epidemiological study, and will be used to test the validity of a predictive risk model based on values of neutron RBE which will be derived from the physics task in the ANDANTE project. Based on the experience from the feasibility study at LLUMC, a proposal for a prospective epidemiological study using pediatric proton therapy data collected from multiple proton centers world-wide is prepared. For this purpose, published results of epidemiological studies on second malignant neoplasms (SMN) after radiotherapy in childhood are reviewed. Up to now, 57 papers were identified from 2001 until present with the objective to estimate the magnitude of the effect of radiation exposure on the occurrence of SMN. Furthermore, European proton therapy centers were contacted in order to assess the feasibility of creating a prospective database on pediatric patients. Five out of thirteen proton therapy centers already replied, showing great interest in preliminary participation in discussion on forming a future prospective study.

Conclusion: This will be essential for investigating the far reaching goal to enhance our understanding of the link between radiation exposure to proton therapy and the risk of SMNs.

EP-1418 Proton therapy in paediatric oncology - An Irish perspective
K. Lee1, C. O’Sullivan1,2, M. Capra1
1St Luke’s Radiation Oncology Network, Radiation Oncology, Dublin, Ireland Republic of
2Our Lady’s Children’s Hospital Crumlin, Paediatric Oncology, Dublin, Ireland Republic of

Purpose or Objective: To: (1) produce a descriptive study of Irish children referred abroad for proton therapy (PT), and (2) to discuss the case for PT in general.

Material and Methods: A retrospective review of all children referred for PT before October 2015 was performed. Information was gathered regarding general demographics, diagnosis, tumour grade, other treatments, the PT referral timeline, relapse where relevant, side effects attributable to PT, current status and cost of treatment to the Irish state. Additionally, a review of the relevant literature was performed.

Results: Sixteen children treated in Ireland have been referred abroad for PT to date, with numbers increasing yearly. The largest number referred was in the 0-4 year old group. At initial diagnosis the median age was 5.0 years. Four patients were referred for treatment of rhabdomyosarcoma, 3 for craniofacial rhabdomyosarcoma, 6 for intracranial ependymoma and 1 each for treatment of meningioma, germinoma and ATRT. The average age per child has been approximately €52,000. Two patients suffered relapse of their disease - 1 has proven fatal and the other is alive with disease. Four patients have encountered PT-related adverse effects. The time from referral to treatment has improved from 11 to 6 weeks approx.

Conclusion: Despite the fact that >100,000 patients worldwide have been treated with PT, the current level of published evidence to support superiority over conventional treatment remains low. Planning studies have clearly demonstrated superior conformality and reduced risk to normal tissues. It is debated that randomised control trials in this area would be inconsistent with the principle of clinical equipoise. In contrast, there is a call for level 1 evidence to justify such drastic changes in patient care, particularly in the light of recent reports of unexpected toxicities. If PT were more widely available, the question remains in which clinical situations would it be likely to show substantial clinical and cost benefit? As no firm conclusions can be derived from the literature, the answer is somewhat speculative. In time, careful evaluation, follow-up and clinical trials will likely support the argument for the preferential use of proton therapy in children. Our challenge remains: how best to use it in the meantime?

EP-1419 Proton irradiation in childhood and adolescence at RINECKER Proton Therapy Center (RPTC)
B. Richter1, M. Hertel2, A. Haidenberger2, M. Walser1, I. Teichert-von Lüttichau1, A. Wawer1, K. Beutel1, S. Burdach1, B. Bachtla1
1Rinecker Proton Therapy Center, Radiation Oncology, Munich, Germany
2Hospital Agatharied, Radiation Oncology, Hausham, Germany
3Children’s Hospital of Munich Schwabing/ Technical University of Munich, Paediatric Haematology and Oncology, Munich, Germany

Purpose or Objective: In the multimodal treatment concept for pediatric tumors the implementation of radiotherapy with protons gains more and more importance due to their outstanding radiobiological, physical and technical characteristics. In particular the fact, that about 60% of the irradiated volume of conventional radiotherapy are not burdened by proton therapy, results in a considerable reduced incidence of side effects with lowering the negative impact on growth and development and a lower rate of secondary malignancies. The German Society for Radiation Oncology (DEGRO) clearly recommends preferably proton therapy in the treatment of pediatric patients.

Material and Methods: Analysis of children and adolescents undergoing proton radiation therapy since start of the RPTC 2009 (time period from Jun 2009 to Sep 2015). A highly complex three-dimensional electromagnetic proton beam control system (spot scanning) can applies the tumor dose only to the planned target volume and spares surrounding healthy tissue without significant neutron exposure to the whole body. There is a wide range of free variety of dose intensity to each spot.

Results: From 06/2009 to 07/2015 a total of 82 patients were previously treated at the RPTC in 88 cases. The mean age at start of irradiation was arithmetically 7.9 years (min. 11mo.; max. 17y. 7mo.). These were mostly rhabdomyosarcomas (RMS; n = 26 [29.5%]), of which 10 were alveolar and 16 were embryonal RMS. In the field of central nervous system, 14 patients with low grade gliomas [16%], 11 high grade gliomas [12.5%], 10 ependymomas [11%] and 2 medulloblastomas were treated. From 12 cases with rare tumor types, 8 were also localized in the CNS. 6 patients had chordoma and chondrosarcoma, 5 Ewing tumors and 2 rare types of soft tissue sarcomas.

Conclusion: At the field of pediatric oncology radiotherapy with protons using spot scanning technology is certainly feasible and offers a highly effective treatment method with significantly lower toxicity of normal tissue. There is a close cooperation with the Children’s Hospital of the Municipal Hospital Munich/ Hospital of Munich Technical University for the integration of multimodal therapy studies or to treat in analogy with rule-based case discussions in interdisciplinary tumor conferences.

EP-1420 Cyberknife® radiotherapy for recurrent or oligometastatic tumours in children and adolescents
S. Gaito1, F. Saran1, H. Taylor1, E. Wells1, S. Mowat1, H. Burland1, C. Jones1, L. Welsh1, H. Mandeville1
1The Royal Marsden Hospital, Department of Radiotherapy, London, United Kingdom

Purpose or Objective: Despite the increasing availability of stereotactic ablative body radiotherapy (SABR) and stereotactic radiosurgery (SRS) there remains a lack of evidence regarding their indications and role in the treatment of recurrent & oligo-metastatic tumours in children, teenagers & young adults (TYA).

Material and Methods: A retrospective review of paediatric and TYA patients (age ≤24 years) treated with SRS or SABR at The Royal Marsden Hospital from 2010 to 2015 was