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Finite cardinals in topoi are introduced without assuming the existence of a natural number 

object. It is proved that this notion is equivalent to the conjunction of K-finiteness and simple 

finiteness. In this way, simple finiteness is viewed as a notion which corrects some defects of 

K-finiteness to obtain cardinal finiteness. 

Introduction 

In topos theory, the notion of finite object has been approached in different 

ways. In the presence of a natural numbers object (‘NNO’), finite cardinals as 

investigated by BCnabou [2] is the most adequate. In that case, the full subcate- 

gory of finite cardinals is a subtopos satisfying the axiom of choice (every epi may 

be split). Without natural numbers object, finite objects in the sense of Kuratow- 

ski (‘K-finite’) may be investigated as has been done by Kock et al. [5]. But the 

full subcategory of K-finite objects is not in general a topos, unless the base topos 

be boolean. The aim of this paper is to define a notion of finite cardinal which 

coincides with BCnabou’s notion in the presence of a NNO but which in a general 

topos generates a subtopos satisfying the axiom of choice. This result is obtained 

via the introduction of ‘simple finiteness’, a notion which corrects some defeats of 

K-finiteness. 

Our starting point is to be found in the analysis of Brook [3]. In [3], an object is 

finite if it admits an order with minimal choice, whose opposite order is also an 

order with minimal choice. Brook shows that in a boolean topos with NNO, finite 

cardinals are finite objects in his sense. Unfortunately, the boolean character of 

the topos is not only a sufficient condition, but a necessary one; as an unpleasant 

consequence, in non-boolean topoi, there are finite cardinals which are not finite 

objects. We studied in [7] the well-ordering theorem and showed that the notion 

of order with minimal choice is ill-adapted to the non-boolean case. We substitute 

it by the concept of simple well-ordering and define an object to be simply finite if 

it admits a simple well-ordering whose opposite is also a simple well-ordering. We 

prove the properties obtained by Brook plus the stability by finite sums. This is 

exactly what is required to prove that the objects which are K-finite and simply 

finite (these will be our finite cardinals) have the desired properties. 
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1. Simply finite objects 

Let X be an object of the topos 8, together with a relation R w X x X. Recall 

that R is simply inductive if the following holds: 

t Vu [Vx (Vx’ (R( x’,x)~x’Ea)~xEa)~Vx(xEa)]. 

We define a simple well-ordering of X to be a linear ordering of X satisfying 

trichotomy (i.e. /-x < y v x = y v y <x) and such that the strict ordering as- 

sociated to it is simply inductive. A double simple well-ordering of X is a simple 

well-ordering of X whose opposite is also a simple well-ordering. Remark that 

trichotomy in the above can be replaced by the condition that the order is discrete 

(i.e. txzyjx=yvx<y). 

Definition 1.1. An object X of a topos 5% is simply finite if it admits a double 

simple well-ordering. 

Remark that trichotomy in the notion of simple well-ordering implies that 

simply finite objects are decidable. 

We will denote by 9<(x, a) the formula Vx’ (x’ < x 3 x’ E a) 3 x E a and by 

.9,(a) the formula Vx 3,(x, a). 

Proposition 1.2. Every subobject of a simply jinite object is simply finite. 

Proof. Let X be a simply finite object and m : X’ ts X a subobject of X. Clearly 

m(x’) 5 m( y’) defines a linear ordering of X’ satisfying trichotomy. Denote by 

0( y, a’) the formula Vz’ (m(z’) = y 3 z’ E a’). It is easy to show that 

and 

tVy (y<m(x’)J8(y,a’))~Vy’(m(y’)<m(x’)~y’Ea’), 

from which 

t9,(a’> 3 Vx’ [Vy ( y < 4x’) 3 B( y, a’)) 3 x’ E a’] 

follows. On the other hand, 

and since < is simply inductive, 
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Using the trivial 

1 m(z’) = m(z’) ) 

it is easy to conclude that the strict ordering induced on X’ is simply inductive and 

this proves the thesis. 17 

Let F:%+ g ’ be a logical functor between topoi. With every well-formed 

expression (term or formula) T of 5?(a), we associate a well-formed expression 

F(T) of Z(%“) by the following inductive definition: 

- if x is a variable of type X, then Fx is a variable of type FX; 

- if T = f(t), then F(T) = F( f)(F(t)); 

-if T=tE,a, then F(T)= F(t)E,F(a); 

- if T = R(t), then F(T) = F(R)[F(t)]; 

-if T=cC,oO, then F(T)=F($)oF(O) (withoE{r\,v,+}); 

-if T=]$, then F(T)=]F($); 

-if T = 6x4, then F(T) = GFxF(+) (with 6 E {V, El}). 

Clearly if cp is an g-valid formula, then F(p) is %‘-valid. Also, if X is simply finite 

in 8, then FX is simply finite in g’. 

Theorem 1.3. Let SY be a topos and p : X + I an object in %lI. If I is a simply finite 

object in S, then X is simply finite in 55 iff p : X+ I is simply finite in %lI. 

Proof. The condition is necessary, for, if X is simply finite, I*(X) is simply finite 

(since I* is logical) and since p is a subobject of I*(X), p is simply finite by 

Proposition 1.2. The condition is also sufficient. To prove this, let I be simply 

well-ordered by I in ZZ and p simply well-ordered by s,, in 8/I. The relation 

defined by 

x sp x’ v p(x) < p(x’) 

is a linear discrete ordering. The associated strict ordering is given by 

x <# v p(x) <p(x') . 

But clearly 

/-9,(u)+[Vi’(i’<ijVx(p(x)=i’$xEa)) 

*vx(p(x) = i*9<$x, a))]. 

Since cp is simply inductive, 

From this, since the ordering on I is simply inductive 

9,(a)+ViVx(p(x)=i=$xEa). 
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Using the trivial 

k vx (P(X) = P(X)) 

it is easy to conclude that < is simply inductive on X. This proves the sufficiency 

of the condition. 0 

Stability properties of simple finiteness are summarized in the following 

theorem: 

Theorem 1.4. If 8 is a topos, then the full sub-category ZTSf of simply Jinite objects 

is finitely complete, contains the initial object and is stable under finite internal and 

external sums. 

Proof. gsf is finitely complete by Theorem 1.3 and Proposition 1.2. Stability under 

finite internal sums is given by the ‘only if’ part of Theorem 1.3. The initial object 

0 is simply finite as a sub-object of the simply finite object 1. It remains to prove 

the stability under finite external sums. This follows from the observation that if X 

and Y are simply well-ordered, then 

3x 3x’ (x 5 x’ A i,(x) = v A iX(x’) = 21’) 

v 3x 3y (ix(x) = v A iY( y) = v’) 

v3y3y’(ySy’ A iy(y)=v~iy(y’)=v’) 

defines a simple well-ordering on the sum X-f: X + Y 2 Y. 0 

In contrast with Theorem 1.4, it should be noted that 5Zsf is not in general 

finitely cocomplete. Here is an example of two parallel morphisms between 

simply-finite objects whose coequaliser is not simply finite. 

In Sierpinski’s topos, an object is simply finite iff it is an injection between 

finite sets. Consider in that topos the two parallel morphisms (f, f ‘) and ( g, g’) 

defined by 

{b] ${O,I] 

I II 
{a&] j {O,I] 

f’(b) = g’(b) = 1 f(a) = 0, g(a) = g(b) = f(1) = 1 . 

The coequaliser of this pair is clearly not an injection. 

Let us also mention that for the finite objects studied by Brook [3], stability 

under finite external sum implies the boolean character of the topos. 
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2. Natural well-ordering and finite cardinals. 

We showed in [S] that the canonical ordering on N, the NNO of a topos % is 

always a simple well-ordering. Let 1 r, N be a global section of N. We denote by 

[nl the subobject of N which is the extension of the formula x 5 ~1. Subobjects [nl] 

of N inherit properties of the canonical simple well-ordering of N which are not 

true in general of a simply well-ordered object with global support: such as the 

existence of a smallest element. 

Definition 2.1. (1) An ordering of X satisfies the existence property of a partial 

successor morphism (EPSM) if: 

(2) A natural well-ordering of X is a simple well-ordering of X having a 

smallest element and satisfying EPSM. A double natural well-ordering of X is a 

natural well-ordering of X whose opposite is also a natural well-ordering. 

(3) An object X is naturally finite iff X has a double natural well ordering. 

Let X be a natural finite object. We denote by x,) its smallest element, by x, its 

greatest element, by sx its endomorphism defined by 

k (x = Xh, + sx(x) = x) A (x z XM + XM * Vt (x < t e s&x) 5 t)) 

and by px its endomorphism defined by 

The canonical well-ordering of N is clearly a natural well-ordering and its 

opposite satisfies EPSM. It is also clear that for every n : 14 N, [[nj is naturally 

finite (for the restriction of the order of N). 

Let f : X+ X and x: l* X. We will say that (X, x, f) satisfies Peano’s fifth 

axiom if the only subobject i: X’ H X such that there exists x’ : 1 *X’ and 

f’ : X’+ X’ with ix’ = x and if’ =fi is the greatest subobject. 

Proposition 2.2. For every double natural well-ordering on X, (X, x,,, sx) and 
(X, xM, px) satisfy Peano’s fifth axiom. 

Proof. Let i : X’ H X, x;, : l+ X’, s& : X’* X’ be such that ix; = 0 and isi = s,i. 
Consider the adjoint ‘X” : l--$ PX of the characteristic function of X’. From the 

definitions of x0, sx, px and the discreteness of the ordering, it is easy to derive 

/-(VxVx’(x’<x~x’E ‘X”)*xE ‘X”)) 

from which, using the simply inductive character of <, one shows that (X, x0, sx) 
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satisfies Peano’s fifth axiom. That (X, x~, px) satisfies Peano’s fifth axiom is 

proved similarly. 0 

Let X be simply well-ordered. We call support of this simple well-ordering, the 

subobject X,, of X which is the extension of the formula 3y (x < y). 

Definition 2.3. A finite cardinal in a topos 8 is an object X of Z? which is the 

support of a double natural well-ordering. 

It is easy to see that if X is a finite cardinal, then X + 1 is naturally finite. 

Theorem 2.4. If ‘8 has a NNO N, then Y is a finite cardinal iff Y is isomorphic to 

[n] for some n : 1 -+ N. 

Proof. The sufficient condition is clear. To show necessity, let Y be a finite 

cardinal, i.e. the support of a double natural well-ordering on, say, X. Consider 

the relation R defined by 

where u : N+ X is such that ~0 = x0 and sxu = US. The relation R is clearly 

functional. By Peano’s fifth axiom applied to (X, x0, sx), R is also everywhere 

defined. Hence, there exists a morphism u :X-+ N such that 

u is a section of U; hence u is epic. For x~, the following holds: 

From all this, it follows that Y z [u(x~)]. 0 

Theorem 2.4 shows in particular that finite cardinals are simply finite. It should 

be noted that the converse is not true in general: consider e.g. Sierpinski’s topos. 

However in the boolean case simply finite = finite cardinal: 

Proposition 2.5. If ‘8 is a boolean topos, then X is simply finite iff X is a finite 
cardinal. 

Proof. Let 8 be boolean. Simple well-ordering and order with minimal choice 

coincide in ‘8 (see [S]). Hence every simply well-ordered object X satisfies EPSM. 

Moreover if X has a global support, then X has a smallest element. Hence every 

simply well-ordered X with global support is naturally well-ordered. 0 

Proposition 2.5. generalizes a similar proposition established by Brook for 

boolean topoi with NNO. 



Finite cardinals in general topoi 191 

3. K-finiteness, simple finiteness and finite cardinals 

Recall that an object X of a topos 8 is said to be K-finite if for every filtered 

poset P of 8, 

1 Va 3p Vx ((Y(X) 5 p) (cx variable of type P”) . 

K-finiteness has been introduced by Kock et al. in [5]. We use its properties 

without proof. See also [l, 4,6]. 

Let P be a poset. We abbreviate by Fil(a) the following formula: 

Ip(pEa)r\VpVp’(pEar\ p’Ea 

+32(2Ea A psz A p’sz)) 

which defines the object of filtered subobjects of P. Using this notation, K- 

finiteness may be expressed by: X is K-finite iff for every poset P 

1 Vu [Fil(a) + VCY (Vx (a(x) E a) 

In general, neither does simple finiteness nor K-finite imply the other. To see 

this, again consider Sierpinski’s topos: a simply finite object is an injection 

between finite sets; a K-finite object is a surjection between finite sets. 

We proceed to show now that the conjunction of K-finiteness and simple 

finiteness amounts to being a finite cardinal. 

Lemma 3.1. Every simple well-ordering on a K-finite object X with global support 
is a double natural well-ordering. 

Proof. The opposite order being linear, the existence of the smallest element 

follows from antisymmetry and K-finiteness applied to 1, : l+ Xx. The existence 

of the greatest element follows from the fact that the opposite ordering is linear. 

The EPSM is proved as follows: since the ordering is linear and X is decidable, 

there exists (Y_ :X*Xx such that 

but 

t vx [Vt (t 5 x j a,(t) = XM) A (x -=c tj a,(t) = t)] 
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hence, by the definition of a_, 

t vx PY (x < Y> * Vt (x < LY,(t))); 

by the K-finiteness of X, 

but 
t vx 3Y (x < Y> 3 3Y (x < Y A vt (Y 5 q(t)>>; 

ktlx(x<y A Vt(y~LY,(t))~Vt(x<t~y5t)), 

from which EPSM follows. EPSM for the opposite ordering is now immediate. 

0 

Remark that the existence of a smallest element may be obtained without the 

discreteness hypothesis. Hence, every linear ordering on a K-finite object with 

global support always has a smallest and a greatest element. 

Lemma 3.2. In a topos 8’, X is naturally finite iff X has global support and is both 
K-finite and simply finite. 

Proof. If X is naturally finite, then by definition it is simply finite and has global 

support. It is also K-finite; to see this, let P be a filtered poset in %; if xc, is the 

smallest element of X. then 

1 Va 3p Vx’ (x’ 5 X” 3 a(x’) 5 p); 

P being filtered, 

by Peano’s fifth axiom, 

finally, using the existence of the greatest element, 

t Va 3p vx (Ly(x) 5 p) . 

Conversely, let X have global support, be K-finite and simply finite. Then X is 

naturally finite by Lemma 3.1. 0 

Recalling that X + Y is K-finite iff X and Y are K-finite, we obtain 

Theorem 3.3. In a topos 8, X is a finite cardinal iff X is K-finite and simply jinite. 
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Proof. Let X be a finite cardinal. It is simply finite by Proposition 1.2. Recalling 

that X + 1 is naturally finite, X + 1 is K-finite by Lemma 3.2. Hence X is K-finite. 

Conversely, let X be K-finite; then X + 1 is K-finite with global support. If 

moreover X has a double simple well-ordering, then by Lemma 3.2. the double 

simple ordering of X + 1 defined as in the proof of Theorem 1.4, is a double 

natural well-ordering with support X. 0 

We now proceed to extend a well-known theorem concerning finite cardinals in 

a topos with NNO. 

Let %kf be the full subcategory of decidable K-finite objects of 8. In [l] it is 

proved that gddKf is always a (boolean) topos satisfying the axiom of implicit choice 

(every epi in gddKf is locally split); 1 + 1 is the classifying object; the inclusion 

gdKr + % preserves exponentiation, finite limits and finite sums and is logical iff % 

is boolean. In [3] it is proved that the full subcategory of finite objects (in the 

sense of Brook) forms a boolean topos, satisfying the axiom of choice if the topos 

is boolean; the inclusion in % is logical. 

Let grc be the full subcategory of finite cardinals of %Y. By Theorem 3.3, grc is a 

full subcategory of the boolean topos 8,,,. By [8, Theorem 11, gfc coincides with 

the full subcategory of finite objects (in the sense of Brook) of the boolean topos 

We have thus proved 

Theorem 3.4. The subcategory %c,I of finite cardinals of a topos ‘8 is a boolean 
topos satisfying AC. The inclusion %‘c,f 4 % is logical iff 8 is boolean. 0 

We finally remark that all properties of finite cardinals in topoi with NNO carry 

over so smoothly to general topoi. E.g., if %Y has NNO, then K-finite objects of 8 

are locally quotients of finite cardinals. The following example, suggested to us by 

F.E.J. Linton, shows that this property is not true anymore of genera1 topoi: let S, 

be the topos of finite sets and consider the category N with its usual order; clearly 

S Fop is a topos 8; define F by 

F(n) = (0, 1, . . . , n} , 

on k , 

on n . 

F is a K-finite object of 8 but is not locally a quotient of a finite cardinal. 
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