
Camp. % .Malhr mrlh .4ppls. Vol 8. No. 5. pp 367-V:. 1982 009749431821050367-1 IW3.0010
Pnnled I” Great Bnnm Pergamon Press Ltd

uyhyjghjghjghjghjghjAST ORTHOGONAL DERIVATIVES ON THE STAR

SHAHID H. BOKHARI~

Departmjghjhgjgnt of Electrical Engineering, University of Engineering & Technology,
Lahore-3 I, Pakistan

M. YOUSUFF HUSSAINI?

Institute for Computer Ahjhgjpplications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23665, U.S.A.

and

STEVEN A. ORSZAGS

Departmehjghjt of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA 02139, U.S.A.

Communicated by Steven A. Orszag

(Received November 1981)

Abstract-In many numerical problems there is the need for obtaining derivatives in the X and Y directions
of m variables at each point on an n x n plane. We consider the case where these derivatives are obtained
using spectral methods (i.e. n fast Fourier transforms of length n are taken for each component, multiplied
by the wave numbers and reverse transformed).

On the CDC STAR-100 all data points corresponding to a plane must be stored in contiguous locations if
advantage is to be taken of the powerful pipeline hardware of the machine. This means that derivatives in
one direction are obtained very efficiently while derivatives in the orthogonal direction require either the
substantial overhead of transposition or the use of scalar operations with no benefits of pipelining.

An algorithm is described that overcomes this problem by taking derivatives of all components
simultaneously. This is made possible by perfect shuffling of data to effect a pseudo-transposition that
permits the FFT routine to take transforms of all m components on a plane at one time. Practical
experience with this algorithm for m = 5 and n = 32 shows a 10% speedup for X-derivatives and a 32%
speedup for Y-derivatives over the conventional algorithms (in which X and Y derivatives are taken one
component at a time and Y derivatives require transposition of data).

A theoretical analysis based on available STAR-100 vector instruction timing data predicts that this
algorithm is superior to the conventional algorithm for M 2 2, n I 128 (problem sizes of practical interest).
We show how further improvement in running time may be obtained if derivatives of several components
on more’ than one plane are required.

This analysis is applicable to the new generation of STAR computers (the CDC Cyber 203s) since vector
instruction timings are essentially unchanged in the new machines.

1. INTRODUCTION

Supercomputers such as the CDC STAR-lob, CRAY-1 and ILLIAC IV are intended primarily
for the solution of large numerical problems. Because of their vector architecture, design and
analysis of algorithms for these computers is a complex task, requiring more intimate know-
ledge of machine architecture than is the case for scalar machines. At the same time, design of
efficient algorithms is all the more important for these machines because they are scarce
resources-there is only one ILLIAC IV, a few STAR 100s and several dozen CRAY-1s in the
word.

In a supercomputer installation running several production jobs of a few hours each, every
day, a reduction in running time of lO-25% in a few jobs may mean that a new daily job can be
accomodated or that more time can be made available for program development. For programs
that process data taken from the physical world and whose usefulness depends on the speed
with which results are made available (e.g. weather prediction), a reduction in running time
increases the value of the final output.

Thus for supercomputers it is especially important to search for algorithms that are efficient

+Work supported by NASA Contract NASI-14101 at ICASE, NASA Langley Research Center, Hampton, Virginia,
U.S.A.

iWork supported by NASA Contract NASI-16237.

367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82571349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

368 S. H. BOKHAIU et al.

in a practical sense. For such machines a new algorithm that reduces the running time of a
program or subroutine by an appreciable amount for a problem size of interest even if its
asymptotic run time is poorer than an older algorithm. Clearly, an algorithm that is superior to
all others for a “sufficiently large” problem size is of little use if the “sufficiently large” problem
size is not of interest or cannot be accomodated in the machine.

In this paper we describe one such algorithm that we have developed as part of a large
program to solve 3-D Navier-Stokes equations on the CDC STAR-100 at NASA Langley
Research Center. Our program solves these equations for a cuboid of space of size 32 x 32 x 64
points in the X, Y, and 2 directions respectively. At each point in this cuboid we have the X, Y
and Z components of velocity (denoted U, V and W), and pressure (P) and density (R). During
the course of our program we need the derivatives of U, V, W, P and R in the X and Y
directions on each of the planes. These derivatives are obtained spectrally, i.e. we take n fast
Fourier transforms of length n each in the X(Y) direction on each plane, multiply by the “wave
numbers” v(- 1) k,(k,) and then take reverse FFTs in the X(Y) direction. The conventional
algorithms for obtaining these derivatives are called DX and DY in this paper.

A major problem with these algorithms arises because of the requirement on the STAR that
elements of a vector occupy contiguous locations in memory. Thus if the 32 x 32 matrix
containing the U components for a plane is stored in row order, vector operations can only be
done along the rows of U. Vector operations along the columns of U can be done only after the
substantial overhead of matrix transportation. In our program data is stored such that algorithm
DY requires the overhead of transposition and is thus considerably slower than DX.

We have developed a new algorithm that permits derivatives on all five components to be
taken simultaneously. We call this algorithm DS (for “simultaneous”). This algorithm outper-
forms both DX and DY because instead of taking 5 separate derivatives with 32 FFTs of length
32 each (plus transposition overhead in the case of DY), it finds derivatives on all 5 components
simultaneously with 160 FFTs of length 32 each. This is done by using perfect shuffles to effect
a pseudo-transposition as described in Section 3. The reduction in run time per FFT brought
about by taking 160 instead of 32 transforms outweighs the overhead of shuffling so that in the
end DS is 10% faster than DX and 32% faster than DY. DS is essentially the same whether
used for X of Y derivatives, the only difference lies in the way shuffling is done. This is
explained in Section 3.

Theoretical predictions of run times of algorithms DS, DX and DY for problems with m
components and plane sizes of n x n are given in Section 4. All three algorithms are shown to
have 0 (mn’log,n) running time and algorithms DS has the poorest asymptotic run time.
However we show in Section 5 that DS is superior to DY over most of the range of problem
sizes of interest (16 5 n I 256, m z 2) and is better than DX over about 40% of this range.

It is possible to obtain further improvements in performance by using algorithm DS to take
derivatives of all components on several successive X-Y planes simulataneously. This tech-
nique is described in Section 5.

We start with a brief overview of the STAR-100 in Section 2.

2. THE STAR-100

The Control Data Corporation STAR-100 is a pipelined vector computer designed primarily
to solve large numeric problems. It has a 40 nsec minor clock cycle and the wordlength may be
either 32 or 64 bits. The physical memory size may be either 0.5 or 1 Megaword and the virtual
memory address space is 2*’ words.

The specific machine at NASA Langley Center on which the algorithm described in this
paper was developed had a 524288 word memory. This machine has since been upgraded to a
Cyber 203 with 1 Megaword memory and improved scalar instruction times. However the
vector instruction times are essentially unchanged and the results of this research are equally
applicable to the upgraded machine.

In common with all pipelined machines, the time required to perform a vector operation on
the STAR is described by the relationship Top = S,, + iVf,,. Here S,, is the startup time
associated with the operation “op” and equals the time that must elapse before the first result is
available. N is the length of the vector being processed. fO, is the time per result, once the first
result has been computed. If all timings be measured in minor clock cycles (4Ons) then S,,,

Fast orthogonal derivatives on the STAR 369

varies from 30 to about 300 and S,, varies from l/2 to 8. Details of timings of interest to us are
given in Table 1. (Note-All timings are for full word instructions since our program was
developed for full word data.)

Clearly, it is always advantageous to work with as long a vector as possible in order to
minimize the startup overhead per vector element. Very careful programming and data layout
are required to achieve long vector lengths.

Two hardware constraints are of relevance. Firstly the length of a vector cannot exceed
65536 elements. Secondly, the elements of each vector must occupy contiguous locations in
memory.

3. PRACTICAL EXPERIENCE WITH THE THREE DERIVATIVE ALGORITHMS

During the course of our Navier-Stokes program we need to obtain derivatives in the X and
Y directions for each of the components U, V, W, R, and P on each plane. This problem is
made difficult by the contiguous storage requirement for vectors on the STAR. The usual result
of this constraint is that derivatves in one direction are obtained very efficiently while
derivatives in the orthogonal direction require the overhead of transportation or the use of
scalar operations (with no benefits of pipelining).

We have developed an algorithm which overcomes this problem by taking derivatives of all
five components simultantously. This is made possible by reverse shuffling our data ap-
propriately to effect a pseudo-transposition. The end results are that (1) derivatives in the X
and Y directions require almost the same amount of time for our particular problem size and (2)
the time required to obtain all derivatives simultaneously is less than the time required when
they are obtained individually. This section describes our approach in detail.

The U, V, W, P and R components on each plane are stored as shown in Fig. 1. It is
necessary to store each component in a contiguous run because these components are required
individually for computation elsewhere in the program. ALL, the vector made up of the
concatenation of vectors U, V, W, P and R is thus of length 5120, the individual components
being of length 1024 each.

in
The straightforward way of obtaining X-derivatives, given the data organization described

Fig. 1 is as follows:

Subroutine DX:
take 32 FFTs of length 32 each in the X-direction;
multiply by wave numbers d- 1 k,;
take 32 inverse FFTs of length 32 each in the X-direction;
return;
~~~~~_~~__~~__~~_

for each component do Call DX;

We have available to us the powerful FFT routine developed for the STAR by Korn and
Lambiotte[5]. An important property of this routing is that the time per transform decreases

Table 1. Selected vector instruction timings (minor cycles) for the STAR[14]

INSTRUCTION TIMING FORMULA

(N = Vector length)

Move 91 + N/2

Compress 92 + N

Merge 123 + 3N

Multiply 157 + N

Transpose 16.6N

(Matrix of size

fi x f%)

c9vw4 \ 0 x vo i-c

370 S. H. BOKHARI et al.

Y

0 U[0. 01 U[0, 11 . . . U[0,311 r-7: U[1, 01 U[1, 11 . . . U[1,311

. . . .

. . . .

. . . .
X

U[31. 01 U[31,1[. . . U[31,311

1024 V[0, 01 V[0, 11 . . . V[O,311

V[1, 01 V[1, 11 . . . V[1,311

. . . .

. . . .

. . . .
VI31, 01 V[31,11 . . . V[31,311

2048 W[0, 01 W[0, 11 . . . W[0,311

Wf 1, 01 W[1, 11 . . . W[1,311

. . . .

. . . .

. . . .

W(31, 01 W[31, 11 . . . WL31.311

3072 Pf 0, 01 P[0, 11 . . . PC 0.311

P[1, O] P[1. 11 . . . PL 1,311

. . . .

. . . .

. . . .

Pf31, 01 P(31, 11 . . . P131.311

4096 R[0, 01 R[0. 11 . . . RI 0,311

R[1. 01 RI 1, 11 . . . R[1,311

. . . .

. . . .

. . . .

R[31, 01 R[31, 11 . . . Rf31.311

U

1023

STORAGE IS

CONSECUTIVE BY ROWS.

V

2047

W

3071

P

4095

R

5119

Fig. 1. Storage of the five components U, V, W, P, R in one vector ALL.

with the number of transforms being taken. This reduction is due in part to the pipeline
architecture of the STAR and in part to ingeneous algorithm design whereby the initial
overhead of taking several transforms is distributed over all transforms. Korn and Lambiotte
describeU1 how the algorithm can lead to substantial reductions in time even on a scalar
machine.

This routine requires that data be passed to it such that, if M transforms of N points each
are required, the first M elements of the input vector contain the first points of each of the N
input lines and so on.

Referring to Fig. 1 we see that our data is set up such that all the FFTs in the X-direction
can be taken simultaneously.

Figure 2 shows the measured time per transform for obtaining sets of FFTs with the
Korn-Lambiotte routine.

Note. Since our input data is all real, we use the well-known technique of presenting two
rows of real data to the routine as real and imaginary parts of one row of complex data. Our
input vector thus appears to the FFT routine to be 16 rows of complex data of length 32 each.

The measured time to transform 16 complex vectors of length 32 each is about 1640 psec. A

Fast orthogonal derivatives on the STAR 371

TIME PER TRANSFORM

I I I I I I I I I)
4 8 16 32 64 80 128 256 512

NUMBER OF TRANSFORKS

Fig. 2. Measured times per transform for obtaining sets of FFl’S of various sizes using the Kom-Lambiotte
algorithm.

forward and a reverse transform are required for each derivative. The time required to multiply
the transform by V(- 1) k, plus some additional overhead is 365 psec, giving a total of
3625 psec per derivative. The time for 5 derivatives is thus 18,125 msec. This information is
tabulated in Table 2.

To obtain derivatives in the Y direction on each component we need to transpose the data so
that it may be presented to the FFT routine in the required format. The following procedures
accomplish this.

Subroutine DY;
transpose input vector of length 32 x 32;
call DX;
transpose vector of length 32 x 32;
return;

for each component do Call DY;

Although a special vector instruction for transposing is available on the STAR, the overhead
is quite substantial (almost 30%) as shown in Table 2.

We have eliminated the inefficiency inherent in this approach by using perfect shuf?les[6] to
preprocess the input data. The technique we have developed reverse shuffles the vector ALL so
that it appears to the FFT routine to be a collection of 80 complex vectors of length 32 each.

After transforming, multiplying by wave numbers and inverse transforming, the output
vector is forward shuffled back to its original configuration. By taking all transforms at once, we
take full advantage of the Korn-Lambiotte FFT routine. This more than compensates for the

T
ab

le
 2

.
M

ea
su

re
d

ex
ec

ut
io

n
ti

m
es

 (
ps

)
fo

r
th

e
th

re
e

de
ri

va
ti

ve

ro
ut

in
es

R
ou

ti
ne

F

F
T

Si

ze

T
im

e
f
o
r

M
ul

ti
pl

ic
at

io
n

2
T

ra
ns

po
se

s
2

p
s
e
u
d
o
-

T
i
m
e

f
o
r

T
i
m
e

f
o
r

2

F
F
T
s

+

m
i
s
t

t
r
a
n
s
p
o
s
e
s

1

5

(
1
0

s
h
u
f
f
l
e
s
)

d
e
r
i
v
a
t
i
v
e

d
e
r
i
v
a
t
i
v
e
s

D
X

1
6

x
 3
2

3
2
7
7

3
6
5

_
_
_
_
_

_
-
_
_
-

3
6
2
5

1
8
1
2
5

D
Y

1
6

x
 3
2

3
2
7
0

3
0
7

1
0
2
1

_
-
_
_
-

4
5
9
8

2
2
9
9
0

I
I
S
(
X
)

S
O

x
3
2

7
2
2
5

1
3
8
6

_
-
_
_
_

7
6
1
4

_
_
_
_

1
6
2
2
5

D
S
(
Y
)

8
0

x
 3
2

6
9
3
1

1
1
5
1

_
-
_
_
-

7
6
1
3

_
_
_
-

1
5
6
9
5

Fast orthogonal derivatives on the STAR 373

overhead of shuffling and the total time for obtaining all X derivatives is 10% less than the time
required if they are done separately. Similarly the time for Y derivatives is 32% less. We call
this shuffle based routine DS and Table 2 includes its timings when used for X and Y
derivatives.

Figure 3 illustrates the reverse shuffling required for the case of X-derivatives. The shuffling
is done a row at a time (each element in the shuffle is a row of ALL). After 5 reverse shuffles
the vector ALL assumes the form shown on the right hand side of Fig. 3. Here we have the
zeroth rows of U, V, W, P, R followed by the first row, etc. This shuffled vector is presented to
the FFT routine as a collection of 80 complex vectors of length 32 each.

To obtain Y derivatives we shuffle an element at a time to have the first column of U
followed by the first column of V etc. This also takes five shuffles and permits 80 complex
transforms of length 32 in the Y direction to be taken simultaneously.

Shuffles are done on the STAR using the Compress and Merge instructions with appropriate
control vectors. The speed of these instructions varies slightly with the composition of the
control vector. Different control vectors are required for row at a time and element at a time
shuffles. This accounts for the fact that when used for Y derivatives, routine DS is slightly
faster than when used for X derivatives.

Details of routine DS are as follows.

Subroutine DS;
loop log,(32) times; Reverse Shuffle ALL endloop;
take 5 x 32/2 transforms of length 32 each;
multiply by wave numbers;
take 5 x 32/2 transforms of length 32 each;
loop log,(32) times: Forward Shuffle ALL endlooplreturn;

4. THEORETICAL PREDICTIONS OF RUNTIME

In this section we discuss generalizations of the algorithms described in Section 3. We
analyze the time required to obtain derivatives of m components on n x n planes. We use

U[0, 01 Ul 0, 11 .
U[1. 01 ui 1, 11 . : :

3 0,311 0, . . .
1,311

U[01 VI 0, 11 VI 0,311
V[Or 01 V[0, 11 . . . V[0,311

. . . . w1 0, 01 W[0, l] . . . W[0,311

. . . . PI 0, 01 P[0, 11 . . . P[0,311
iJ[31, O] iI31,ll : : : bl31,311 RI 0, 01 R[0, l] . . . R[0,311

vr 0. 0 V(11 0, . . . V[0,311
VI 1. 0 V[1, 11 . . . V[1,311

. . . .

. . . .

VI31, O] &31,1] : : : . V[31,311

wr 0, 01 W[0, 11 . . . W[0,311
w[1, 01 W[1, 11 . . . W[1,311

. . . .

. . . .

W[31, WL31, 11 : : : . O] W[31,311

PI 0, 01 P[0, 11 . . . P[0,311
P[l, 01 P[1, 11 . . . PI 1,311

.~ . .

. . . .

Pm, 01 Pc31, 11 : : : P . 131,311

ur 1, 01 U[1,
VI

l] . . . U[1,311
1, 01 V[1, 11 . . . V[1,311

WI 1, 01 WI 1, 11 . . . w[1,311

n P[RI 1, 1, 01 01 ;/ i; 11 I - . PRt MI

U[2, 01 U[2, 11 . . . IJl 2,311
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

Rr 0, 01 RI 0, 11 . . . RI 0,311
RI 1. 01 RI 1. 11 . ~ . RI 1,311 UI31, 01 U[31, l] . . . U[31,31]

. . . . V[31, 01 vi31, 11 . . . v131.311

. . . .

k[31, 01 . R[31, 11 : : : ;[31,311

w131, 01 w[31, lj . . . wi31.31j
P[3l‘ 01 P[31, I] . . . P[31,31]
R[31, 01 R[31, l] . . . R[31,31]

Fig. 3. Vector ALL is reverse shuftled five times to permit all FFl’s in the X direction to be taken
simultaneously.

314 S. H. BOKHARI et al.

available STAR vector instruction timing data to obtain expressions for run times for al-
gorithms DS, DY and DX.

Timing formulae for STAR vector instruction of interest to us are given in Table 1. It is to
be emphasized that a number of subtle factors such as the exact placement of vectors in
memory, composition of control vectors, etc. influence the run times and are difficult to account
for. In particular the Compress and Merge instructions may require up to 20% more time than
that predicted by the given formulae.

The timing formula for the Korn-Lambiotte FFT routine is taken to be 950iV + 3SMNlogJV
for M transforms of length N each[5].

We give below our generalization of algorithm DS for taking derivatives of m components
on a plane of size n x n. Next to each statement of this algorithm is given the corresponding
STAR vector instruction and the number of cycles required. We ignore in this analysis the few
scalar instructions that are required for loop control and vector setup functions.

ALGORITHM DS

Operation Instruction Cycles

1.

2.

3.

4.

5.

6.

7.

a.

Copy input vector Move 91 + mn'/z
ALL into SCRATCH-l. (Note Bl
(Note A1

Reverse Shuffle
SCRATCH 1 log n
times (Rote C?

2 Compresses
(Note D)

210g2n(92+mn2)

Copy SCRATCH_1 into Move 91 + mn2/2
SCRATCH-Z. (Note El

Take mn/2 FFTs of
length n each on

(FFT routine) 950n + 1.75mn210g2n

SCRATCH_Z.

Multiply by wave
numbers

Multiply 157 + mn2

Multiply by \/-I 2 Moves 2(91+mn2/2)
= interchange alter-
native elements

Take mn/2 inverse (FFT routine) 950n + 1.75mn21oy n
FFTs. of length n each 2

on SCP.ATCH_Z.

Forward Shuffle
SCRATCH_2 log2n
times

Merge 1og2n(123 + 3mn2)

Notes.

A.

B.

C.

D.

E.

It is necessary to copy the input vector to
keep from destroying it.

All vector lengths are mn2 except in the FFT
routine.

When taking X-derivatives the shuffling is row
at a time. For Y derivatives it is element at
a time.

Each Reverse Shuffle requires two compresses.

This instruction is necessitated by the way
our program is set up and it may be possible
to eliminate it.

The total cycles for routine DS are

521+ 19OOn + 3mn2 + log,n(307 + 8.5 mn*).

Details of routine DY (for obtaining derivatives on one component in the Y direction) are
as follows.

Fast orthogonal derivatives on the STAR

ALGORITHM DY

Operation Instruction Cycles

375

1.

2.

3.

4.

5.

6.

7.

Copy input
vector

Move 91+n2/2

Transpose Transpose 16.6n2

Take n/2 FFTs (FFT routine)
of length n each

950n + 1.75n210g2n

Multiply by wave 157 + n2
numbers

Multiply

Multiply by d-1 2 Moves 2(91 + n2/2)

Take n/2 FFTs (FFT routine)
of length n each

950 n + 1.75n210g2n

Transpose Transpose 16.6n2

The total cycles are 430 + 1900 + a* (35.7 + 3.510g2n). When derivatives of m components are
required the toral cycles for DY are

m(430 + 1900n + n*(35.7 + 3.510g2n)).

Total cycles for algorithm OX, which does not require the transposes at steps 2 and 7 above
are

m(430 + 1900n + n*(2.5 + 3.51og,n)).

Thus all three algorithms have 0(mn210g2n) complexity. The asymptotic run time of DX is
the best, followed by DY and then DS. However for most problem sizes of interest the run
time of DS is better than DY as discussed in the following section.

5. DISCUSSION

Run times for the three algorithms computed from the formulae derived in the previous
section are given in Table 3. This table shows predicted run times for DS in microseconds for m
(number of components) varying from 1 to 10 and n (size of plane) varying from 16 to 256.
These are the problem sizes likely to be of interest in practice. Below each entry are given
comparisons with DX and DY. For example, the entry for m = 6, n = 128 gives the predicted
runtime for ds to be 255594 ps. This figure expressed as a fraction of the time required by the
routine DX(DY) is 1.57 (0.87).

Table 3 has been divided into three parts. In the leftmost portion (for m greater than 1 and
n = 16, 32) routine DS is faster than either DX or DY. For n = 64 and 128, DS is slower than
DX but faster than DY. For n = 256, DS is poorer than both DX and DY.

We can make the following observations about Table 3.
(1) Our shuffle based routine is useful over most of the range of values of n in the table. For

n = 16 or 32, DS can replace both the conventional routines DX and DY. For n = 64 and 128,
DS can be used instead of DY.

(2) Vector lengths on the STAR are limited to 65536 words. This means that the routine DS
(as implemented by us) is constrained to problems in which mn* is less than 65536. Problem
sizes that are too large are enclosed by a dashed boundary in Table 3. We see that it will not be
possible to use DS for any problem in which n = 256 or more.

(3) The vector length limitation means that for n = 128 we cannot have m greater than 4.
However in this case the following approach can be taken. If a problem with n = 128 has m
greater than 4, the derivatives can be taken in groups of no more than 4 components each. Since
DS is superior to DY for all m less than 5, we can be sure that this approach is always better
than using DY for any m.

(4) The relative speed of DS improves with increasing m. This suggests an interesting

376 S. H. BOKHARI et al.

Table 3. Predicted execution times (ps) for the routine DS and comparisons with DX and DY

n=16 n=32 n=64 n=128 n=256

m=l 1664 4377
1.19x 1.34x
0.96Y 0.95Y

2 2043
0.73x
0.59Y

3 2422
0.58X
0.46Y

4 2801
0.50x
0.4OY

5 3180
0.46X
0.37Y

6 3559
0.43x
0.34Y

7 3938
0.41x
0.32Y

8 4316
0.39x
0.31Y

9 4695
0.38X
0.3OY

10 5074
0.37x
0.29Y

DS < DX < DY

6241
0.96X
0.67Y

8105
0.83X
0.58Y

9968
0.77x
0.54Y

11832
0.73x
0.51Y

13696
0.70x
0.49Y

15559
0.69x
0.48.f

17423
0.67X
0.47Y

19287
0.66X
0.46Y

21150
0.65X
0.46Y

13805
1.59x
0.97Y

22653
1.30x
0.8OY

31500
1.21x
0.74Y

40347
1.16X
0.71Y

49195
1.13x
0.69Y

58042
1.11x
0.68Y

66869
1.10x
0.67Y

75731
1.09x
0.67Y

84584
1.08X
0.66Y

93431
1.08X
0.66Y

-

I

I

I

I

I

I

I

I

I

I

I

I

I
DX < DS C DY

50794

1.86X
1.03Y

91754
1.68X
0.93Y

132714
1.62X
0.9OY

173674
1.59x
0.88Y

214634
1.57x
0.87Y

255594
1.56X
0.87Y

296554
1.55x
0.86Y

337514
1.54x
0.86Y

378474
1.54x
0.85Y

419434
1.53x
0.85Y

vector Leng

205697
2.07x
l.lOY

r- ;9;s;9- -
I 1.98X
’ 1.05Y

/
577941

1.94x
' 1.03Y

' 764063
1.93x

1 1.02Y
-

950185
1.92x
1.02Y

1136307
1.91x
1.02Y

1322429
1.91x
l.OlY

1508551
1.90x
l.OlY

1694673
1.90x
l.OlY

1880795
1.90x
l.OlY

Limitation

DX < DY < DS

Table 4. Time per derivative using routine DS for the maximum number of components ‘m’ for any ‘II’

n Maxhan m time per derivative Relative Speed

128 4 43413 1.59x. 0.88Y

64 16 9157 I.OSX. 0.68Y

32 64 1902 0.59x, 0.41Y

16 256 384 0.27X, 0.22Y

possibility for further speedup. If a problem has, say, 5 components, we can improve
performance by simply taking the derivatives on 2, 3 or more planes simultaneously, thereby
effectively increasing m from 5 to 10, 15 or more. In this case it would be necessary for the
vectors containing data for each plane to be stored contiguously. If this be so then the only
other constraint is the vector length limitation discussed above. Table 4 shows the maximum
speedup that is possible using this approach.

(5) The predicted run times for n = 32, m = 5 do not agree very exactly with the measured
run times of Section 3. There are a number of reasons for this variation. Firstly, our theoretical
predictions take into account only vector operations. Scalar instructions, vector setup time and
the overhead of subroutine calls have been ignored. Secondly, there are a number of subtle
factors that influence vector instruction timing such as the exact starting location of the vector,
memory conflicts, composition of control vectors, etc. that are difficult (if not impossible) to
account for. Finally the run time formula for the Korn-Lambiotte routine is also very

Fast orthogonal derivatives on the STAR 317

approximate. Nevertheless the theoretical predictions of Table 3 are useful as guidelines that
can lead to substantial improvements in practice, as has been verified by our experience.

It would be very interesting to repeat this analysis for the new CDC supercomputers-the
Cyber 203s and 205s. This may be done as soon as vector instruction timing data is available for
these machines. However, since 203 has essentially the same vector hardware as the STAR 100,
only slight differences (if any) in performance will probably be found for this machine.

Korn and Lambiotte describe how their FFT routine leads to considerable improvement in
run time even on a scalar computer, when several transforms of the same length are taken. It
thus seems possible that a suitable modification of the approach described in our paper would
lead to improvements even on a scalar computer.

Acknowledgements-We would like to thank Drs. E. Rose, R. J. Voigt for discussions and Drs. J. Knight, and J. Lambiotte
and Ms. L. Hauser for technical assistance with this work.

REFERENCES

1. Control Data, STAR-100 Computer Hardware Reference Manual. Revision 9, 15 Dec. (1975).
2. Control Data, STAR-100 Preliminary Instraction Execution Timing Manual. 15 Jan. (1975).
3. H. Nelson, Star Instruction Times. Lawrence Livermore Laboratory, 16 Jan. (1976).
4. J. J. Lambiotte, personal communication.
5. D. G. Korn and J. J. Lambiotte, Computing the fast Fourier transform on a vector computer. ICASE report No. 78-5.23

Feb. (1978).
6. H. S. Stone, Parallel processing with the perfect shutBe. IEEE Trans. Compt. C-20(2), 153-161 (1971).

