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Abstract 

This paper presents a reliable method for target vessel identification in passive sonar by exploiting the underlying periodicity of 
propeller noise signal, using the principles of cyclostationarity. In conventional signal processing methods, random signals are 
treated as statistically stationary and the parameters of the underlying physical mechanism that generates the signal would not 
vary in time. However, for most manmade signals, some parameters vary periodically with time and this requires that random 
signals be modeled as cyclostationary. In the field of sonar, the propeller noise signal generated by underwater vessels is 
cyclostationary. As a ship propagates in the sea, noise generated during the collapse of cavitation-induced bubbles are modulated 
by the rotating propeller shaft and this results in characteristic amplitude modulated random noise signal, which can be detected 
using passive sonar. Processing these signals, the number of blades and the shaft frequency of the propeller can be identified. In 
this work, cyclostationary processing technique is introduced for processing propeller noise signal and it is observed to provide 
better noise immunity. A detailed comparison with the conventional DEMON processing is also presented. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Organizing Committee of ICACC 2016. 
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1. Introduction 

In stationary signal processing, the statistics of the signals under consideration consists of underlying periodicities 
that are not generally accounted for1. But the waveforms of most manmade signals, such as the signals encountered 
in communication, telemetry, radar and sonar systems, have statistics that vary in a periodic fashion1. While 
modeling random signals as statistically stationary, the inherent periodicities in these signals are not taken into 
consideration. The performance of signal processors can however be improved by recognizing and exploiting the 
underlying periodicities of signals. In particular, the properties inherent in communication signals are modeled more 
efficiently in cyclostationary statistics rather than in stationary statistics1. Thus, random signals have to be modeled 
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as cyclostationary for the efficient performance of various signal processing applications. A cyclostationary signal is 
the one that contain statistical parameters that vary in time with single or multiple periodicities1. The concept of 
cyclostationarity finds a lot of practical applications like propeller noise detection in passive sonar 5. 

The blades of the propeller periodically beats sea water and the vibration of propeller shaft produces characteristic 
amplitude modulated random noise signal, which can be detected using passive sonar5,6. The main objective of this 
work is to analyze the cyclostationary properties of sensor data of passive sonar and make use of the underlying 
periodicity for classification of underwater vessel. The number of blades and shaft frequency of the propeller are 
identified from the detected signal. In this work, underwater propeller craft detection is implemented using FAM 
(FFT Accumulation Method) algorithm and the traditional technique of DEMON (Detection of Envelope 
Modulation on Noise) processing is compared with this newly implemented cyclostationary technique.  

In the next section, an introduction to cyclostationarity is provided, explaining in brief the concepts of cyclic 
autocorrelation function (CAF), spectral correlation density (SCD) and cyclic spectral analysis. In section 3, the 
FAM algorithm and its implementation in AM signal are presented. Section 4 describes the passive underwater 
detection of propeller noise signal using the conventional DEMON processing and the proposed cyclostationary 
processing. Simulation results are presented in section 5 and some conclusion remarks are offered in section 6. 

2. Cyclostationarity 

A signal x(t) is said to be cyclostationary of order n if and only if it is possible to find some nth order non-linear 
transformation of the signal that will generate finite amplitude additive sine wave components which produce 
spectral lines1. A process X(t) is said to be cyclostationary in wide sense if its mean and autocorrelation are periodic 
with some period T1. 

The cyclic autocorrelation function is the measure of the amount of time-correlation between frequency shifted 
versions of a cyclostationary signal1. It performs the time-domain analysis of cyclostationary signals and is defined 
as7, 

  (1) 
 

where x(t) is the signal under consideration, τ is the delay value and α is the cyclic frequency. A signal exhibits 
second order periodicity if and only if it’s CAF is not zero for some non-zero frequency α, called the cyclic 
frequency1. Spectral correlation density is the Fourier transform of cyclic autocorrelation function1, defined as, 

 
(2) 

The major advantage of cyclostationary processing is that noise does not exhibit cyclostationarity and the SCD 
value of noise reduces to zero for every non-zero value of α. The cyclic autocorrelation function of noise signal w(t) 
with variance w  is given by equation 3. Since the value of )(wR vanishes for all non-zero values of α, noise 
signal does not exhibit second-order periodicity. 

  
(3) 

 
Now, when a signal x(t) is present along with noise w(t), the effective spectral correlation density of the resultant 

signal y(t)  is obtained as the sum of SCDs of x(t) and w(t), expressed by the equation, 
(4) 

where )( fSx  is the SCD of the signal and )( fSw  is the SCD of noise. Thus, evaluating )( fS y  at an 
approximately chosen 0  help to separate the signal from purely stationary additive white Gaussian noise 
(AWGN). This property of noise immunity forms the most important feature of cyclostationary analysis. 

Cyclic spectral analysis generates the cyclostationary spectrum by plotting the SCD function in the bi-frequency 
plane which is the 2D plane constituting frequency f in one axis and cycle frequency α in the other. Cyclic spectral 
analysis has grown importance as a signal analysis tool8 and is much superior to conventional spectral analysis, 
since it permits signal separability and provides noise immunity. Over the years, several computationally efficient 
cyclic spectral analysis algorithms have evolved3,4. Out of these, FAM is less computationally complex and hence in 
this work, FAM is chosen as the cyclic spectral analysis algorithm. 
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3. FFT accumulation method 

The FFT accumulation method or FAM is the Fourier transform of the correlation product between spectral 
components smoothed over time3. The main steps involved are channelization, decimation, multiplication and 
Fourier transformation. The block diagram for the implementation of FAM is illustrated in Fig. 13.  

FAM incorporates the idea of time smoothing using Fourier transform to arrive at a computationally efficient 
digital implementation of the SCD function using N samples from a finite observation interval of duration ∆t3,9. The 
complex demodulates )2,(' knX N  and )2,(' knX N  are estimated by means of a sliding N'-point FFT, 
followed by a down-shift in frequency to baseband. Here, )2,(' knX N  is the thk )2(  component of the N'-
point FFT output of the nth N'-point window9. The N'-point FFT is hopped over the data in blocks of L samples. The 
value of L is chosen to be N'⁄4 as it allows for a good compromise between computational efficiency and minimizing 
cyclic leakage and aliasing3. Next, the element-wise product between )2,(' knX N  and )2,(*

' knX N  is 
formed and time smoothed by a P-point second FFT9. The value of N' depends on the frequency resolution required, 
and is given by fFN s

'  , where Fs denotes the sampling frequency and ∆f denotes the frequency resolution. 
The value of P is given by, LFP s  where ∆α denotes the cycle frequency resolution. The output when plotted 
against the frequency-cycle frequency plane yields the cyclic spectrum of the input signal. 

The FAM algorithm was implemented on single sideband AM (AMSSB) signal, double sideband suppressed 
carrier AM (AMDSB-SC) signal and double sideband transmitted carrier AM (AMDSB-TC) signal. The SCD plots 
of these signals are illustrated in Fig. 2.   

 

 

 
 
 
 
 
 
 

Fig. 1. Block diagram for implementation of FAM 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. SCD estimate and contour plot of (a)AMSSB (b)AMDSB-SC (c)AMDSB-TC using FAM 
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Consider the AMSSB signal defined as,                                               , where fc represents carrier frequency and fm 
represents modulating frequency. The SCD function of x[n] is calculated as the Fourier transform of its cyclic 
autocorrelation function and is given as, 

 
 
 

                                            (5) 
The plot of equation 5 is illustrated in figure 2(a). The SCD equations for AMDSB-SC and AMDSB-TC can be 

derived in similar manner and their corresponding SCD plots are illustrated in Fig. 2(b) and Fig. 2(c) respectively. 
From these plots, it can be clearly observed that different modulation schemes leave different signatures in the 
cyclostationary spectrum. This will aid in effective signal classification. 

4. Underwater detection of propeller craft 

Cyclostationary principles can be applied so as to aid efficient classification of underwater vessels. The sound 
waves (pressure waves) emanating from an acoustically active underwater target (also known as radiated noise) 
carries very valuable information about important parameters of the target. Passive sonar detects the target by 
processing this radiated noise and extracting all important parameters using an array of hydrophones. After detecting 
the target, the signature is further analysed for characteristic amplitude modulated random noise signal produced as 
the blades of the propeller pass through water. The radiated noise of the underwater target will get modulated by the 
frequencies corresponding to shaft and blade RPM. These signals can be processed to identify various characteristics 
of the vessel, such as blade and shaft frequencies. 

The propeller is a part of the propulsion machinery of a vessel and it gives rise to noise by generating pressure 
waves in water. The cavitation induced by rotating propellers forms the major source of underwater sound. When 
propellers rotate, regions of low pressure are formed at the tips and on the surface of the propeller blades. When the 
pressure value drops below some critical value, water ruptures and cavities in the form of minute bubbles begin to 
appear on and around the blades. The process is known as cavitation. The cavitation-produced bubbles initially grow 
in size and collapse a short time later. This emits a sharp pulse of noise. The broadband radiated acoustic noise 
signal that reaches the passive sonar is a result of many such random bursts caused by bubble collapse. The 
production and collapse of cavities formed by the action of the propeller is called propeller cavitation. The propeller 
amplitude modulates the radiated noise level and this modulation is at a rate of shaft frequency times the number of 
blades which is defined as the propeller blade rate. This property of the propeller helps in identification, 
classification and speed estimation of the target vessel. An example of propeller noise signal is illustrated in Fig. 3. 

4.1. DEMON processing 

Detection of Envelope Modulation on Noise or DEMON processing is a popular technique for the passive 
detection of underwater targets. It is a technique to detect the presence of propeller craft and it is commonly 
employed by most submarines. It is based on the observation that the modulation in time of the pressure signal can 
be detected from the FFT of the envelope of band pass filtered sonar signal. The schematic of DEMON processing is 
shown in Fig. 4. 

 
 
 
 
 
 

 

 

Fig. 3. Propeller Noise signal     Fig. 4.   Schematic of DEMON processing  
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The frequencies of modulation in case of propeller cavitation – shaft and blade pass frequencies – are detected 
through DEMON processing. The propeller noise signal is first given to a broadband band select filter, where the 
frequency band in which the modulation is most distinct to the operator is isolated. Then the envelope of filtered 
noise band is extracted and is Fourier transformed to obtain the desired output. The output is finally modified to 
obtain a waterfall spectrogram. The spectrogram or DEMONgram is a time-frequency spectrum and it shows the 
harmonics associated with the rotating components of the propeller. This allows the vessel to be identified.  

The major drawback of this technique is the selection of noise band, which requires good operating skill. The 
design of bandpass filter is an integral part of DEMON processing and it is controlled by trained sonar operators or 
fuzzy logic based optimal tuned filters. Another drawback is its low noise immunity. When the SNR value of the 
propeller signal decreases, the plot becomes blurred, thereby reducing the reliability of the technique. Hence it is 
advisable to move on to other detection techniques in noisy sonar environment. 

4.2. Cyclostationary processing 

The cyclostationary processing technique can be developed for propeller craft identification by recognising the 
fact that the characteristic amplitude modulated propeller signal is cyclostationary. This technique helps to 
overcome the weakness of DEMON processing by eliminating the need for pre-filtering. It also provides sufficient 
improvement in the case of noise immunity. The spectral correlation property of cyclostationary signals can be 
exploited to identify the propeller components in a noisy sonar environment. In place of time-frequency spectrum 
(DEMONgram), cyclostationary technique concentrates on frequency v/s cyclic frequency spectrum known as 
cyclic modulation spectrum (CMS).  

This work introduces an efficient cyclostationarity based processing technique for CMS calculation by 
implementing the FAM algorithm. Since the propeller signal is similar to an amplitude modulated double sideband 
signal with transmitted carrier, the cyclic spectrum reveals spectral lines at the carrier frequency and modulation 
frequency. The output of the FAM algorithm is however the SCD value that lies in the frequency v/s cyclic 
frequency domain.  

However the entire cyclostationary spectrum has too many dimensions making it difficult to directly use for 
signal classification. Fortunately, all points of the cyclic spectrum are not necessary, a lower dimensional vector 
consisting of some typical features extracted from it, called a cyclic feature vector, is sufficient for our purpose. In 
order to reduce the dimensionality of the data, α domain profile is introduced as,                                                where 

)( fSx is the cyclic spectra estimated using FAM. Spectral lines in the α domain profile are obtained at the shaft 
frequency value and at the shaft rate value, which is shaft frequency times the number of blades. Taking the ratio of 
these yields the number of blades of the propeller. 

The most important property of a cyclostationary signal is its noise immunity and this forms the major advantage 
of the proposed cyclostationary processing technique. Even for very low values of SNR, the CMS remains 
unchanged. Another advantage is the elimination of the pre-filtering stage. The pre-filtering stage requires trained 
sonar operators or fuzzy logic based optimal tuned filters for operation. Absence of these in cyclostationary 
processing technique makes the processing much easier. Another important property of cyclostationary signals is 
signal separability - cyclostationary signals can be easily separated from other interfering signals. 

5. Results 

The proposed cyclostationary processing was compared with DEMON processing through simulation results. A 
propeller signal with a blade pass frequency of 3Hz modulated by a broadband carrier component of 3KHz is 
considered for processing and the outputs of DEMON and cyclostationary processing for different noise cases are 
depicted in Fig. 5 and Fig. 6 respectively. The variation in the spectrum with respect to the modulation index is 
observed and it is depicted in Fig. 7. Then, the identification of the number of blades of the propeller is carried out. 
The propeller is considered having four blades. The results of DEMON processing and cyclostationary processing in 
the identification of the number of blades are depicted in Fig. 8.  
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Fig. 5. Spectrum obtained in DEMON Processing and Cyclostationary processing for SNR=-5dB 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Spectrum obtained in DEMON Processing and Cyclostationary processing for SNR=-15dB 

 

 

 

 

 

 

 

Fig. 7. Spectrum obtained in DEMON Processing and Cyclostationary processing (Modulation index=0.25) 

 

 
 
 
 
 
 
 
 
 

Fig. 8. Number of blades identification in DEMON Processing and Cyclostationary processing (SNR=-15dB) 
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Both the DEMONgram and the CMS spectrogram identifies modulation frequency and its harmonics effectively. 
However at low values of SNR, the DEMONgram becomes blurred and the frequencies cannot be identified, as 
illustrated in Fig. 6. But, the CMS spectrogram exhibits no variation even when the SNR value is decreased. Hence, 
at low values of SNR, the DEMON processing technique becomes unreliable and the cyclostationary processing 
technique remains unaffected. Further observing the variation with respect to modulation index, CMS spectrogram 
gives superior results compared to the DEMONgram, as depicted in Fig. 7. 

In the identification of the number of blades, CMS spectrogram provides better results, owing to higher noise 
immunity. Though the DEMONgram produces spectral lines at the shaft frequency and shaft rate, as in Fig. 8, these 
cannot be identified distinctly. However, the CMS remains unaffected. The ratio of shaft rate to shaft frequency 
gives the number of blades. Hence, the proposed cyclostationary processing technique is superior to the existing 
DEMON processing technique. 

6. Conclusion 

The noise signal generated at the propeller is cyclostationary and hence cyclostationary principles can be applied 
so as to aid efficient identification and classification of underwater vessels. Passive sonar detects the characteristic 
amplitude modulated random noise signal produced as the blades of the propeller pass through water. These signals 
can be processed to identify the various characteristics of the vessel, such as the number of blades and the shaft 
frequency. Popular techniques including DEMON processing aids in the detection of these properties. This paper 
presents a reliable cyclostationarity based technique that overcomes the drawbacks of DEMON processing and aids 
in efficient identification of the number of blades and shaft frequency of the signal detected from passive sonar. The 
technique uses FAM algorithm for the analysis of propeller noise signal and provides better noise immunity. The 
application of cyclostationarity in the field is thus found to provide superior results. 
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