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We extend the classical Ambarzumyan’s theorem for the Sturm–Liouville equation
(which is concerned only with Neumann boundary conditions) to the general bound-
ary conditions, by imposing an additional condition on the potential function. Our
result supplements the Pöschel–Trubowitz inverse spectral theory. We also have
parallel results for vectorial Sturm–Liouville systems.  2001 Academic Press
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1. INTRODUCTION

Consider the Sturm–Liouville problem

−y ′′ + qy = λy (1.1)

such that {
y�0� cosα+ y ′�0� sinα = 0
y�π� cosβ+ y ′�π� sinβ = 0� (1.2)

where q ∈ L1�0� π�� α�β ∈ �0� π�. Ambarzumyan’s theorem [1] states
that for the Neumann boundary condition �α = β = π

2 �, if the spectrum
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σ = 	n2 
 n ∈ N ∪ 	0��, then the potential function q = 0 a.e. The theorem
may be viewed as the first theorem in the history of inverse spectral theory.
Recently, Shen and one of us (H. H. Chern), using ideas from [3], proved
a vectorial version of Ambarzumyan’s theory [4].

As all these works only deal with Neumann boundary conditions, it would
be interesting to study other boundary conditions. However, Pöschel and
Trubowitz in their classical monograph [7] showed that for the typical
Dirichlet problem, there exists infinitely many L2 potentials near zero which
correspond to the “zero” spectrum σ = 	n2 
 n ∈ N�. This means that for
the Dirichlet problem, when the spectrum is “zero,” the potential is not
necessarily zero. The associated Ambarzumyan’s theorem is not valid.

However, we can impose some additional conditions on the potential
function to arrive at a theorem for the general boundary conditions. Our
main theorem is the following.

Theorem 1.1. For the Sturm–Liouville problem (1.1) and (1.2), assume
that α = β = π

2 . Then σ = 	n2 
 n ∈ N�, and the potential function q satisfies
∫ π

0
q�x� cos 2�x− α�dx = 0

if and only if q = 0 a.e.

Theorem 1.1 adds content to the Pöschel–Trubowitz inverse spectral
theory. Its significance will be discussed after its proof in Section 2. The
proof makes use of explicit eigenvalue asymptotics instead of the Gelfand–
Levitan equation as needed by previous proofs. Applying the theorem, we
arrive at the following interesting conclusion.

Theorem 1.2. For the Sturm–Liouville problem (1.1) and (1.2), any two
of the following three conditions imply the third one:

(a) α = β ∈ �0� π�,
(b) σ = 	n2 
 n ∈ N� is the spectral set of (1.1) and (1.2), and∫ π

0 q�x� cos 2�x− α�dx = 0
(c) q = 0 a.e.

From the above theorem (or more explicitly, Theorem 2.1), when the
potential function vanishes and the spectrum is “zero,” then the phases
α�β have to be equal. Thus Ambarzumyan’s inverse spectrum theorem is
false when α = β.

We are also able to prove an analog of Theorem 1.1 for the vectorial case,
generalizing the result in [4]. Since eigenvalue asymptotics are not clear
in vectorial Sturm–Liouville problems, except for Dirichlet and Neumann
boundary conditions [2], we resort to the (vectorial) Gelfand–Levitan
equation developed in [4].



extension of ambarzumyan’s theorem 335

In Section 2, we study the scalar case. We first show that (Theorem 2.1)
for the zero potential, the spectrum is “zero” if and only if the bound-
ary phases are equal, i.e., α = β. Then we prove our main theorems.
In Section 3, we study the vectorial case. We prove a parallel result to
Theorem 2.1, which says that for the zero potential, its spectrum is “zero”
if and only if the boundary conditions are the same. Finally we prove the
(vectorial) Ambarzumyan theorems for some other boundary conditions
(Theorem 3.4), and then for Dirichlet boundary conditions (Theorem 3.7).

2. SCALAR CASE

Theorem 2.1. For the Sturm–Liouville problem (1.1) and (1.2), when
q = 0, the spectrum σ = 	n2 
 n ∈ N� if and only if α = β.

Proof. When q = 0, (1.1) becomes y ′′ + λy = 0. Its general solution is

y = c1 cos
√
λx+ c2 sin

√
λx�

where c1c2 = 0. So y�0� = c1, y ′�0� = c2
√
λ, and the boundary condition at

the left endpoint 0 becomes

c1 cosα+ c2

√
λ sinα = 0� (2.1)

On the other hand,{
y�π� = c1 cos�√λπ� + c2 sin�√λπ�
y ′�π� = −c1

√
λ sin�√λπ� + c2

√
λ cos�√λπ��

Substituting into the boundary condition at the right endpoint π, we obtain

c1�cosβ cos�
√
λπ� −

√
λ sinβ sin�

√
λπ��

+ c2�cosβ sin�
√
λπ� +

√
λ sinβ cos�

√
λπ�� = 0� (2.2)

Combining (2.1) and (2.2),
√
λ sinα�cosβ cos�

√
λπ� −

√
λ sinβ sin�

√
λπ��

= cosα�cosβ sin�
√
λπ� +

√
λ sinβ cos�

√
λπ���

After grouping,

�λ sinα sinβ+ cosα cosβ� sin�
√
λπ�

+
√
λ sin�β− α� cos�

√
λπ� = 0� (2.3)

If
√
λ = n, then sin�β − α� = 0. We have α = β. On the other hand, if

α = β, then by (2.3),

�λ sin2 α+ cos2 α� sin�
√
λπ� = 0�

Therefore
√
λ has to be an integer.
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Proof of Theorem 1.1. The necessary part is obvious. To prove the suf-
ficiency, observe that by Lemma 2.2 in [6] (see also [5, 8]), we obtain with
a scaling,

√
λn = n+ 1

nπ
�scotβ− scotα� + 1

2nπ3

×
∫ π

0
�1 + α0π

2 cos�2nx�q�x��dx+O

(
1
n2

)
�

as n −→ ∞. Here scot γ = cot γ, if γ = 0� = 0 otherwise and α0 = −1, if
α = 0� = 1, otherwise. Then if α = β,

√
λn = n+ 1

2nπ3

∫ π

0
q+ α0

2nπ

∫ π

0
cos�2nx�q�x�dx+O

(
1
n2

)
�

= n+ 1
2nπ3

∫ π

0
q+ o

(
1
n

)
�

by the Riemann–Lebesgue lemma. Thus if λn = n2 for any n ∈ N , then∫ π
0 q = 0.
Next we show that sin�x− α� is the first eigenfunction. By the variational

principle,

λ1 = inf
�y�Hy�
�y� y� �

where y ∈ C2�0� π�, satisfying the boundary conditions (1.2) and Hy =
−y ′′ + qy. Now y = sin�x− α� satisfies the boundary conditions (1.2), and
so

1 = λ1 ≤
∫ π

0 sin2�x− α��1 + q�x��dx∫ π
0 sin2�x− α�dx �

Hence
π

2
≤ π

2
+

∫ π

0
q�x� sin2�x− α�dx�

= π

2
+ 1

2

∫ π

0
q− 1

2

∫ π

0
q�x� cos 2�x− α�dx�

Since
∫ π

0 q = 0, and by assumption, the right hand side is exactly π
2 , the test

function y = sin�x − α� achieves the minimum value and is thus the first
eigenfunction. Substituting this into (1.1), we obtain

sin�x− α� + q�x� sin�x− α� = 1 · sin�x− α��
Therefore q ≡ 0 a.e.

Proof of Theorem 1.2. It follows directly from Theorem 2.1, Theorem 1.1,
and the classical Ambarzumyan’s theorem.
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According to the Pöschel–Trubowitz inverse spectral theory [7], any L2

function defined on �0� π� can be decomposed into direct sums of its odd
part and even part. Let U and E denote the Banach spaces of these odd
parts and even parts. Also let f stand for the function that maps an L2

potential to its Dirichlet spectrum which is equivalent to another Banach
space F = R ⊕ l2. Thus f is a map from U ⊕ E to F , and f �0� 0� = 0.
Applying the implicit function theorem, they showed that near u0 = 0, the
even part can be uniquely expressed as a function of its odd part �e = e�u��
such that f �u� e�u�� = 0. Thus q = u+ e�u� is an isospectral L2 potential.
In terms of Fourier series, our main theorem says that if

a2 =
∫ π

0
q�x� cos 2xdx =

∫ π

0
e�u� cos 2xdx = 0�

then all the even Fourier coefficients vanish, i.e., an = 0 for all n. Thus the
odd part also vanishes. In other words, if q is an isospectral potential, then
its even part does not vanish, in particular, as our theorem indicates, a2 = 0.
In this way, our theorem supplements the Pöschel–Trubowitz theory.

3. THE VECTORIAL CASE

Consider the vectorial Sturm–Liouville problem{−φ′′ + P�x�φ = λφ
Aφ�0� + Bφ′�0� = �φ�π� +�φ′�π� = 0� (3.1)

where P�x� is a d × d real symmetric continuous matrix-valued function
and the coefficient matrices A�B���� satisfy{

BA∗ = AB∗� ��∗ = ��∗

rank�A�B� = rank����� = d�
(3.2)

Here �A�B� denotes the d × 2d augmented matrix composed of A and B.
Also let P = �P1P2 � � � Pn�, where

Pk =


P1k
���
Pdk


 �

Theorem 3.1. Let P�x� = 0. Then the spectral set of (3.1) is 	n2 
 n ≥ 1�
and each eigenvalue has multiplicity d if and only if �A∗ = �B∗. If both B
and � are invertible, this is also equivalent to B−1A = �−1�.

Remark. This means that when B and � are invertible, the spectral set
of (3.1) is 	n2 
 n ∈ N� and P ≡ 0 occur simultaneously only when the
boundary conditions are the same.
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To study the vectorial Sturm–Liouville problem, it is useful and worthy to
solve the associated matrix equation as below. For any λ ∈ C, the solution
of the matrix equation{−Y ′′ + P�x�Y = λY

Y �0� λ� = B∗� Y ′�0� λ� = −A∗� (3.3)

can be characterized by the Gelfand–Levitan equation as

Y �x� λ� = C�x�
√
λ� +

∫ x

0
K�x� t�C�t�

√
λ�dt� (3.4)

where

C�x�µ� = cos�µx�B∗ − sin�µx�A∗

µ
� (3.5)

and ��x� t� is determined by a particular wave equation. The eigenvalues
are characterized by those values λ so that the matrix-valued function

W �λ� = �Y ′�π�λ� + �Y �π�λ�
is singular or not. In particular, an eigenvalue λk is of multiplicity d, if and
only if W �λk� = 0 (cf. [4]). Furthermore, it was shown in [4] that

K�π�π� = 1
2

∫ π

0
P�x�dx� (3.6)

We introduce two lemmas before we give the proof of Theorem 3.1.

Lemma 3.2. If the two d × d matrices A�B satisfy

rank�A�B� = d� BA∗ = AB∗�

then the matrix tB + iA is nonsingular for t ∈ R\	0�.
Proof. Notice that

�tB + iA��tB∗ − iA∗� = t2BB∗ +AA∗� (3.7)

Let �u� v� be the ordinary inner product in Cd. For any v ∈ Cd, if

�tB + iA��tB∗ − iA∗�v = 0�

we want to show that v = 0. By (3.7), we have

�v� �t2BB∗ +AA∗�v� = t2�B∗v� B∗v� + �A∗v�A∗v� = 0�

for all t ∈ R\	0�. This holds true if and only if B∗v = 0 and A∗v = 0.
Observe that the hypothesis rank�A�B� = d implies that the only intersec-
tion between the nullspaces of A∗ and B∗ is 	0�.
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Lemma 3.3. Let A�B���� be d × d matrices satisfying (3.2). If �A∗ =
�B∗, then for any λ > 0� λ�B∗ + �A∗ is invertible.

Proof. For λ > 0, let µ = √
λ. Since

�µ�+ i���µB∗ − iA∗� = µ2�B∗ + �A∗�

by Lemma 3.2, the proof is done.

Proof of Theorem 3.1. As P�x� = 0, we have

W �λ� = −
(√

λ�B∗ + �A∗ 1√
λ

)
sin

√
λπ + cos

√
λπ��B∗ −�A∗��

By the above identity and Lemma 3.3, the first part is valid.
Then, observe that when B and � are both invertible, �B∗ = �A∗ if and

only if

�−1� = A∗�B∗�−1 = �B−1A�∗ = B−1A�

The last equality above is due to (3.2).

Theorem 3.4. For the vectorial Sturm–Liouville system (3.1) and (3.2),
assume that B and � are both invertible and the matrix B−1A = �−1� has
nonzero characteristic values. Let αk ∈ �0� π�\	π/2� �k = 1� 2� � � � � d� and S
be the Hermitian matrix such that

S−1�B−1A�S = diag	cotα1� cotα2� � � � � cotαd��
Then P ≡ 0 if and only if

(i) the eigenvalues are n2 �n ∈ N� with multiplicity d; and
(ii) for all k = 1� � � � � d�∫ π

0
�S−1P�x�S�kk cos�2�x− αk��dx = 0�

Proof. The sufficiency part is obvious. To prove the converse, consider
the matrix differential equation (3.3) for Y = Y �x� λ�� λ = n2 is an eigen-
value of multiplicity d if and only if W �n2� = �Y �π� n2� +�Y ′�π� n2� = 0,
the zero matrix. By (3.4) and (3.5),

C ′�x�µ� = −µ sin�µx�B∗ − cos�µx�A∗�

and

Y ′�x� λ� = C ′�x�
√
λ� +K�x� x�C�x�

√
λ� +

∫ x

0
∂xK�x� t�C�t�

√
λ�dt�

That means

Y ′�π� n2� = C ′�π� n� +K�π�π�C�π� n� +
∫ π

0
∂xK�x� t��x=πC�t� n�dt�
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Now,
C�π� n� = �−1�nB∗� C ′�π� n� = �−1�n+1A∗�

Hence for all n,
0 = �Y �π� n2� +�Y ′�π� n2��
= �−1�n�B∗ + �

∫ π

0
K�π� t�C�t� n�dt + �−1�n+1�A∗

+ �−1�n�K�π�π�B∗ +�
∫ π

0
∂xK�x� t��x=πC�t� n�dt�

By the Riemann–Lebesgue lemma, and the fact that �B∗ = �A∗, we obtain,
as n tends to infinity, �K�π�π�B∗ = o�1�. Hence �K�π�π�B∗ = 0. So as
rankB = rank � = d, we have K�π�π� = 0. Therefore

∫ π
0 P�x�dx = 0

by (3.6).
Next we want to show that φk�x� = sin�x − αk�Sek is the first eigen-

function corresponding to the first eigenvalue 1, where ek is the unit vector
whose kth component is 1.

First φk is an admissible function, because

S−1�B−1Aφk�0� +φ′
k�0�� = S−1B−1AS sin�−αk�ek + cos�αk�ek

= �cotαk sin�−αk� + cos�αk��ek
= 0�

Hence
B−1Aφk�0� +φ′

k�0� = 0�
Similarly,

B−1Aφk�π� +φ′
k�π� = 0�

Second,

1 = λ1 ≤
∫ π

0 �−φ∗t
k φ

′′
k +φ∗t

k Pφk�dx∫ π
0 φ∗t

k φk dx

= −φ∗t
k φ

′
k�π0 + ∫ π

0 �φ′∗t
k φ

′
k +φ∗t

k Pφk�dx∫ π
0 φ∗t

k φk dx
�

=
[
−�1/2�

∫ π

0
sin 2�x− αk�dx+

∫ π

0
sin2�x− αk�dx

+
∫ π

0
�S−1P�x�S�kk sin2�x− αk�dx

]

×
[∫ π

0
sin2�x− αk�dx

]−1

= π/2 − �1/2� sin 2α
π/2 − �1/2� sin 2α

= 1�
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Hence equality holds. Therefore φk is an eigenfunction corresponding to
the first eigenvalue 1. Substituting φk into (3.1), we obtain

−φ′′
k + P�x�φk = φk�

Since φ′′
k = −φk� P�x�φk = 0. That is, for all 1 ≤ k ≤ d, for all x ∈

�0� π�� sin�x − αk�PSek = 0. Thus PSk ≡ 0 for all k. We conclude that
PS and so P is identically zero.

Theorem 3.5. For the vectorial Sturm–Liouville system (3.1) and (3.2), B
and � are both invertible. Any two of the following three conditions imply the
third one:

(a) B−1A = �−1� has nonzero characteristic values.

(b) The eigenvalues are n2 �n ∈ N� with multiplicity d, and there exist
constants αk ∈ �0� π�\	π/2� �k = 1� � � � � d� and a Hermitian matrix S
such that

∫ π

0
�S−1P�x�S�kk cos�2�x− αk��dx = 0�

(c) P = 0.

Note that for the Dirichlet boundary conditions, � = B = 0 which
is not invertible. Hence the above theorem does not apply. Neverthe-
less, in [2], Carlson gave an estimate for the Dirichlet eigenvalues λn by
means of the eigenvalues λ0

n associated with the mean potential function
P0 = 1

π

∫ π
0 P�x�dx, assuming P0 is a diagonal matrix.

Lemma 3.6 [2, Corollary 4.2]. Suppose P is a C2, real symmetric matrix
function and P0 = 1

π

∫ π
0 P is a diagonal matrix. Then for sufficiently large n,

for each k = 1� � � � � n,

∣∣λdn+k − λ0
dn+k

∣∣ ≤ M

n+ 1
�

In fact, P0 need not be diagonal. Since P is real symmetric, P0 is also real
symmetric. Hence P0 is diagonalizable. Let S be a similarity matrix of P0.
Note that the diagonal matrix S−1P0S satisfies

S−1P0S = 1
π

∫ π

0
S−1P�x�S dx�

Furthermore, the two Sturm–Liouville problems with potential functions
P�x� and S−1P�x�S have the same set of eigenvalues.
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Theorem 3.7. Suppose P is a C2, and real symmetric matrix function.
Then for the Dirichlet boundary conditions, P ≡ 0 if and only if

(i) the eigenvalues are n2 �n ∈ N� with multiplicity d; and
(ii)

∫ π
0 �S−1P�x�S�kk cos�2x�dx = 0, for all k.

Proof. We may apply Carlson’s result (Lemma 3.6) to see that for
k = 1� � � � � d

∣∣λdn+k − λ0
dn+k

∣∣ ≤ M

n+ 1
�

Let S−1P0S = diag	q1� q2� � � � � qd�. Then

λ0
dn+k = �n+ 1�2 + qk�

Hence

λdn+k = �n+ 1�2 + qk +O

(
1
n

)
�

But by assumption, λdn+k = �n+ 1�2. Hence qk = 0, for each k = 1� � � � � d.
We conclude that S−1P0S = 0. So P0 = 0, or∫ π

0
P�x�dx = 0�

Following the steps as in Theorem 3.4, we have P ≡ 0.
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