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tein is found from animals and fungi to plants and red micro-alga. Some
eukaryotes that do not encode the glucosylceramide synthase like the yeast Schizosaccharomyces pombe and
Saccharomyces cerevisiae do neither produce glycolipid transfer like proteins. On the other hand yeast like
Eremothecium gossypii that do synthesize glucosylceramide also express glycolipid transfer protein. Based
on this novel genetic relationship it is not far fetched to assume that there must be a strong correlation
between the synthesis of the glycolipid precursor and the glycolipid transfer protein. Because the glycolipid
transfer protein is localized in the cytosol it is unlikely that it would participate in events associated with
lipid rafts or caveolar structures, since they are found on the outer leaflet of the plasma membrane. Rather,
GLTP is likely to be involved in events at the cytosolic side of the plasma membrane or the endoplasmic
reticulum, maybe function as a reporter or sensor of glycolipid levels. A similar function has been proposed
for other proteins with affinity for lipids like the oxysterol binding proteins and phosphatidylinositol transfer
proteins that are thought to be able act as lipid sensors. Recent discoveries in the glycolipid transfer protein
field are discussed.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The glycolipid transfer protein (GLTP) is a 24 kDa protein that
transfer glycolipids from one bilayer membrane to another in vitro [1].
The precise biological function is still unknown. However, its
intracellular localization is cytosolic [2]. GLTP enhances only the
transfer of glycolipids with a β-linked sugar residue to its ceramide or
glycerolipid backbone. Both neutral and anionic glycolipids are
transferred by GLTP but not phospholipids, sphingomyelin or neutral
lipids. A glycolipid with an α-linked sugar is not a substrate, like the
FAPP2, four phosphoinositol
y

l rights reserved.
marine sponge glycolipid α-galactosylceramide (KRN7000) known to
immunostimulatory and antitumor activity [3]. The presence of GLTP
in the cell cytosol limits its potential role in cells involving glycolipids,
since most of the known glycolipid metabolic and catabolic processes
take place in subcellular compartments, such as in the Golgi
apparatus, endoplasmic reticulum and the lysosomes [4–6]. The
composition and properties of the membranes harboring the
glycolipids are very important for the transfer activity of GLTP. GLTP
senses whether the membrane is tightly or loosely packed [7,8]. It is
also sensitive to the lipid packing nature, such as if the membrane is
composed of sphingomyelin or phosphatidylcholine [9]. Insight into
the biological role of GLTP is emerging.When GLTPwas overexpressed
in D6P2T rat Schwann cells it was indirectly shown that the transport
of glucosylceramide from the Golgi complex to the plasma membrane
was to some extent enhanced [10]. Further, when GLTP was knocked-
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down in the same cells, the transport of glucosylceramide to the
plasma membrane was not seen, in the presence of brefeldin A that
fuses the Golgi stack to the ER [10]. Warnock and coworkers also
showed in 1994 that when vesicular transport was inhibited with
brefeldin A, glucosylceramide still reached the cell surface, and
speculated this to be caused by GLTP [11].

2. GLTP and GLTP-like proteins

The human GLTP is encoded by a single-copy GLTP gene found in
both chromosomes 11 and 12 [12]. The locus 11p15.1 gene is a
transcriptionally inactive intronless silent gene exhibiting 94% homo-
logy with the full-length coding sequence, still it contains key amino
acids involved in glycolipid recognition, but the gene product does not
show glycolipid transfer activity. The gene encoded in locus 12q24.11
on the other hand has 5 exons and 4 introns and is highly conserved in
mammals and other vertebrates [12]. This gene product is the same
protein first discovered in membrane-free cytosolic extracts of bovine
spleen, and was in 1980 called the cerebroside transfer protein by
RaymondMetz andNormanRadin [13,14]. Later the proteinwas shown
to be specific for glycolipids and was named the glycolipid transfer
protein by Akira Abe et al. [15]. Since then, GLTP has been isolated from
various mammalian sources [16–20]. Gene products with glycolipid
transfer activity have also been found in other eukaryotes, for instance
theHET-C2 from the fungus Podospora anserina [21], andAtGLTP1 from
the plant Arabidopsis thaliana [22] are both glycolipid transporters in
vitro. Their in vivo role is not well known. However, valuable
information of the function of the het gene families gives clues to
which processes GLTPs might be involved. The fungal het genes are
involved in a complex set of heterokaryon-incompatibility and
Fig. 1. (A) Alignment of sequences of human GLTP, FAPP2 and the Arabidopsis thaliana GLTP1
amino acids important for the glycolipid binding activity shown in turquoise. Tryptophan 96
as tryptophan 407 (blue arrow). The tryptophan at position 142, which is also conserved
presentation of mammalian proteins with a glycolipid transfer protein (GLTP) domain. FAPP2
GLTP-homology domain.
associated network of cellular machinery responsible for the accep-
tance or rejection of partners in parasexuality [23,24]. Recently we
suggested that the role of the A. thaliana GLTP may be in directing
glycolipid transport to specific areas of the plasmamembrane, or play a
role in maintenance of glycolipid membrane domains [22]. Also
another A. thaliana protein called ACD11 (accelerated cell death 11)
that has a similarity to GLTPs (about 30%) is able to accelerate the
transfer of sphingosine, but not ceramide and galactosylceramide,
between membranes [25]. The lethal recessive knockout of ACD11
shows activation of programmed cell death, and transgenic expression
with human GLTP partially suppresses the phenotype of the acd11 null
mutant, resulting in a later onset of programmed cell death develop-
ment [26]. Together these findings suggest that the biological role of
GLTP could also be related to similar events in eukaryotic cells, such as
cell–cell contact and cell growth and survival.

GLTPs fromporcine, bovineandhumancontain 209highlyconserved
amino acids and the proteins have no similar structural folds to other
lipid transfer proteins [27–29]. The phosphoinositol 4-phosphate
adaptor protein-2 (FAPP2) contains a GLTP domain connected to a
pleckstrin homology domain (PH), and transfers glycolipids both in vivo
and in vitro [10,30] (Fig. 1A). In addition, the 519 amino acid FAPP2
isoform has a C-terminal putative PDZ binding motif (DEVV) that is
absent in the 507 amino acid FAPP2 isoform [30]. (Fig. 1B).

In a screening of PH domain-containing proteins the FAPPs were
described as proteins that selectively binds to PtdIns(4)P with their PH
domain [31]. FAPP1 (PLEKHA3) interacts strongly with PtdIns(4)P and
is involved in the synthesis or breakdown of PtdIns(4)P in cells [32].
Initially FAPP2 (PLEKHA8) was described as an effector of Arf1 (ADP
ribosylation factor) and PtdIns(4)P that is involved in trans-Golgi
network to plasmamembrane trafficking [33]. FAPP2 also has a crucial
. The eight alpha-helices in the human GLTP are depicted in orange, and the conserved
crucial for the glycolipid recognition and transfer activity of GLTP is conserved in FAPP2
(green arrow), is likely to be involved in the membrane interaction. (B) Schematic

has an N-terminus pleckstrin homology (PH) domain, a proline rich domain (PRD) and a



Fig. 3. (A) Surface structure of bovine GLTP with bound lactosylceramide. The amino
acids within the sugar recognition centre are shown in yellow and tryptophan 96 in
blue. In the 180° rotation (lower image) the bottom of the hydrophobic tunnel can be
seen. (B) Surface properties of bovine GLTP (left) and Podospora anserina HET-C2
(model, right). The positively charged four lysines form a locally charged area on the
surface of GLTP. Only one residue is conserved in HET-C2 giving it other properties when
binding to charged membranes.
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role in cargo delivery to the apical plasmamembrane in polarized cells
[34]. Recently, FAPP2 has been demonstrated to be a glycolipid
transfer protein that is involved in the transport of glucosylceramide
from its site of synthesis, the cytosolic leaflet of the Golgi complex, to
its site of conversion into more complex glycosphingolipids, the later
Golgi compartments [30]. There FAPP2 is crucial for the synthesis of
more complex glycolipids, depending on the production of PtdIns(4)P
and small GTPase Arf1 in the Golgi complex. Furthermore, FAPP2 takes
part in the retrograde pathway of glucosylceramide transport from the
Golgi complex to the ER [10].

3. Comparison of the structure of GLTP and GLTP-like proteins

The three dimensional structures of the known GLTPs from
different species all reveal a double-layered all-alpha-helical con-
formation with a ligand-binding site consisting of a sugar recognition
center and a hydrophobic channel specific for hydrocarbon chains
[35–38] (Fig. 2). This unique GLTP fold differs considerably from that of
other known lipid transfer protein structures. In general, lipid transfer
protein structures and structures that bind lipids are dominated by
β-sheet motifs, such as β-barrels, β-cups and β-grooves. Most lipid
transfer proteins are also structurally stabilized by disulfide bridges
between alpha-helical bundles, such as the saposins and non-specific
lipid transfer proteins (nsLTP), phosphatidylglycerol-, ceramide-, fatty
acid and plant lipid transfer proteins [39–42]. In comparison to GLTP
lipid transfer proteins from plants are generally much smaller with
molecular mass around 10–12 kDa [42].

The sugar, glucose in most glycosphingolipids and galactose in
galactosylceramide and sulfatide, linked to ceramide is firmly
anchored within the GLTP recognition center. The center is located
in the beginning of the hydrophobic tunnel. The glycolipid is bound to
specific amino acids by a network of hydrogen bonding and
hydrophobic tethering interactions. The hydrogen bonding involves:
aspartic acid 48, asparagine 52, and lysine 55 of alpha-helix 2, and
tyrosine 207 near the C-terminus. Tryptophan 96 (W96) on alpha-
helix 4 serves as a platform for the first sugar, and cannot be replaced
by another amino acid. Tryptophan 96 forms a hydrogen bond
between the OH-2 and OH-3 groups of the sugar and the D48 and
N52 (Fig. 3A). Depending on the placement of the ligand acyl chains,
the complexes formed by GLTP and a glycolipid can take tree different
forms. (1) The apo-GLTP form has a closed hydrophobic tunnel. (2) A
maximally expanded hydrophobic tunnel with both acyl chains inside,
a “sphingosine-in” conformation. This conformation can be observed
for instance with 18:1-lactosylceramide. (3) With longer acyl chains
(24:1) only one chain is inside the hydrophobic tunnel and
sphingosine is on the outside interacting with hydrophobic amino
Fig. 2. Stereo view of the bovine GLTP (1TFJ) in a ribbon representation with
lactosylceramide bound. The unique GLTP fold differs considerably from that of other
known lipid transfer protein structures. GLTPs have a double-layered all-alpha-helical
conformation with a ligand-binding site consisting of a sugar recognition center and a
hydrophobic channel specific for hydrocarbon chains.
acids on the surface near the tunnel entrance [35–37]. This is also the
likely form when a fluorescently labeled glycolipid, such as the
anthrylvinyl- or BODIPY-glycolipids is bound to GLTP. The larger
bulkier chain carrying the fluorophor would occupy a larger volume
inside the tunnel forcing the sphingosine chain to be on the outside.

A large positively charged area formed by four lysine residues, K87,
K137, K138 and K208 is located on the surface of GLTP in the vicinity of
the sugar-binding pocket (Fig. 3B). This positively charged surface area
is not conserved in HET-C2 and ACD11. Only one lysine residue (K137)
is conserved in HET-C2 and none in ACD11. As a result, the binding to
membrane surfaces and transfer of glycolipids of HET-C2 is different
compared to GLTP [43]. ACD11 does not transfer glycolipids despite
the structural similarity [25,26].

4. GLTP interaction with membranes

GLTP associates with the membrane surface in the presence or
absence of glycolipid, the binding is transient and not membrane
perturbing [44,45]. The binding process is strongly influenced by the



Fig. 4. Putative membrane interaction of GLTP, with tryptophan 142 and the two
isoleucine residues (143 and 147) in alpha-helix 6 penetrating into the interfacial
region. The alpha-helix 6 is most likely displaced outward about 2.5 Å when the
glycolipid inserts into the tunnel. The sphingosine chain is suggested to enter last and to
be the first to depart GLTP upon interaction with a membrane. The figure is constructed
based on experimental data discussed in this review, as well as predictions from the
Orientations of Proteins in Membranes (OPM) database [61,62].
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membrane lipid composition and is thought to involve a membrane
interaction site that contains tryptophan 142, together with nearby
solvent exposed hydrophobic residues isoleucine 143 and 147 [46,47].
Recent photochemically induced dynamic nuclear polarization (CIDNP
NMR) data provide direct evidence that the solvent exposed W142
residue is sensitive to the membrane environment, and that the
protein does not need to penetrate deeply into the membrane
interface to allow binding of a glycolipid [47].

Once the protein is at the interface, it must scoot for the glycolipid
and recognize the carbohydrate moiety on the glycolipid. The
mechanism of glycolipid entry and exit from GLTP is thought to
function with a cleft-like gating mechanism. Two interhelical loops
and one alpha-helix conformational change facilitate entry and exit of
Fig. 5. Glucosylceramide, which is synthesized from ceramide in the early Golgi compartmen
transport glucosylceramide back to the ER. A potential role for GLTP could be in the transport
could be as a sensor for the glucosylceramide levels of the ER membrane, or perhaps at the p
into sphingomyelin by sphingomyelin synthase in the Golgi lumen, or it is glycosylated
Glucosylceramide is converted to more complex glycosphingolipids in the lumen of the late
to the glycosylation steps remains unclear. CERT and FAPP2 are targeted to the Golgi comple
4-phosphate. CERT possess an ER-targeting motif FFAT, two phenylalanins in an acidic tract t
interacts with VAP through a similar ER-targeting motif, and with Golgi through its pleckst
the lipid chains in themembrane-associated state when the glycolipid
sugar is bound to the recognition center [37]. When a protein–
glycolipid complex is formed, it is released into the aqueous
environment. This mechanism would be consistent with a carrier
mechanism, as GLTP would have to desorb from the surface
completely to accomplish GSL transfer (Fig. 4). GLTP would not
function with the same mechanism as the ceramide transporter CERT.
CERT can facilitate movement at the contact sites between the
endoplasmic reticulum and trans-Golgi cisternae by a ‘neck-swinging’
movement of the START domain (steroidogenic acute regulatory
protein-related lipid transfer) [41,48,49]. The transfer of ceramide by
CERT from the endoplasmic reticulum to the Golgi apparatus in a
critical step in sphingomyelin synthesis [50].

For an optimal protein–lipid complex to form within the
membrane interfacial environment, lateral diffusion of either lipid
or protein or both is required. The rapid lateral diffusion rates of lipids
in fluid-phase membranes and the formation of locally concentrated
glycolipid clusters would increase the probability of GLTP to associate
with a glycolipid molecule. Once a glycolipid cluster is found by GLTP
in the membrane matrix the transfer would further be enhanced,
because the glycolipid pool is directly available in close proximity.
Examples of such enriched glycolipid environments in biological
membranes are rafts and caveolae.

As pointed out earlier, the positively charged surface of GLTP
(Fig. 3B) has effects on how well glycolipids are moved between
artificial membranes. When neutral donor vesicle membranes were
compared to negatively charged vesicles (5 or 10mol% negative lipids)
a significant decrease in the glycolipid transfer rate from the
negatively charged membranes was seen [51]. Introduction of the
same amount of negative charge into the acceptor vesicle membrane
however, did not impede the transfer rate as effectively. Also, positive
charges in the donor vesicle membrane are not as effective at
retarding the glycolipid transfer as is a negative charge in the donor
vesicle. It is assumed that since GLTP is positively charged at neutral
pH (pI=9.0) it would associate with the negatively charged donor
membrane through electrostatic interactions between the protein and
t is transported to the distal Golgi compartments by FAPP2 [10,30]. FAPP2 is also able to
of glucosylceramide from the Golgi complex to the plasmamembrane [10]. Another role
lasma membrane. Ceramide reaches Golgi from the ER via CERT. Ceramide is converted
to glycosylceramide on the cytosolic surface of Golgi by glucosylceramide synthase.
r Golgi compartments. How glucosylceramide is translocated to the Golgi lumen prior
x via their pleckstrin homology domain binding to ARF1-GTP and phosphatidylinositol-
hat can interact with the VAP proteins in the ER. Oxysterol-binding protein (OSBP) also
rin homology domain, and is believed to act as a sterol sensor.
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the membrane surface [43,51]. This results in a slow GLTP off-rate
from the donor surface, and consequently results in a diminished rate
of GLTP mediated transfer.

Experimentally it has been shown that GLTPmediated delivery of a
fluorescently labeled galactosylceramide (anthrylvinyl acyl chain
label) was very effective to membranes that were composed of a
raft-like equimolarmixture of palmitoyl sphingomyelin andpalmitoyl-
oleoyl phosphatidylcholine. The delivery ratesweremuch slower if the
acceptor vesicles where made of either of the phospholipids in
majority (not raft-like) [52,53]. In theory this would suggest that
GLTPmight be sensitive if tightly packed domains are starting to build-
up. Transfer of glycolipids from tightly packed environments, such as
sphingomyelin containing membranes are very slow compared to
membranes containing other phospholipids [7,9,51,52], again sugges-
ting that raft-like domains might not be the source of glycolipids for
GLTP in natural membrane environments. Because GLTP is localized in
the cytosol it is unlikely that it would participate in raft and caveolar
structure, since they are found to a large extent on the outer leaflet of
the plasmamembrane. Rather, GLTP is likely to be involved in events at
the cytosolic side of the plasmamembrane.MaybeGLTP could function
as a reporter or sensor of glycolipid levels on the inner plasma
membrane leaflet. If high levels of glycolipids would form on the inner
leaflet GLTP would be a potential candidate sensing these changes.

5. Concluding remarks

It is tempting to raise the questionwhether the role of GLTP in vivo
is to bind glycolipids, but not to transfer them. Is the binding of
glycolipids by GLTP linked to other mechanisms that are regulating
glycolipid homeostasis, and the proteinwould function as a glycolipid
sensor? A similar function has been proposed for the oxysterol
binding protein (OSBP) family that are thought to be able to act as
sterol sensors [54–56]. CERT and oxysterol binding proteins bind to ER
via their FFAT motif (two phenylalanines in a acidic tract) that allows
them to associates with VAP, vesicle-associated membrane-protein
associated protein [57]. Other proteins that have affinity for lipids are
the phosphatidylinositol transfer proteins (PITP). PITPs bind andmove
phosphatidylcholine and phosphatidylinositol between membranes
[58]. The class II PITPs RdgBa1/Nir2 has been suggested to control
diacylglycerol levels at the Golgi complex by acting on the CDP–
choline pathway [59]. In addition to its N-terminal PITP domain the
RdgBa protein contains a FFAT motif that targets proteins to the
endoplasmic reticulum via association with VAP.

GLTP could also be part of these types of proteins that bind and
sense different intracellular lipid levels, but not necessarily transfer
them in vivo. More evidence for the importance of glycolipid binding
rather than transfer by GLTP is that it was found that GLTP was
inefficient in releasing the glycolipid to phosphatidylcholine acceptor
vesicles [60]. In other words there is a clear tendency of the bound
glycolipid to remain associated with GLTP, even in the presence of
excess membrane (Fig. 5). For GLTP to be regard as a lipid sensor, the
processes that it may regulate are yet to be discovered.
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