Magneto-optical Visualization of Eddy Current Magnetic Fields

Vladimir N. Berzhansky, Dmitriy M. Filippov, Nazar V. Lugovskoy *

Crimean Federal V.I. Vernadsky University, 95007, Academician Vernadsky Ave. 4, Simferopol, Republic of Crimea, Russia

Abstract

Some important features of magneto-optic eddy current (MOEC) images realized in garnet films during introscopy process and behavior of domain structure in these films were revealed and are discussed. Numerical simulations of eddy current magnetic fields were performed with parameters of the real sample. It is established that the experimental results are in a qualitative agreement with the numerical simulations.

Keywords: magneto-optical sensor; garnet films; magnetic field visualization; eddy current introscopy

1. Introduction

The generation of the eddy currents and the accompanying magnetic fields (MF) are widely used in the technician, and recently in medicine. So eddy current probes are used for the rapid analysis of cardiac activity, to register venous pulse, hyperthermia etc. [Andrä W. et al, 2007]. In some cases it is necessary to know the distribution of the magnetic fields magnetic nanoparticles [Nikitin P.I., et al, 2007] or various organs of the human [Malmivuo J. et al, 1995]. Promising materials on the basis epitaxial ferrite garnet films (EPFG) can be used for magnetic field sensors. There are various ways of creating magnetic sensors using EPFG. In [Vetoshko P.M. et al, 2013 and 2015] a high-sensitivity magnetic modulation sensor, which can compete with the SQUID by using, for example, in magnetocardiography. On the basis of EPFG can be created magneto-optical sensors. Important advantage such sensors is the possibility of direct observation of the topography of magnetic fields generated by magnetic objects [Vishnevskii V. et al, 2009] or eddy currents excited in the conductive objects [Radtke U. et al, 2001 and Vishnevskii V. et al, 2013 and 2014, Lugovskoy N. et al, 2014]. In this paper the effectiveness of a magneto-
optical imaging of eddy current introscope is studied and the numerical simulation of the excited eddy current magnetic fields is performed in the model objects.

The principle of operation of the eddy current magneto-optical (MO) introscope is based on the reaction of the dynamic domain structure (DDS) of the magneto-optical sensor to the distribution of magnetic fields generated by eddy currents (EC) in the test sample of conductive material. Eddy currents are excited by an inductor of alternating magnetic field. Visualization of the dynamic domain structure in a magneto-optical sensor is mediated by the Faraday effect. Defects in the test object lead to a change in the trajectory of the eddy currents and a corresponding change in the configuration of the magnetic fields generated by them. As the sensors are the usually transparent films of iron garnets based on the bismuth iron garnet. The optical contrast, size and quality of the MO image depends on several parameters, including frequency and amplitude of the exciting field, and non-linear properties of the dynamic domain structure [Kandaurova G.S., 2002].

2. Experiment

Experiments were carried out on a test specimen of aluminum alloy with two model linear defects: cracks with width of 20 and 40 microns at a distance of 5 mm in the plate thickness 0.3 mm. The frequency of the excitation field varied in the range of 8-60 kHz. Multicomponent iron garnet films thickness 5-10 micron with uniaxial anisotropy (Bi,Eu,Lu)3(Fe,Ga,Al)5O12 or (Bi,Tm)3(Fe,Ga)5O12 act as sensors.

Fig.1 shows the dynamics of change MO images slits of 40 µm at \( f = 60 \text{ kHz} \), zero biasing field, amplitude of the excitation field \( H_{ex} \). At small amplitudes of the pumping fields, MO images presented white strips. With the increase of the \( H_{ex} \) in the center of the white image black streaks appear. Dark stripe corresponds to the reverse magnetization of the sensor in this area.

![Fig. 1. MOEC images of slits at \( H_{ex} = 20, 60, 100, 180 \text{ Oe} \); \( f=60 \text{ kHz} \)](image)

![Fig. 2. The width of the white and dark stripes from alternating field \( H_{ex} \) for 40 µm slits](image)

With increasing \( H_{ex} \), size of all strips images is increasing. As it is seen from Fig. 2 the size of white and dark MO images significantly exceed the physical size of the gaps by 12 and 6 times, accordingly.

At the large \( H_{ex} \) in the center of the dark area of the image appear white areas of reverse magnetization, which complicate the identification of the defect. Such transient DS arises are threshold, above a certain critical field

3. Simulation

The modeling of ECMF based on the method of integral-differential equations relating the density of excited electric charges, eddy currents and magnetic fields generated by them. The corresponding system of equations shown below:
\[
\begin{align*}
\delta(M,t) + \frac{\mu_0 \gamma}{4\pi} \int_V \frac{\partial \delta(N,t)}{\partial t} \frac{dV_N}{r_{MN}} = \gamma \frac{1}{4\pi \varepsilon_0} \int_S \sigma(P,t) \frac{\overrightarrow{r}_{PM}}{r_{PM}} dS_P - \gamma \frac{\partial \overrightarrow{A}_0(M,t)}{\partial t}, \quad (1) \\
\sigma(Q,t) - \frac{1}{2\pi} \int_S \sigma(P,t) \left( \frac{\overrightarrow{r}_{PQ}}{r_{PQ}^3} \right) dS_P = -\frac{\mu_0 \varepsilon_0}{2\pi} \frac{\partial}{\partial t} \int_V \frac{\delta(N,t) \vec{n}_Q}{r_{QN}} dV_N - 2\varepsilon_0 \frac{\partial}{\partial t} \left( \overrightarrow{A}_0(Q,t), \vec{n}_Q \right). \quad (2)
\end{align*}
\]

In (1) and (2) denoted: \(\delta(M,t)\) – vector of the instantaneous value of the density of eddy currents in the conductor volume \(V\) (\(M\) – volume point \(V\)); \(\sigma(P,t)\) – the instantaneous value of electric charge density on the conductor \(S\) surface (\(P\) and \(Q\) – surface point \(S\)); \(\gamma\) – specific electrical conductivity of the conductor; \(r_{MN}\) and \(r_{PM}\) – the distance between points \(M\) and \(N\), and points \(P\) and \(M\) accordingly; \(\overrightarrow{A}_0(M,t)\) – the instantaneous value of the vector potential generated by inductor currents; \(\vec{n}_Q\) – vector of the positive unit normal to the surface of the conductor.

Equation (1) is derived from Ohm's law, written in differential form. Equation (2) is a solution of the boundary problem with the following boundary condition: \(\langle \delta(Q,t), \vec{n}_Q \rangle = 0\). To solve the system of equations (1), (2) was developed procedure by successive approximations.

The magnitude of the magnetic field acting on the magneto-optical sensor is a superposition fields of the inductor and eddy current of the sample with defect:

\[
\overrightarrow{H}(M,t) = \overrightarrow{H}_0(M,t) + \frac{1}{4\pi} \int_V \frac{\delta(N,t) \vec{r}_{MN}}{r_{MN}^3} dV_N,
\]

where \(\overrightarrow{H}_0(M,t)\) – the magnetic field of the inductor.

The calculated distribution of the \(z\)-component of the resulting alternating magnetic field acting on the magneto-optical sensor was analyzed. Black and white images of defect correspond to different signs of alternating magnetic field along normal to defect (\(y\)-direction, Fig.3). When the amplitude of the alternating field increases the magneto-optical images is broadened, reflecting a spatial broadening distribution of eddy current magnetic fields.
4. Discussion

Fig. 4 shows the distribution of the $x$-component of the EC across a cross section of the conductive sample. The $x$-component of EC near the gap sharply increases and changes the sign. Such a current distribution leads to a sharp increase in the $z$-component of the MF above the gap (Fig. 3). At excess an alternating magnetic field a threshold value $H_{cr}$ (Fig. 3) above the defect saturated state as a black gap appears. At $H_x < H_{cr}$ is observed white image, the width of which increases with the field. At a high field $H_{ex} > H_{cr}$ in film appears an anomalous large DS, caused by nonlinear effects [Vishnevskii V. et al., 2014], against the backdrop of a saturated state. The anomalous DS complicates the determination of the defect contour. A small permanent magnetic field of bias suppresses the anomalous DS and makes the image more clearly and contrasting (Fig. 5).

Thus, to increase the efficiency of the MO imaging should be used of a saturated condition, which leads to the appearance of the contrast black and white image of the gap. Further increasing the contrast can be achieved using a magnetic field of bias. EC MO visualization allows not only to observe the defects, but also to significantly increase their size.

5. Summary

The conditions for the MO imaging of defects by EC flaw detection were investigated experimentally and theoretically. The ferrite garnet films were used as the magneto-optical sensor element. Modeling of eddy current magnetic fields generated in the test object carried out by the method of integral-differential equations relating the density of the excited electric charges, eddy currents and magnetic fields. It was revealed that MO image of a linear defect is a combination of light and dark images. Theoretical modeling ECMF distribution near defect is in good agreement with the change of the magneto-optical sensor domain structure by these magnetic fields. At large amplitudes of the alternating field in the film appears an anomalous domain structure, caused by the nonlinear properties of films, which impairs the visualization of defects. Magnetic field of bias suppresses this anomalous domain structure and makes the image sharper and legible.

Acknowledgements

This research was supported by the RF Ministry of Education and Science in the framework of the base part of the state task No. 2015/701(project 3879).
References