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Abstract

The Hopf algebra generated by the |-functionals on the quantum ddufie] < C4[G] is
considered, wher€,[G] is the coordinate algebra of a standard quantum grougasahot a root
of unity. It is shown to be isomorphic t8,[G1°P > Uy (g). This proves a conjecture by T. Hodges.

As an algebra it can be embedded iblp(g) ® Uy (g). Here it is proven that there is no bialgebra
structure o, (g) ® Uy (g), for which this embedding becomes a homomorphism of bialgebras. In
particular, it is not an isomorphism.

As a preliminary a lemma of Hodges concerning the structure of I-functional€ ] is
generalized. For the classical groups a certain choice of root vectors is expressed in terms of |-
functionals. A formula for their coproduct is derived.

0 2003 Elsevier Science (USA). All rights reserved.
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1. Overview

Let A be a coquasitriangular Hopf algebra with universal r-farnand leti/(A)
be the Hopf subalgebra of the Hopf dudP generated by the set of all I-functionals
@) :=r(-®a),l (a):=ra®:), ae A We call it the FRT-dual of4 as it was
suggested in [Ho]. There it was shown (the finite-dimensional case is treated already in
[Ma]) that there exists an injective algebra homomorphism

L UAA) — UA) QU(A)
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and a surjective Hopf algebra homomorphism
AP U(A) = UAa A).

Here A < B denotes the quantum double of the skew-paired Hopf algefbasd 5. The
skew-pairing of A and A in A< A is the universal r-form- and the skew-pairing of
U(A) and AP in A°P < U (A) is the restriction of the canonical pairingdf and.A. The
universal r-form on4 < A used to definé/(A 0« A) is 7 := ra1r31r24r23 (See Section 2
for details).

In this paper we continue the investigation of these maps under the assumptigh that
is the coordinate algebi@,[G] of a standard quantum group associated to a connected
complex semi-simple Lie groug andg is not a root of unity. The main results are the
following facts:

1. As conjectured in [Ho¢ is an isomorphism in this case (Theorem 1).

2. There exists no bialgebra structurel®(C,[G1]) ® U(C,[G]) such that becomes a
bialgebra homomorphism (Theorem 2).
In particular, is not an isomorphism (Corollary 1).

We retain the definition of the quantum enveloping algeliggg) from [Ho]. It differs
from the usual one by an extension of the Cartan part. Thgg) can be identified with
U(C4[GY), if ¢ is not a root of unity (Proposition 2). Explicitly, one has

() = ) K () = £ () K

forsomef*(c* , ) € U, (nx) (Proposition 3). Here* , | € C,[G] are matrix coefficients

of the irreducible representation @&f,(g) with heighest weight.. If G is one of the
classical Lie groups, then there is a choice of the longest word of the Weyl grogp of
such that the corresponding root vector&/gfg) occur in the above formula afs*(cﬁu,v)

for someciw (Proposition 5). As a corollary one obtains a formula for their coproduct
(Corollary 2).

There are at least two interpretations of the algélygG 1>« C,[G].

For arbitraryg it is a nonstandard deformation 6fG x G]. In [Ho] it is therefore
denoted byC,[D(G)] whereD(G) stands for the double group x G.

If ¢ is real, it becomes a Hopf-algebra which is a deformation of the algebra
of polynomial functions in holomorphic and antiholomorphic coordinatesGorand
describesG as a real Lie group. It appeared first in this role in ghdeformation of the
action ofSL(2) on Minkowski space, see [PW] or [CSSW].

Many authors proposed definitions of a quantum enveloping algebra corresponding to
C4[G1 < Cy[G], in particular, of ag-Lorentz algebra. All are based on the requirement
that it should be a Hopf algebra dually paired with[ G] > C,[G]. One direct approach
to such a Hopf algebra is a dualization of the structureCgfG] < C,[G] in form
of a quantum codoublé, (g) » U,(g). It is shown in [Ma] that: would be a Hopf
algebra homomorphism into such a quantum codouble. Hence it cannot be well-defined
by Theorem 2.
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In view of the isomorphisnd/(C,[G]) >~ U, (g) it seems reasonable to consider the
FRT-dual{/(C,[G1> C,[G]) as arigorously defined alternative. Theorem 1 is then a dual
and purely algebraic form of the lwasawa decomposition introduced in [PW] fof the
completion ofC,[G] < C,[G]. Note that the images Iff ~ C,[G]°Pand Imi~ ~ U, (g)
of the I-functionals orC,[G] =< C,[G] determine the lwasawa decomposition.

The rest of this paper is divided into three sections: In order to be self-contained and
to fix notations we first recall mainly from [Ho] and [Ma] some facts ahdut A and
U(A = A) for an arbitrary coquasitriangular Hopf algeb#a In the second section we
focus on quantum groups and prove the main results. The last one deals with the relation
between I-functionals o€, [G] and root vectors ot/ (g)

We essentially retain the notations and conventions from [Ho]. We will freely use
material that can be found in standard textbooks such as [Mo].

In the original version of this paper only the classical groups were treated. The author
would like to thank T. Hodges and the referee for pointing out that the proof of Theorem 1
works with a minor modification for arbitrary semi-simple groups. They also noticed that
the well-definedness df,, (g) »« U, (g) was an open problem until now.

2. The Hopf algebras A >« .4 and U(A > A)

Let A be a coquasitriangular Hopf algebra with universal r-fornThen the quantum
doubleA < A is a Hopf algebra which is the tensor product coalgethra .A endowed
with the product

(@®b)(c®d):=(ac) ®bpyd)r(ba) ® c))rba ® cm).

Here 7 denotes the convolution inverse afand we use Sweedlers notation for the
coproduct on the right-hand side. The antipode.f<« A is given by S(a ® b) :=
(1® S())(S(a)®1). See [Ho,Ma] or [KS1] for more information about coquasitriangular
Hopf algebras and quantum doubles.

Let U(A) be the Hopf subalgebra of the Hopf dudf generated by the set of all I-
functionals

@) :=r(Qa), 17():=ra®"), acA.

Following the terminology from [Ho] we call/ (A) the FRT-dual ofA.

If » is a universal r-form o4, thenr21 is a universal r-form as well. Note that some
formulas in [Ho] differ from those in this paper because there the latter r-form is used.
The Hopf algebrad =< A is again coquasitriangular. We define its FRT-ddal o< .A)

with respect to the universal r-forin= rq1731r24r23, that is,

F(a®b)® (c®d))
=7(d1) @ aw)r(ca ® a@)r(ba @ dwe)rbe) ® c¢2)
=r(cyda @a)yr(b® cpdp). (1)
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Consider now the linear maps
0: A A—UA), a@beIT(S7Ha)l(S7H0)
and
m: A< A— A, a®br> ab.
Recall that the antipode of a coquasitriangular Hopf algebra is always bijectivejsso
well-defined.

Using the formulag(a ® b) = r(S(a) ® b), r(a @ b) =r(S(a) ® S(b)) (see, e.g., [KS1,
Proposition 10.2]) and the fact that the coproduct is an algebra homomorphism one gets

Fla®b)® (c®d) = Flcda ®a)r (b ®coda)
= (T (S7H@), @)~ (STHB)), (cd)2)
= (0(a®b),m(c®d)).

For the convolution inverse= r23r24r31r41 Of 7 One obtains similarly
FHa®b) ®c®d)=(S"1 0 ®b), mcod).
We denote the I-functionals &f(A > A) by i*. The preceding equations imply
It=6°om, ["=m°oStoo,

wheref®°: A — (A< .A)° andm® :U(A) — (A< A)° are linear maps dual handm in
the sense

0°@.b®c)=(0b®c),a),  (m°(f),a®b):=(f,ab).

In particular, the images df- and/~ are contained in those @ andm®, respectively.
The mapmn is obviously surjective. BuS 100 :a ® b [~ (b)IT (a) is also surjective by
the definition ofi/(A). Hence one even has

Imi* =Imé°, Imi~ =Imm°.
The definition o/ (A < .4) now implies that the linear map

CAQUA) > UAA), (@® f):=0%a)m°(f)

is surjective. It is proven in [Ho] that becomes a Hopf algebra homomorphism, if one
considersd ® U (A) with the Hopf structured®P < /(A). Here A°P denotes the opposite

algebra of4 and the quantum double is constructed with respect to the canonical pairing
of U(A) and A.
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To avoid further notations we will use the product, coproduct and antipodé twf
express those 0A°P. So the productaf, b € A% is ba and the coproduct and the antipode
of A°P areA andS—1, respectively.

Itis also shown in [Ho] that the map

CUAA) > A2 A%, e (fa), (®D)®(fo.(111) ()

is an embedding of algebras and thatm° = A (the coproduct iri{(A)) and: o 6° =
(" ®IT) o A. In particular, Im Cc U(A)  U(A).

If A is finite-dimensional, then any universal r-fornis simultaneously a universal R-
matrix R for the dual Hopf algebrad® which therefore is quasitriangular. This R-matrix
can be used to form a quantum codouldler« .A° of two copies ofA°, see [Ma]. Its
structure is completely dual to that gf < A—it is the tensor product algebrd® @ A°
with a twisted coproduct

Ala®b):=a@)® R(ba) @ap)R™I®b). (3)

The mapt becomes a Hopf algebra homomorphism int® »« A°. If A is in addition
factorizable, then both and ¢ are isomorphisms [Ma, Theorem 7.3.5]. As we will see
in the next section, there is no way to define the above coproduct in a rigorous way for
arbitrary coquasitriangular Hopf algebrds

If Ais aHopf«-algebra and is of real type, i.ex(a* ®b*) =r(b ® a), thenAd < A is
a Hopfx-algebra with involution defined b ® b)* := b* ® a* ([Ma, Section 7.3], [KS1,
Section 10.2.7]). This applies to the case of the coordinate alg&€ias] treated in the
next section ifg is real. The involution orC,[G] is the unique one, for which the pairing
with the compact real form d¥, (g) [KS1, Section 6.1.7] is a pairing of Hoptalgebras.
Then there is a Hopf algebra embedding> 1 ® a of A into A< .4 and any element
of A< A can be written uniquely ag*b with a, b € A C A< A. One says thatl < A
is a realification ofA (in [Ma] it is called a complexification). There is an involution on
AP /(A) defined by

@® f)* =1 f(s%@)* 1),

for which A°P >« 2/(A) becomes a Hopf-algebra and; a x-homomorphism [Ma,
Proposition 7.1.4 and Theorem 7.3.5].

3. Application to quantum groups

We now specialize the preceding considerations to the case whisréhe coordinate
algebra of a standard quantum group.

Throughoutthis sectio@ denotes a connected complex semi-simple Lie group with Lie
character group of a maximal torus Gfwhich we identify with a sublattice of the weight
lattice of g containingQ. For i, u € L we sety < A iff L — v is a sum of positive roots.
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Furthermore{-, -) denotes the scalar product bnsatisfying(«;, ;) = d;a;;, wherea;;
andd;a;; are the entries of the Cartan matrix and the symmetrized Cartan matgix of
respectively.

We retain the convention from [Ho], where the quantum enveloping aldépi@ has
generatork,, E;, Fj,AeL,i, j=1,..., N, fulfilling the relations

Ki— Kt
Ky Ky =Kyyp, [Ei, Fj]l=4ij

ij m, Ki =Ky,

KEK P =g%E;, KiFjK; =g ™F;

and theg-Serre relations [KS1, Egs. (6.8), (6.9)]. The paramegterC\{0} is assumed to
be not a root of unity. See Egs. (6.19), (6.20) in [KS1] for the definition of the coproduct,
the counit and the antipode 6f, (g).
Note thatU, (g) as used here is not the most common one, wikgrés defined only
for » € Q. It depends on the choice @. For simply connected; it coincides withU
from [Jo] and for the classical groups wi[hf’“(g) from [KS1]. There is &-grading on
U, (g) given by

U@ =P U@, U@ :={feUy@|K.fK; =q*"fvnelL}.
reQ

Let U,(h),Us(ny), Uy(n-) be the subalgebras generated by tkg, E;, and F;,
respectively. Setting/; (n+) := U7 (g) N U, (n+) we have [Ja, Lemma 4.12]:

Proposition 1. For f € Uz(ny) and g € UZ(n-) there are f/ € UJ (ny), f{ €
Uy ™™ (ny),0< i <, and g€ U;_vj(nf), g} e U,’ (n-),0> v; > , such that

AN =FRKi+Y f®f/'Ku +18 f.

A@=g®Ll+) &K, ®g/+K.®g.
j

Proof. We can assume without loss of generality tifat E;, - -- E;, andg = F;, - - - Fj,
with A = oy, + -+ + o, becauscyé\ (ny) is spanned by such monomials. The proof is
now an easy induction oh See [Ja] for the details.O

Let W be the Weyl group ofj generated by the reflectioms: o; — «; — a;j0;. Let
Eg,., Fg.,k=1,...,n, be the root vectors df/, (g) (see [KS1, Section 6.2.3]) associated
to the ordering8y := ri,ri, - - - riy_, i, Of the setR™ of positive roots, where;, ri, - - -ri,
is a reduced expression of the longest elemeit ofrhen by the Poincaré—Birkhoff—Witt
(PBW) theorem the following monomials form a vector space basig,; 0f):

Ky FiEj ==Ky Fjl - F Ef - El!

. n
ﬂn /31. ﬂn’ )\'EL’ I’J ENO
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The coordinate algebr@,[G] of the standard quantum group associated:tts the
Hopf subalgebra oy, (g)° spanned by the functionals, ,(f) := u(fv), f € Uy(g9),
wherev is a vector in the irreducible representationlgf(g) with heighest weight € L
andu is a vector in the dual representation, see [Hojulf}, {v,} is a pair of dual bases in
the representation space and its dual, thén, ) =), cuv, ® Cu,,v- If u, v are weight
vectors possessing weightse, v, thenc, , is denoted by{w as well.

If G is simply connectedC,[G] equalsR,[G] from [Jo]. The relation withO(G,)
from [KS1] will be discussed in the next section.

The Hopf algebrag’,[G] are all coquasitriangular. A universal r-forghis derived
in [Ho] from the Rosso form o/, (g). To be compatible with [FRT] we use:= f21. This
simply exchangek™ and!~. It follows from the construction of that the |-functionals on
C4[G] can be identified with elements 0f, (g). Thatis, there is a Hopf algebra embedding
of U(C,[G)) into U, (g), By Proposition 4.6 in [HLT] this embedding is in fact surjective.
We therefore have:

Proposition 2. Thereis an isomorphism/ (C,[G]) ~ U, (g).
This was used tacitly in [Ho]. In what follows, we will not distinguish between
U(C4[G)) andU, (g) any more.
In [Ho] the following description of Ket* was given:
cuv€Kerl* & u(Uy(bx)v) =0. (4)

We will use it to prove the next proposition. It generalizes Lemma 3.3 in [Ho].

Proposition 3. For ¢* , | € C/[G] thereare f=(c*, ,) € Uy ™" (nx) with

l+(ciu,v) = f+(ciu,v)KM* li(ciu,v) = fﬁ(ciu,v)K*U'
Proof. We treat onlyl ™, the other case is analogous. Icégw = ¢yu,p be given. Fix dual
basedu,}, {v,} as above consisting of weight vectors with weights,, v,, such that is

one of thev,,. Letv’ be a heighest weight vector anijﬂ , =cu,y. Sincel™ is a coalgebra
homomorphism, we have

A(l-‘r(c)i,u,)»)) = Zl+ (Ciu,vn) ® l+ (C)Lvﬂ,)»)' (5)
It is known that the proposition holds for= A [Ho, Lemma 3.3], so

() = () K Iy, ) = £k, 1) K, (6)

By the first equality and Proposition 1 we can exprags" (cﬁlm)) also as

K ® Ko+ Y K ® [ K+ K ® fF(c2, 1) Ko (7)

1
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with f/ e U,f" (ny), fI' e UQ_“_E" (ny), 0<& < A — . If one compares th&, (h)-parts
of the terms in (5) and (7) in the second tensor component, one gets by the second equality
in (6) and the PBW theorem

S )OI, )= Y ALK ® 7 Key
J ' k

where the indices ; andiy are those withy,, =&;, +p =v.

We claim that the elemen'ls*(cﬁ%k) are linearly independent. Indeed, assume that
there arex, € Cwith }_, x,/ " (cy,.v) = l+(CZn xu,.v') = 0. Sincev’ is a heighest weight
vector, (4) impliesy , x,u, = 0. Hencex, = 0 for all n, becauségu, } is a basis. It follows
that alll+(c’lﬂ,v” ') are linear combinations qfl.’k K,.The considered*(ciu,v) is one of
them, so the prdposition follows.o

Now we are ready to prove the main theorem.
Theorem 1. Thereis an isomorphism of Hopf algebras
U(Cy[GlCy[G]) ~ Cy[G1°P < Uy (g).

Proof. It suffices to prove the injectivity of the epimorphigndescribed in Section 2. We
prove thaty’ := 10 ¢ : Cy[G]°P< Uy (g) — Uy (g9) @ Uy (g) with « from (2) is injective.

Supposef € Ker¢/, f = ZAEL,i,jeNg ayjj ® Ky Fi Ej with a,jj = 0 for almost alliij.
We have to show that vanishes.

OrderNj in such a way that the weightg of Ej form a nondecreasing (with respect
to <) sequence. Lejflp be the maximal for which there exists am,j; # 0. Recall that
tom®=Aandiof° = (" ®IT)o A. SetU,(bs) := U, (h)U, (n+) and note that by
Propositions 3 and 1 we have

(I~ ®1%) 0 Alasi) € Ug(b-) @ Uy (by),  A(K3F) € Uy(b-) ® Uy (b-).

Hence onlyA(Ej) contribute to thel, (ny)-part in the first tensor component. Expand
them according to Proposition 1. Then the PBW theorem implies that

Z(l’ ®1") 0 Aasijp) - AKLF) - (Ejo ® Ky )
i

is linearly independent from the other terms occurring’if) and vanishes separately.
SinceU,(g) ® U, (g) = U, (g ® g) is free of zero divisors [DK, Corollary 1.8], we get

Y ®IM) 0 Awijo) ACKLF) = 0.
Al
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The same argument applied to the maxiigalnd the second tensor component shows

Y17 ®1%) 0 A@igiy) - AKy) =0.
A

By Proposition 3 we can writd~ ® [*) o Aazigio) aSdeL uze Ke ® vy K_¢ for some
ure ® vie € Ug(n_) ® Uy (ny). Then the last equation becomes

Z ureKepr @uae K_g4 =0.
X

This impliesu,: @ vye =0 for all &, &£. Finally
(17 ®1%) 0 Alayigiy) =0

implies ayj,j, = 0, becausgl™ ® I") o A is injective by the definition o/ (Cy[G)).
Proceeding by induction with the lowelj the claim follows. O

In contrast to their h-adic counterpaitg (g) defined over the ring of formal power
seriesCl[[4]], the Hopf algebra®/, (g) overC are not quasitriangular. Nevertheless, parts
of the theory ofU;(g) carry over toU,(g), since the I-functionals encode the R-matrix
of Up(g) to some extent. Hence it is not a priori clear that there is no way to define the
twisted coproduct (3) as well o, (g) ® U, (g). But we show now that this is in fact
impossible.

Theorem 2. There exists no bialgebra structure on U, (g) ® U, (g) such that . becomes a
homomor phism of bialgebras.

Proof. Suppose that the opposite holds. Then6° is a bialgebra homomorphism as
well. Note that+(v — ) ¢ Z,N:lNoai impliesli(cﬁw) = 0 by (4). Using this and
Proposition 3 one computes

AK,®K_3) = Aoto°(c) ;)
= (100°®100%) 0 A(c} _;)

=Y K® M, )Ka® 7 (chy, ) Ki® Ko
n

This must be an invertible element o’g(g)@"‘, becausei is an algebra homomorphism
andk; ® K_; is invertible. Sincek;, ® K_, ® K, ® K_; is invertible,y", f+(c§_vn) ®
f7(ck, _,)isaninvertible element df, (g)¥2.

An invertible element of a graded algebra must be homogeneous—the product of the
homogeneous components of heighest degigeso of the element and its inverse must
be of degree zero, spg = —ng, the same must hold for the components of lowest degrees
ni,mi, SOm1 = —n1 andny < ng andmiy < mo implies thenmo = m1 = —ng = —n1.
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By Proposition 3", f*(c} , ) ® f~(c*, _,) is not homogeneous with respect to the
Q x Q-grading ofU, (g) ® U, (g), So we obtain a contradiction.C

Corollary 1. Themap ¢ is not surjective.

4. L-functionalsand root vectors

The root vectors olU,(g) are defined in terms of the action of the braid grougyof
on Uy, (g). Since this action is not given by coalgebra homomorphisms, it is not possible to
compute their coproduct directly from their definition.

However, it is mentioned in [KS1] on p. 278 that f6r= SL(N + 1) there is a choice
of ri,ri, - --ri,, such that the root vectors are certgif (cﬁw) from Proposition 3. This
allows to compute their coproduct explicitly. '

In this section we generalize this result to the other classical Lie groups. The main tool
will be the following proposition:

Proposition 4. For i < j thereare x;;(k), y;;(k) € C, such that

B k kj—i-1
Eg, Eﬁj - q<ﬁ ﬂj)Eﬁj Eg, = Z Xij (k)Eﬂ,il . 'Eﬂ;—l ’ (8)
keNéﬂ;l

—(B: B: k ki_i_
Fp Fp; —q wl’mFﬂjFﬂi = Z yij(k)Fﬂlil.“Fﬂ]J'*l . (©)

keNé_i_1

j—1

Bi+Bj # Zkzﬁiﬂ,

=1
then x,-j(k) = y,'j(k) =0.

Proof. The two relations (8), (9) are proven in [KS2, Theorem 3.2.3].
Conjugating (8) withK, one gets

3 (g FtEa) — gkt thiiaBioa) g (k) Egg L ENE

i+1 /Sj—l
k

The PBW theorem implieg*#i+8i) = g*kibivat+kj-i-1Bj-1) or x;; (k) = 0. Sinceg is
not a root of unity and. was arbitrary, the additional claim follows for theg; (k). The
same argument applies to thg(k). O
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We will use a special ordering of the positive roots, in which most if not all terms on
the right-hand side of (8), (9) vanish. To define it, we first arrange the positive roots in the
following way as parts of matrices:

j—1
A g=slyy1,
j-1 .
o <N+1
II‘V_’ ¢ N / g =502N+1,
Zk:iak+2k:j’ak j>N+1
j—1 .
T <N+1
]1{\/_’ ‘ N-1 J - g =spav,
Bij= Yz +_yax j>N+1
j—1 .
i J<N
N-2 .
X = 1
Zlfv:' e TENHL g s,
YL+ Y j=N+2

wherej’ := 2N + 2 — j for g = soon+1, j/ := 2N + 1 — j for g = spay, soony and the
indices take the values

i=1... N, j=i+1....N+1  g=sly1.
i=1,...,N, j=i+1,...,i'-1 g=502N+1,
i=1,...,N, j=i+1,...,i g=span,
oo N=1 j=i+1...,i' =1 g=soop.

Now we fix the expressiofi[;_ ax for the longest word of¥, where

[Ty g=sln+1,

(H?ik ri)(Hﬁ:Nflrj) g =502N+1, 5P2n,
ap =131 k=N

(M2 ri)rw (MT5=y—17j) N—k#0o0dd g=soay.

(TSt ri)rv (Ms—yrj) N —k#0even

Then the induced ordering of RT is as follows:

i<kori=k,j<l g=sly+1,
k<iori=k,l<j g =S02N4+1, 502y,
k<iori=k,j=N-+1lor
i=kl<j,j#N+1I#N+1

Bij <Bu &
g =5p2N.
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Originally the quantum group coordinate algebras were defined only for the classical
groups in terms of generators and relations [FRT]. The generators are the matrix
coefficientsu’; of the vector representation 6f, (g) (the first fundamental representation
which definegy as a matrix Lie algebra) with respect to some basis. For the relations we
refer to Chapter 9 of [KS1]. There the resulting Hopf algebras are denot€dGy).

If ¢ is not aroot of unity, the®(G,) defined in this way is isomorphic ©,[G] as used
in the last section for all; exceptG = SO(2N +1). In this case one ha(@(qu) ~ Cy[G].

This is a consequence of the Peter—\Weyl theorem [KS1, Theorem 11.22]. The latter is
stated in [KS1] under the assumption thais transcendental. According to Remark 3 on
p. 415 of [KS1] and Corollaries 4.15 and 5.22 from [LR] the result holds alsq foot a
root of unity.

We abbreviatef ~ g iff f = xg with somex € C\{0} and (I*)’ := I*(u',). Then the
following statement holds: '

Proposition 5. If i j appear asindices of a positive root g;;, then
IHs~UDiEs,. (D) ~U)iF,.
except if g =spoy and j =i’. Inthiscase, thereare x, y € C, such that

AN, ~ANi(Eg, —xEp,  Ep),

i/ —1
U ~ Ui (Fpy = YFp, F).

Proof. Since this is known fog = sly 1, we consider only the remaining cases. We also
will consider only theEg,;. The F; are treated similarly.

The proof is by induction ovef — i. By the lists of(li)i. in Section 8.5.2 of [KS1] the

claim holds forj —i = 1. All occurring(l+)§. except(l*)%j for g = spoy, 502y can be
calculated from the recurrence relation

(g —qHaHi ==[aH, aH5]a;. (10)

Herek with i < k < j is arbitrary withk #£i’, j' [KS1, Proposition 8.29].

We choosek = j — 1. This is admissible in all cases excgpt spow, so2y and
Jj =N + 1. These must be treated separately afterwards.

By the explicit lists of the/*)’; in [KS1] there aréix € L such that

i—1 i—1 k k<N,
(5% =Ko (O] ~ Y RE G, fh={5 L (SN
Inserting this and the induction hypothesis into (10) we get
(l+); ~ (l+)i: (Ef(jfl) E/Sij—l - qig(i’jil)Eﬁi_/—lEf(jfl)) (11)

with g(i, j —1) = (Aj_1, Bij—1) — (i, ar(j-1))-
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Inserting the explicit formulas foky, B;;, (o, ;) one gets after some lengthy cal-
culations

.. 2 g=spoy,j=1i,
gi.j -1 = { —{afj-1), Bij-1) otherwise. (12)

In our ordering oR™ we havex ¢(;_1) < Bij—1 fori < j — 1 andj # i’ which holds in
all cases except=spoy, j =i’. Sinceg = so2y, j = N + 1 was excluded we furthermore
haveay;_1) + Bij—1 = Bi; and there is no other linear combination of roots between
arj—1 andp;;—1 equal tog;;. Hence the exponent in (11) is in all considered cases
exceptg = spoy, j = i’ the same as the one which appears on the left-hand side of (8)
and the claim reduces to Proposition 4 (note that for the classical g(bt@s;é 0 for all
i < j, as follows for example from [KS1, Theorem 8.33].

Forg = spoy, j =i’ we obtain

)~ A (EiEp,_, — g %Ep,_Ei) ~ (IM)(Ep, —xEp,,_ Ei)

for somex € C, becauséo;, B;;—1) =0. ’
It remains to treat the excluded ca$E§)’NJrl for g = spow, so2n.
By the explicit lists of(/™)’; in [KS1] we have forg = spoy,i =N — 1

N ~ UHNH(ENvEv-1— g 2En_1EN)
= (NN 1(ENEn-1—q ¥ Ey_1EN)
~ (M) N1Eay_s+ax
by the same argument as above. et sooy the lists directly contain
AN~ UHNTEN,
so the proposition holds in these cases.

Fori < N — 1 we need a second induction pstarting withi = N — 1. We again use
the recurrence relation (10), but now with=i + 1 (which is possible foi < N — 1)
getting by induction

v ~ [ COVH]O
~ (l+)§ (Ei Eginis — q()\i+1>ai)*()\i>ﬁi+lN+l) Eﬂi+1N+1Ei)'
In all casesA;+1, ;) = 1 and the second term in the exponent vanishes, sinéa i +1

only «; with j > i occur. Since{w;, Bit+iv+1) = —1 and «; > Bi+1nv+1, the same
argumentation as above yields

(l+)l}v+1 ~ (l+)§(Eﬁi+1N+1Ei _q<ai’ﬂi+m+l) EiEﬂi+1N+1)
~ (l+)i:E/3iN+l‘ a
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Corollary 2. We have

j
A(Eg)) ~ (U@ Ui Y (@ 1k,

k=i

j .
A(Fg,) ~ (U@ AHH D AUk

k=i
except when g = spoy and j =i’. In this case, we have

-/
l

A(Eg,) ~ xA(Ep, ,E)+ (Ui @ (7)) Y _aHp®hy,
k=i

-/

A(Fg,) ~ yA(Fig, F)+ (D@ 0H) Y07 @ (k.
k=i
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