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Abstract  

Euler's Connection describes an exact equivalence between certain continued fractions and power series. If the partial 
numerators and denominators of the continued fractions are perturbed slightly, the continued fractions equal power series 
plus easily computed error terms. These continued fractions may be integrated by the series with another easily computed 
error term. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Euler, in 1748, described an exact equivalence between a series and a continued fraction (CF) 
(see e.g. [1]). In terms of  power series (PS) with non-zero coefficients this connection may be 
written 

C2 cn 

Co + c1( cl ~ c,-I . . . .  = Co + c l ( +  " '"  + c . (  n ( 1 )  
1 _ 1 + c 2 ~ _  - 1 +  c .  

C1 Cn-1 

for each n. Or (1) may be expressed in an equivalent form: 

1 al (  a2( a. (  
. . . . .  l + a l (  +ala2f2 + . . . + a t a 2 . . . a , (  ", ( l a )  

]- - 1 + b l (  - 1 + b 2 (  - -  - -  1 + b . (  

w h e r e  a ,  = b ,  = cn+~/c,. 
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If the partial numerators and denominators of  the CF in ( la )  are perturbed slightly, so that a. ¢ bn, 
the nth approximants of  the new CF no longer represent exactly the nth sum of  a finite PS. It is 
possible, however, to express the nth approximants as the nth partial sum of  a particular power 
series (the "connecting" series) plus a convenient error term: 

1 al~ a2~ a.~ 
. . . . .  l+e i~+e2~Z+. . .+en~n+E~(~) .  ( lb)  

1- - 1 + b l (  - 1 + b 2 ~  - - 1 + b n (  

The formula derived in this paper generates the relationship in ( lb)  in such a manner that, when 
]a , -bn]  is small and a simple convergence criterion is met by the CF the expression E=lim,__+~ E, 
is efficiently bounded: ]E(~)] <CgI~ ] for values of  the variable ~ in a disk about the origin. Surpris- 
ingly, the formula derives from consideration of  the complex dynamic behavior of linear fractional 
transformations (LFTs). As e -+ 0, each Jan - bn] ---+ 0 and ( lb)  tends to (la).  Thus, it is possible 
to actually observe the continuous coalescence of  two distinct arithmetic expansions, a CF and a 
PS, into a single unified entity. 

In the inequality above, C is an easily computed constant, and the value of e depends upon the 
distribution of the set of  repelline fixed points of  the LFTs that generate the CF. 

If the connecting series is integrated, one obtains the approximate integral of  the CF, with an 
error 

IEi.t(ff)l ~ C~[ ~l 2. 

2. D e v e l o p m e n t  o f  the theory 

Our immediate goal is to express the special CF and PS in ( la )  in terms of  attracting and 
repellin9 fixed points of  LFTs. Then the relationship will be extended in a very natural manner in 
this dynamical setting. 

Divide both sides of ( la )  by a complex number fl # 0: 

1 a l /~  a2~ a,~ 1 ~ a~2~2 ala2'"a"~ n-1 . f l  (2) 
~ _ a , ~ + l _ a z ~ + l _ ' " _ a , ~ + l - [ 3  + ~ + - -  + . . . +  

Next, set O~n:=flan for n = 1,2, . . . ,  so that (2) becomes 

1 ~1 ala2 ~-2 cqa2 • • • an ~ 
" ' "  an - -  f l  + ~ ~- f13 " - ~ ' ' "  -1- ?-  

which, through an equivalence transformation, may be written as 

1 ~1 fl~" azfi~ a.fl~" 1 O~ 1 0~1 0{2 ~'2 a l  a 2 " ' "  

The CF on the left contains a special T-fraction [1], and {a.(} and fl are fixed points of  certain 
LFTs, as we shall see a little further along. 

Next, we will generalize the CF in (3) as follows: 

• .- ,  (3a) 
fil  - -  0{1~-}'- 1~1 - -  a2~-} - /~2  - -  
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which reduces to (3) when 13, = ft. The sequences {0~n~} and {/3,} connect the CF to the dynamic 
behavior of LFTs, described briefly in the following background exposition: 

The periodic CF 

a a 

~ + g +  " 

in most instances converges to the attracting f i xed  point  of  the generating LFT: 

a 

f ( w )  = b + w" (4) 

To see this is the case, assume there are two distinct fixed points of  (4), 7 and fl, with unequal 
moduli. One can write (4) as f ( w ) =  ~fl/(~ + f l -  w),  which can then be expressed in an implicit 
form appropriate for iteration: 

f ( w )  - ~ w - ~ 
_ fl - - K ~ , w  K = ~ with I~1 < 1/31. (5) 

f ( w )  

Here ~ is the attracting f i xed  point of  f ,  and fl is its repelling f i xed  point. Upon iteration, (5) 
becomes 

F ( w )  - ~ _ K  n W  - 

f ' ( w )  - fl w - fl" 

Clearly f " ( w )  -+ ~ as n ~ o¢ if w ~ ft. Therefore, 

a a a 0eft oqJ ~fl 

~ + ~ + ~ +  ~ + / 3 -  ~ + / 3 -  ~ + / 3 -  ~. 

Returning now to the more general setting, we first isolate the regular CF structure imbedded in 
(3a): 

• . .  (6) 
~l~ + /31  - ~2~ + 32 - 

The nth approximant of  (6) may be expressed as F,(0)  = f l  o f :  o . . .  o f , (0) ,  where f , ( w )  = 
~,fln~/(O~,~ + fin - -W).  ~,(  and ft, are the fixed points of  f , .  Thus, we may write 

• . -  ( 7 )  
/31 - F n ( w )  /31 - ~ , ~  + / 3 1  - ~ : ~  + / 3 :  - - ~ n~  + /3n - -  W 

Although (7) with w = 0, as a generalization of the CF in (3), no longer equals the nth partial sum 
of a PS, we shall now expand it in a quasi-series form. 

Theorem 1. l f  F,(O) = f l o f 2  o . . .  o f~(O), with f~(w)  = O~n~n/(~n~ -~- ~ n  - -  W), 

~1 - -  F n ( W )  - -  flJ ~m--1 l ~j  
m=l j = l  fln+l - -  W j = l  

( " + E , ( ~ ) ,  (8) 
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where  

E .  = - 
m ~ l  

a n d  

~m~ (Finn+ 1 (w))]  m am( t )  = 
m -- 3m+l 

(3m -- t)(3m+l -- t ) '  

Finn+l(w) = fm+l  0 fm+2 0 . . .  0 f n ( W ) ,  Fg+l(W ) = w, 1-[ c9 :=1. 
j=l 

Proof. 
From (5), with Kn:=a . ( / 3n ,  

f . ( w )  - ~n~ _ K W - ~.~ 

f n ( W )  --  3n W -- 3 .  

f n ( W )  - 3n + 3n - ~n~ = x  W - - 3 n + 3 n - - ~ n ~  

U . (W)  --  3" W - 3 .  

1 1 Kn 1 

f n ( w )  - 3 .  3 .  w - 3n 3n 
+ K n (  w 1 

--  3n+l 
+ ~n(W)) 

1 1 Kn 
- + + K n 6 n ( w ) .  

L ( w )  - 3n 3n w - 3n+, 

Repeated application of (9) leads by induction to (8). [] 

(9) 

Corollary 1.1. I f  fin - fl, then 

1 . . . . .  1 

- ~,~ + 3 - - ~.~ + 3 3 - Fn(0) = \ j= ,  

which is cons i s ten t  wi th  Eu le r ' s  connec t ion  as wr i t t en  in (3). 

~m--1] , 

We must establish conditions on {con} and {3.} that imply convergence of the CF in (8) (with 
w = 0) and produce a small and easily estimated En. If no such conditions are stipulated the CF 
and its connecting PS may go their own separate ways. 

Example 1. Let an = 1 and fin = n, then the CF in (8) is 

1 ~ 2~ 1 
] - - ~ + 1 - ~ + 2 - ' "  1 - ~  

if I(I ~< l, and the PS is 

~2 e ~ -- 1 
l + ~ + f . ,  + . . . .  ~ -  
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Theorem 2. Suppose there exist positive constants A and B such that I~.[ <<.A and I~,,I >>. B > 1 for 
1 B - 1  

n >1 1. Set M:= A B + 1' then 

1 ~'3'~ ~232~ . . . .  ~ (~) ,  
3 ,  - ~ 1 ~ + 3 1  - ~ 2 ~ + 3 2 -  

a function analytic in (l~l <<.M) with 12(~)[ < 1 / ( B -  1). In addition, 

1 CZlfl,~ ~Z2f12~ I1 1 (~Z,) 1 (~,~2~2 ] 

and 

foZ ( 1 0 ¢ , f l , ~  . . . )d~= [ 1 1 (Oq)Z 2 1 (0q~2~Z3 1 ~-~,ff+31- ~z+~2  ~ +3-~3 \~--~2] +"" +Ein,(Z) 

where both series converge in ([z[ ~ M )  and 

IEGr)[~<g,~[~r[ and IE~.t(z) I<~Celz[ 2, 

with 

A 
C:= and Ifl .--1~n-,[~ for all n. 

(B - 1 )2(B - AM) 

Proof. 
The classical Pringsheim Convergence Criterion [1] will apply if we can show that 1~.( + 

fl.I/> [~.fl.(] + 1. Write 

[~ .~+f l . l~>l l / . l - l~ . l [~l~>lf l . [ -AM, and AM[[3.[+I>~[~.]~.~[+I. 

Now [/~n[-AM>>-AMI[3.[ + 1  if [13n[ >~B=(1 + A M ) l ( 1 - A M ) ,  which is equivalent to M = ( 1 / A ) ( B -  
1)/(B + 1). Consequently the CF 

O~l/Jl ~ 0~232~ 
~1~-'[- j~' -- 0~2~ + J~2 -- 

converges to an analytic function F(ff) where IF(OI < 1. Since I¢/,I ~B > 1, IA(~)I < 1 / ( B -  1). 
From (8) of Theorem 1, we have 

1 ~lfll~ O~n~n~ n + 1 1 ( h l ~ j ) ~ m _  1 
~--~ _ ~,~ + ~, _ ... _ ~ + ~ -- m~ ~ -~ k J=' ~j + E~( ~ ) 

where 
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and 
g 

[rm(f~+~(O))[ <<, [tim --  fn+l(0)llflm+l -- fm"+~(0)[ ~ (B - 1) ~ '  

since the Pringsheim Criterion applies to each Fn+~(O), giving IF~+l(0)l < 1. Thus 

A 

-- m:l j:l ~(-B- 1)2 m:l ~<(B-  1)2 l - A -  M 
B 

A 
(B - 1)2(B - AM) el~l C~l~l, 

A similar argument verifies the inequality [Eint(Z)[ ~< C~lzl 2 [] 

Corollary 2.1. I f  j~ n ~ ~ and the hypotheses o f  Theorem 2 are satisfied, then 

/ ~ 0~1~ ~2ff]~ / °c [ lm-I  (~/m] 
[jo .. .  dC--  • 

- -  a1~ "~- f l  - -  (Z2~ "~- f l  - -  m = l  j = l  

I f  ~, = ~ also, 

f = ( f l  ~ f l  ~ f l  - . - ) d ~ = j o  z l -  f - - - - L n l ( 1 - f l )  - a ~ + f l - ~ + f l -  fi a~ d~ a 
Q 

Example 2. Set p,  := 1 + 10 -k-" for some k>~ 1. Then set ~, := 1 - -  1/(n + 1) and fl, : - - 2 p n .  Here 
A = 1 and B = 2 ,  so that M =  ½, C = 0.6, and e =  1.8 × 10-k-~: 

n 
1 ½2P~( 22p2ff n + i 2p"( 

2 p , -  ½ ~ + 2 p l -  ~ + 2 p 2 -  _ n_n___ 
n +  1 ~ + 2 p "  

and 

1 2 3 
= + _ _  + ~2 + . . .  +E(~)  

2pl 22pip2 ~ 23plp2p3 

( n I fo z 1 ½2P,~ ~2p2~ n +-----~ 2p, ff 
. , .  

2 p l -  ½ ~ + 2 p ~ -  ~ + 2 p 2 -  _ n . . .  dz, 
n +----1~" + 2 p .  - 

1 1 72 _[_ .::3 + . . .  _+_ Eint(~), 
- -2pl  z + 22pip2 23plP2P3 

1 where IE(ff)l 4(1.08 >< 10-k-1)[~[ and [Eint(Z)[ ~<(1.08 × 10-k-1)lz[2 for I~1, Izl ~ .  For instance, if 
1 I~1, Izl = 7  and k = 3, the predicted errors are approximately 0.007% the value of the series and 
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0.002% the value of the integrated series. Both series have an actual radius of  convergence R = 2, 
and the CF may converge as a meromorphic function well beyond the limiting value of M. 
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