 a.s.
i=1

S |-

Therefore, ((1/n) X'X),,,,— Eh h,,,as. and so (1/n) X'X - Eh b =2 as.
Note that X,=h,+u,+ g,(T,) (1<i<n). It follows from the similar
argument that (1/n)X’X—>Z+021p a.s.; the others can be proved in a
similar way.

LeMMA 4. Suppose that {,(a): n>1} and J(a) are a sequence of random
continuous functions and nonrandom continuous functions, respectively; Ma)
has the sole minimum point a: i;e., Infy o> ay Aa) > 2Aay), for any d>0,
where a,, is a minimum point of 1,(a). If sup,. r» |A,(@) — A(a)| = 0 a.s., then
a, — ay a.s.

Proof of Theorem 1. We have defined the estimates of § and ¢?, ie., ﬁ,,
and ¢2. Let

(19 _a,)An(lﬁ _a’), i( ) (la _a’)A(la _a,)’
, a)=
1+ al? 1+ Jal?

Aa)=

Note that A(a) has the sole point f, and

sup [4,(a) —a)| <[l4,— A -0 as.

by Lemma 3; then we have f§, — /)’ a.s. by Lemma 5, and it follows that

02— ¢? a.s. by the definition of o’
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To prove Theorems 2-4, we need more lemmas as follows:
LemMMA 5. Suppose that (a), (b) and Condition 1 hold, and that g, g,

(1< j<p) satisfy the Lipschitz condition, E(|x,||>+ llu,|I®> + |e,|?) < 0.
Then, for any s,m (1 <s, m< p), we have

% i l< i w,,(T,) f(Tj)>=o(n_3/4 log n) as. (3.18)

Jj=1

i £[<i W,U«(T,«)I?j>=0(l’l2/3 log n) as. (3.19)

=1

S |-

where [ =g or g,,, the sequences {&,, &,, ..., &} and {n, N5, ..., n,} can be
any two different sequences among {h,, Ry, .oy Mo}y {Uys Uy ey Uy )5 and

{el, ey ey}

Proof. These conclusions can be proved in a similar way as that used
for Lemma 1, so we omit it.

LEmMMA 6. Suppose that (a), (b), and Condition 1 hold, that g, g,; satisfy
the Lipschitz condition, that E(x3,| T, = t) is a bounded function of t(1 < j< p),
and that E(|x, '+ |u,||'+ |e,|") < oo. Then, we have

1 n n

. ) his< Yow (T)h,m> o(n "=V as, (3.20)
i=1 j=1
LIRS —(1—-1)/6
SY e X wy(Te )=on ) as. (3.21)

i=1 J=1

1 n n

- Y u,S<Z w,,; (T)) ujm>=0(n””/6) a.s. (3.22)
i=1 J=1

for 1<s,m<p,[=3 or 4

Proof. These conclusions can be proved in a similar way. We are going
to prove that (3.20) holds for the case of /=4, ie.,

i; <Z (Tf)hj,n>=o(n—‘/2) as. (3.23)

j=1
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Observe that

H M =
k‘
/\
5

<.

~

,\k‘

¥
~—_
I M 3

=

8

~

N&‘

=

3

Z M}rlj(T‘i) hishjm = Jl + J2‘
#

Since

AR

Z |h1v| |h1m ~= Z |h1v| |h1m a's'a

\/’;I—l k\/,;l—l

where b, =max, _;, v,;. If we can prove J,=0(1), (3.23) will hold. Take
&y, such that 0 <g, < 1/16, and set

xg‘sl):x[sl{\x,ﬂl‘|gs%i”4}9 x(if):xisl{\xis|>sgi'4}a
(T =E(x{ | T)), T =E(x | T,
B =x D~ E(elD | T), B =X~ g 2T

(1<i<n, 1<s<p),

Z Y W (T AR
\/’;1—1 VE]

It can be shown that X7_,[gP(T,)| <egn'*lognas. (n—o0) and
i IxP] < +oo. Thus

Z |2 <2eon'*logn  as. (n— o). (3.24)

i=1

Similar to the proof of (3.4)-(3.6), we have

max =o(n='"%) a.s. (3.25)

1<i<n

Z an(Ti) hjm

J#Ei

max

1<j<n

3w (T gZJ(T))‘ on") as  (326)

i#j
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Note that
n 1 n
|Jn_Un|_‘ Z z T)hls jm Z Z ‘Vn/( l)h l)hj)‘l}’l)
\/i:l i \/Zizlj#i
1 n 1 n
<S—= Z Zl/vnj(Ti)hE‘SZ)hjm +—= Z ann/( l)h])hj(i:/l)
ﬁ i=1 j#i ﬁ i=1 j#i
<1< max Z m)nj(Ti) h/’m > Z |h5x2)|
\/;; I1<i<n A ’ ’ i=1
1
+< max | w,,(T,) htD > S R)). (3.27)
\/;; I<j<n it j=1

Combining (3.24)-(3.27), we obtain |J,— U,|=o0(1)a.s. Therefore, in
order to prove J, =o0(1), it suffices to prove U,=o0(1) a.s. For any ¢ >0, let

Jju=[&/n/(logn)] and

S { } L,,H»

={1,2,.,n} —B

0:1

q°

for 1 <¢<j,. Write

U,=—F¢ Z Z Z Wﬂj(Ti) hs_\l)hj(rln) \[ Z Z z an h(l)hj(rln)

qg=1 IEB ]EB

n
1 Jn

N Z énq—i'_i Z 5nq é Unl+Un2 (328)

\/;l g=1 \/;l g=1

Let 6;7(] = Ziqu ym’q = ZieB quhgsl)a Where qu = ZjeB“ M};U(T) hg’;)hjm' It iS

clear that given A,,qz{(T,,xj). 1<i<n, je By}, {qu ieB,} are condi-

tionally independent variables. Since

E(ym'q | Am{) =09 E(’yiiq | Anq) <1‘4( max |dm'q|) Md2

1<i<n e’
for each i€ B,, some constant M >0, and max;. 5 |yq| < 2eqn'*d,,

Therefore, similar to the Proof of Lemma 1, by condition (a) we may
show that

d,= max d,,= max max

n
1<i<j, I<g<j, Il<i<n

=o(n~"(logn)~""?)

Z an( T)) h}

. c
_/EBq
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when d, <en~"*(log n) ~', then by the Bernstein inequality we get

&nj 2
POl Zev/n it | ) <2exp | - 2 }
{ q \/ 1} 2Mdi(#Bq)+28\/7;j;ln1/4d,1

<2exp{ —ceX(nlogn)'” j '}

<2exp{—clogn}
&

Therefore, for any ¢ >0 small enough,

P{ U (|Un2| =é, dn<8n71/4(10g n)l/z)}

nz=zm

Jn
< Z z E[I{dnésn"/“(logn)"/l} P{|5nq| >8ﬁ | 5nq}] -0

nzm qg=1

as m— oo, which together with the fact that d,=o(n~"*(logn)='?)
establishes U,, =o0(1) a.s. Therefore, to prove U,=o0(1) a.s., we need only
show that U,, =o(1) a.s. Under Condition 1, we have

c c
Ewi(T)< e EDwa(T) wu( 1)1 < (3.29)

for 1 <i# j< p, some ¢>0, and

e t(5 3 wmonny)

teB jEB

[ <z T h“)hj(,lﬂTI,T2,...,TH>}=O

teB JEB,

qi

E(&04,0g,)

£[( T wmpnin)( T8 w gy )|

iieB, Jj €B IZEqu 1263112,7

-£[¥ ¥ ¥ % Ehﬁszhs;zh,lmh;;uTI,TZ,...,T,J}

ieB, Jj€B iZEqu JH€B

q1 q111

q1 q1i1 i

Il
o
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for g, # q,, therefore, we obtain

In 2 1 In
P{U | > 6} < <z én,,> = L FE
i £y zwwmmmwf
2

teB jeB

1 >
= E RO R
,132 g=1 ieB < Z [W ( ) ]

1 Jn
b= Y E S (T wmamag)
=1

i € By, iy #iy \ji€ By

><< Y w,(T )hjzl,LhEZlY)] 2 R, +R,.

€ By,

Since E(x3, | T, =1)< M, M is a positive constant independent of m and
t for 1 <m < p. Thus, by (3.29) we have

{ <Z Y ow h;j,h;ﬂTl,Tz,...,Tﬂ

1eB ]eB

Z Z E[an (xj?m | ij) E(Xi | Tl)]

1 eB /eB

e L
L

2

< M
<g2 Y X ELwi(TOl< = ju#B,) nk (3.30)

g=1 iqu jeB
and by the Cauchy inequality and (3.29) we have

1 Jn
Ro=—5 ) ) Y Y E[w,(T,)w,(T,)

q=1 1, IZEB i) #iy /leB1 ]-,EB

(h(l h(l)h(l)h(l | Tla T2, oo Tn)]

Jim s T jym T iy s

1 Jn
72 Z Z E{Wnil i) m7(T )[E(h(l)llm | Til)
qg=1 i, IZEB iy F# iy
xE(, | Ty 1P LEGKY,, | T E(h™Y, | T,)1'2)
1 Jn
—22 Y E{w (T wTOLE,, | T,) E(2, | T,)1"

iys
g, [Zqu, iy F#iy

[E(xizm | T;) E(xfzs | Tiz)]l/z}

2 2

. . c
<E‘]n( #Bq)2 E(M}nil( Tiz) Wniz(Til)) <E]n( #Bq)zﬁ (331)
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It follows from (3.30) and (3.31) that

2

2M c*
P{|U;71|>8}=R1+R2\ 2];7(#3) n

k n(log n)*?

for some constants ¢, ¢* > 0. Therefore, by the Borel-Cantelli lemma we get
U, =o0(1) as., which ends the proof of (3.20).

Now, we can prove the following lemma which is essential to the proof
of Theorems 2—4.

Lemma 7. Suppose that Condition 1 and (a), (b) hold, and that g, g,; satisfy
the Lipschitz condition, E(x? | Ty=1) is a bounded function of t (1< j< p),
and E(|lx I+ lluy |"+ ley|) < oo. Then

1o - 1 &

- X'X==3 (h;+u)(h;+u) +o(n=""1°) a.s., (3.32)

n niy

1 v v 1 1—1)/6

-XY=- Z (h;+u)(W.B+e;)+o(n= =10 as., (3.33)

n n=

1 \ VARV 1 c 2 —(I—1)/6

. Y'Y=; Y (hiB+e;)?+o(n 10 a.s., (3.34)
i=1

for 1=3 or 4.

Proof. These conclusions can be proved in similar ways, so we are
going to prove (3.32) only. Observe that X,;=h,+u,+ g,(T,;) (1<i<n)
and write

G7),, =Gl 2 [ 1 2w n])

Jj=1

12
Z Z h1\+u1s hlln+utn1)+R2n(S m)

By virtue of Lemmas 1 and 6, we have R, (s, m)=o0(n""Y""%)as. (1<s,
m< p). Then

Z (hi+u)(h+u,) +0(”_(1_1)/6) a.s.
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LemmA 8. Suppose that (b) holds and that g,; satisfies Lipschitz

condition, E(x1 | T, =1) is a bounded function of t, and k/(flog n) — oo,
(k/n)—>0 (n— oo) Then

sup |g4;(1)— Y, w1 =o0(1) a.s.
o<r<l1 =1
Jor 1<j<p.

Proof. This result is due to Cheng [4].

LEMMA 9.  Under the condition of Theorem 3,

A

B.—B=o0(n""'? a.s.
Proof. Define the vector function
Sla)=(fila), fr(a), ... f,(a))
2 1~/~ 1~/~ 1~/~ 2~I~ ’ l~r~
=(1+a|?) |- X'Y—-XXa |+ |-Y'Y——YXa+d (-X'X)a|a
n n n n n

A

where a € R”. Thus we write (2.8) as f(f,) =0. On the other hand, using
Taylor’s formula, we have

S(B) = 1B+ Col B =) (335)
where

o oy O

aal 6a2 ,aap a:/)’Jrfl(/?,,*ﬂ)
A

n aal’aaz’. ’6a,, a=p+t(f,—B)
Y o YUy

aalj aaz, ’ aap (l=/f+fp(/§n_ﬁ)

for some 7,, 75, .., 7, € [0, 1]. By a simple calculation, we get

g _

1. . 1o 1oV
(14 al?)- XX +2a <X’Y—X’Xa>
Oa n n n

lo,& 24,4 2o+ 2o~
+H=-YY—=YXa)l,+| ——X'Y+-X'Xa |d,
n n n n
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and by virtue of Theorem 1 and Lemma 3 we get C, > —(1+ 1B1%) X as.
It follows from (3.35) and the fact f(f,) =0 that

— {7 X3
g -
n

+EW_ g+ /;(

Applying Lemma 7, we have

n'P(f, = B)=—n"2PCT Y LA+ A1) e, —usB)hy+u)
i=1

+(e;—u}B)? B] +o(1) as.

Hence, using E(|x,|*+ ||u;||*> + |e;|?) < oo and the Marcinkiewicz strong
law of large numbers, we obtain n'3(f,—f)=o0(1) as.

Proof of Theorem 2. From (3.36) and Lemma 7, we get

1 n
Clp=P =~ > [+ 181 e — )+ uy)

+(e,—uf)* Bl +o(n""?)  as.

Thus, by the Central Limit Theorem, we have

Sn QB — )~ N, 1,).

Remark 5. Particularly, if (e, ') ~N(0,0°1,,,), the asymptotic
covariance of ﬁ( B.—p) is

(1+ |ﬁ|2>[022+04 <’ 1ff/3| ﬂ

Proof of Theorem 3. Take k =[cn??], where c is a positive constant. In
Section 2, we have defined the estimator of g as

W= 3 w07~ L w01 %)
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Let

2.0 =§1 WD) Y, (Z w0 X,) §

&0 =é (1) Y, (z 0%, ) B= 2 8if.
We have | |

g*(1) — g(t) =(g*(1) — &.(1)) + (&.(1) — &.(1)) + (.(1) — g(t)) =1, + I, + I5.
(3.37)

We consider 7, first. Let ﬁn = (ﬁnl, /?nz, - ﬁnp)’, B=(B1, B2, ... B,). Note
that

By virtue of Lemma 9 and Lemma 1, we obtain
P n .
¥ (X w03, - ga0)) (=) =oln ) as
s=1 Jj=1

Since g,,(7) is a bounded function of 7, we have g.(7)(f,.—p.)=
o(n~'7) a.s. Furthermore, note that

E< i W, (1) u_,-,>2=E< w2 (1) u
j=1 j=1

)

Jj=k+1
We obtain 37_ | w,; (1) u; = 0,,(n’”3). Therefore,

I,=0,(n""7). (3.38)

P
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Note that

L= 2,0~ &,(n= <z >ﬁ 2<§ >ﬁs

Thus, if follows from (3.38) that I,=0,(n"'?). Let g,(1)=E(Y, | T, =1).
Taking conditional expectation on the two sides of Y, =x+ g(T,) +e,,
we get g,(1) = gh(t) p+ g(t). It follows from Wei and Su [19] that

E(@(1) = (1) = 0(n™), E(gs,,(1) — 3,(1)) = O(n ).

Then we have g,,(1)—g,(t)=0,(n"'?) and £,,,(1)— g,;(1)=0,(n"'7).
Hence
Ii=§,(1)— g(t)=(£,(1) = 8,.(1)) B—[g:(t) — g5(¢) B]
=(81.(1) — g1(1) = (£2.(1) — ga2(1)) B

=(g”1n(l)—g1(t))—i (&ans1) = 824(1)) By=0,(n""7). (3.39)

s=1
Combining (3.37), (3.38), and (2.39), we complete the proof of Theorem 3.
Proof of Theorem 4. Let

i (W, +e,)? i(hﬁ—i—e)(h,-—i—ui)’

:\'—‘

LY (et u)

i=1 i

Z (hi+u)(h;+u)
By the definition of ;2, we get

N 1 1< o2 2y 2
Ve = e 5 L 141 o

+/n(D, + D, + D, +D4—D5)},

where

=1, =f)A,— A1, =B,  Dy=(1, —=f)(A,—A)0, (B—B,))
Dy=(0,(B—B.)) A, (B=B,)),  Dy=(0,(f—B))NA,— A1, —=p)
Ds=8,— Bl
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It

follows from Lemma 7 and Theorem 2 that \/;l (Dy+Dy+ D5+ D,—D;s)

—"0. Therefore, applying the Central Limit Theorem, we obtain

S (a2 — %) = “N(0, Q).
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