
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 328 (2007) 192–200

www.elsevier.com/locate/jmaa

General stability of functional equations of linear type

Jacek Tabor a,∗, Józef Tabor b

a Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
b Institute of Mathematics, University of Rzeszów, Rejtana 16A, 35-310 Rzeszów, Poland

Received 28 February 2006

Available online 12 June 2006

Submitted by S.R. Grace

Abstract

Making use of a dynamical systems notion called shadowing, we prove a stability result for linear func-
tional equations in metric groups. As a corollary we obtain stability of the quadratic functional equation in
the case when the target space is a metric group satisfying some local 2-divisibility condition.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The stability theory of functional equations began with the well-known Ulam’s Problem [11],
concerning the stability of homomorphisms in metric groups:

Problem. We are given a group (G,+) and a metric group (X,+). Does for every ε > 0 there
exist δ > 0 such that if f :G → X satisfies

d
(
f (x + y), f (x) + f (y)

)
< δ for x, y ∈ G,

then a homomorphism a :G → X exists with

d
(
f (x), a(x)

)
< ε for x ∈ G?
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The first partial positive answer to this problem in the case where X is a Banach space was
given by D.H. Hyers [6]. Since then many authors have studied the question of stability of various
functional equations (see [3,7] for the survey of stability results).

There has been a lot of improvement and generalizations of the Hyers Theorem, but little has
been done in the case when X is not a vector space. D. Cenzer [1,2] considered the case when
X is a unit complex circle T with multiplication as a group operation, R. Ger and P. Šemrl in [5]
showed stability in the case when X is C \ {0} and one of the authors obtained in [9] some results
in a more general setting.

However, all the above mentioned results concerned the Cauchy functional equation, and
cannot be easily modified to other functional equations. Thus except for the Cauchy functional
equation there are no, at least known to the authors, stability results in the case when the target
space has no global divisibility!

Our aim is to cover this shortage and provide a general stability result for functional equations
in the case when the target space is a metric group (with some local divisibility condition). To
illustrate the usefulness of our theorem we show stability of the quadratic functional equation.

We would like to mention here an important generalization of the Hyers method done by
G.L. Forti [4]. Forti’s procedure can be applied if the given stability problem can be reduced to
functional inequality in which only functions of one variable are involved.

Our method of reasoning follows a similar idea. We first prove a general result in stability
of an equation in one variable, Theorem 1, which is applied later as a tool in proving various
stability results. In fact our Theorem 1 is a partial generalization of Theorem 1 from [4] to the
case of noninvertible mappings. Thus our results can be regarded as a further step in the direction
indicated by Forti.

Before proceeding further we would like to stress that we were able to obtain our results by
applying a new method of proof based on the ideas from dynamical systems.

Now we would like first to establish some notation and recall some basic definitions concern-
ing shadowing. For more details we refer the reader to [8,10]. By N we denote the set of all
nonnegative integers, X will denote from now on a complete metric space. Let φ :X → X be
given.

Definition 1. Let δ � 0. We say that a sequence (xk)k∈N is a δ-pseudoorbit (for φ) if

d
(
xk+1, φ(xk)

)
� δ for k ∈ N.

A 0-pseudoorbit is called an orbit.

Thus a sequence (xk)k∈N is an orbit if xk+1 = φ(xk) for k ∈ N.
Now we proceed to the notion of local invertibility [10] and its use for shadowing. By B(x, r)

we denote the closed ball centered at x and with radius r .

Definition 2. Let r,R > 0 be given. We say that φ :X → X is locally (r,R)-invertible at x0 ∈ X

if

∀y ∈ B
(
φ(x0),R

) ∃!x ∈ B(x0, r): φ(x) = y.

If φ is locally (r,R)-invertible at each x ∈ X then we say that φ is locally (r,R)-invertible.
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For locally (r,R)-invertible φ we define a function φ−1
x0

:B(φ(x0),R) → B(x0, r) in such
a way that φ−1

x0
(y) denotes the unique x from the above definition which satisfies φ(x) = y.

Moreover, we put

lipR φ−1 := sup
x0∈X

lip
(
φ−1

x0

)
.

We will need the following result [10]:

Theorem A. Let l ∈ (0,1),R ∈ (0,∞) be fixed and let φ :X → X be locally (lR,R)-invertible.
We assume additionally that lipR(φ−1) � l.

Let δ � (1 − l)R and let (xk)k∈N be an arbitrary δ-pseudoorbit. Then there exists a unique
y ∈ X such that

d
(
xk,φ

k(y)
)
� lR for k ∈ N.

Moreover,

d
(
xk,φ

k(y)
)
� lδ

1 − l
for k ∈ N.

2. Homogeneous functions

In this section we prove stability of the homogeneity equation. We assume that G,X are
complete metric spaces and ψ :G → G, φ :X → X are given. We call a function f :G → X

homogeneous if f (ψx) = φf (x) for x ∈ G.
As a consequence of Theorem A we obtain

Theorem 1. Let l ∈ (0,1), R ∈ (0,∞) be fixed. We assume that φ :X → X is locally (lR,R)-
invertible and lipR(φ−1) � l.

Let f :G → X be such that

δ := sup
x∈G

d
(
f (ψx),φf (x)

)
� (1 − l)R.

Then there exists a unique homogeneous function F :G → X such that

d
(
f (x),F (x)

)
� lR for x ∈ G.

Moreover,

d
(
f (x),F (x)

)
� lδ

1 − l
for x ∈ G.

Before proceeding to the proof we would like to compare the above theorem with Forti’s
Theorem 1 [4]. Although Forti’s result deals with the case when φ is globally invertible, it allows
a much more general RHS then our theorem. Thus our result is only a partial generalization of
Forti’s theorem to the case of noninvertible φ.

Proof. Fix arbitrarily x ∈ G. Then

d
(
f

(
ψk+1x

)
, φ

(
f

(
ψkx

)))
� δ for k ∈ N,
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which implies that (f (ψkx))k∈N is a δ-pseudoorbit for φ. By Theorem A we obtain that there
exists a unique Fx ∈ X such that

d
(
f

(
ψkx

)
, φkFx

) = d
(
f

(
ψkx

)
, φkFx

)
� lR for k ∈ N. (1)

We define the function F :G → X by the formula F(x) = Fx . Then setting in (1) k = 0 we get
that d(f (x),F (x)) � lR.

It remains to prove that F is homogeneous. Replacing in (1) x by ψx we obtain that F(ψx)

is a unique element which satisfies

d
(
f

(
ψk+1x

)
, φkF (ψx)

)
� lR for k ∈ N.

On the other hand, by (1) we get

d
(
f

(
ψk+1x

)
, φk+1F(x)

)
� lR for k ∈ N.

By the uniqueness we obtain that F(ψx) = φF(x). �
The assumption of (r,R)-invertibility can easily be verified when X is a metric group. We say

that (X,+, d) is a metric group if X is an Abelian group with a translation invariant metric, that
is

d(a + x, b + x) = d(a, b) for a, b, x ∈ X. (2)

To keep the notation consistent with that often used terminology we write ‖x‖ instead of d(x,0).
Thus we have

d(x, y) = ‖x − y‖.
Given an Abelian group X and n ∈ Z we define the mapping [nX] :X → X by the formula

[nX](x) := nx for x ∈ X.

We will need the following proposition.

Proposition 1. Let X be an Abelian metric group, let R > 0, n ∈ N, n � 1 be fixed. Suppose that

∀S ∈ [0,2R] ∀y ∈ B(0, S) ∃!x ∈ B(0, S/n): y = nx. (3)

Then ∥∥[1/n]w∥∥ � ‖w‖/n for w ∈ B(0,2R), (4)∥∥[1/n]u − [1/n]v∥∥ � ‖u − v‖/n for u,v ∈ B(0,R), (5)

where for z ∈ B(0,2R) by [1/n]z we understand the unique element from B(0,2R/n) which
satisfies (3).

Proof. Putting in (3) S = ‖w‖ we obtain (4).
To check (5), fix arbitrary u,v ∈ B(0,R). We first prove that [1/n]u−[1/n]v = [1/n](u−v).

To see this, notice that by (4),∥∥[1/n]u − [1/n]v∥∥ �
∥∥[1/n]u∥∥ + ∥∥[1/n]v∥∥ � ‖u‖/n + ‖v‖/n � 2R/n.

Clearly, n([1/n]u−[1/n]v) = u−v. By the uniqueness we get [1/n]u−[1/n]v = [1/n](u−v).
Now by (4) we get∥∥[1/n]u − [1/n]v∥∥ = ∥∥[1/n](u − v)

∥∥ � ‖u − v‖/n. �
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Let T := [0,1) denote the group with addition modulo 1 (it can be also identified with the
complex unit circle with multiplication as a group operation). On T we define the translation
invariant metric by the formula

dT(x, y) := min
{|x − y|,1 − |x − y|}.

Remark 1. Let n ∈ Z, |n| � 1 and R < 1/4 be arbitrarily fixed. Applying Proposition 1 one can
easily see that the mapping [nT] is locally (R/|n|,R)-invertible and lipR([nT]−1) = 1/|n|.

As a direct consequence of Theorem 1 we obtain

Corollary 1. Let G be a set, ψ :G → G, n ∈ Z, |n| � 2, and let δ < 1
4 (1 − 1/|n|) be fixed. Let

f :G → T be such that

dT

(
f (ψx),nf (x)

)
� δ for x ∈ G.

Then there exists a unique function F :G → T such that

F(ψx) = nF(x) for x ∈ G,

and

dT

(
f (x),F (x)

)
� δ/

(|n| − 1
)

for x ∈ G.

Proof. Take l = 1/|n|, 1
4 (1 − 1/|n|) < R < 1/4 and apply Theorem 1. �

3. Linear equation

In this section we prove our main result on the stability of the linear functional equations
in metric groups. Due to its generality, it can be applied to show stability of various functional
equations.

Theorem 2. Let l ∈ (0,1), R ∈ (0,∞), δ ∈ (0, (1 − l)R), ε > 0, m ∈ N, n ∈ Z. Let G be a
commutative semigroup, X a complete Abelian metric group. We assume that the mapping [nX]
is locally (lR,R)-invertible and that lipR([nX]−1) � l.

Let f :G → X satisfy the following two inequalities∥∥∥∥∥
N∑

i=1

aif (bix + ciy)

∥∥∥∥∥ � ε for x, y ∈ G,

∥∥f (mx) − nf (x)
∥∥ � δ for x ∈ G,

where ai are endomorphisms in X, bi, ci are endomorphisms in G. We assume additionally that
there exists K ∈ {1, . . . ,N} such that

K∑
i=1

lip(ai)δ � (1 − l)R, ε +
N∑

i=K+1

lip(ai)
lδ

1 − l
� lR. (6)

Then there exists a unique function F :G → X such that

F(mx) = nF(x) for x ∈ G, (7)
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and ∥∥f (x) − F(x)
∥∥ � lδ

1 − l
for x ∈ G. (8)

Moreover, then F satisfies

N∑
i=1

aiF (bix + ciy) = 0 for x, y ∈ G. (9)

Proof. By Theorem 1 there exists a unique function F which satisfies (7) and (8). We are going
to prove that F satisfies (9).

Consider arbitrary x, y ∈ G. We are going to show that the sequence(
K∑

i=1

aif
(
mkbix + mkciy

))
k∈N

is an (1 − l)R-pseudoorbit for [nX]. We have∥∥∥∥∥
K∑

i=1

aif
(
mk+1bix + mk+1ciy

) − n

K∑
i=1

aif
(
mkbix + mkciy

)∥∥∥∥∥
�

K∑
i=1

lip(ai)
∥∥f

(
mk+1bix + mk+1ciy

) − nf
(
mkbix + mkciy

)∥∥

�
K∑

i=1

lip(ai)δ � (1 − l)R.

By Theorem A there exists a unique w ∈ X such that∥∥∥∥∥
K∑

i=1

aif
(
mkbix + mkciy

) − nkw

∥∥∥∥∥ � lR for k ∈ N.

But ∥∥∥∥∥
K∑

i=1

aif
(
mkbix + mkciy

) − nk
K∑

i=1

aiF (bix + ciy)

∥∥∥∥∥
=

∥∥∥∥∥
K∑

i=1

aif
(
mkbix + mkciy

) −
K∑

i=1

aiF
(
mkbix + mkciy

)∥∥∥∥∥
�

K∑
i=1

lip(ai)
∥∥f

(
mkbix + mkciy

) − F
(
mkbix + mkciy

)∥∥
by (8)
�

K∑
i=1

lip(ai)
lδ

1 − l
� lR

and
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∥∥∥∥∥
K∑

i=1

aif
(
mkbix + mkciy

) − (−nk
) N∑

i=K+1

aiF (bix + ciy)

∥∥∥∥∥
�

∥∥∥∥∥
N∑

i=1

aif
(
mkbix + mkciy

)∥∥∥∥∥
+

∥∥∥∥∥
N∑

i=K+1

aiF
(
mkbix + mkciy

) −
N∑

i=K+1

aif
(
mkbix + mkciy

)∥∥∥∥∥
� ε +

N∑
i=K+1

lip(ai)
lδ

1 − l
� lR.

Consequently

w =
K∑

i=1

aiF (bix + ciy) = −
N∑

i=K+1

aiF (bix + ciy). �

4. Quadratic functional equation

Making use of Theorem 2 we are going to prove stability of the quadratic functional equation
in metric groups. We will need the following easy lemma. In the two following results we use
the operation [1/n] defined in Proposition 1.

Lemma 1. Let X be an Abelian metric group and let R > 0 be fixed. Suppose that the following
condition

∀S ∈ [0,2R] ∀y ∈ B(0, S) ∃!x ∈ B(0, S/2): y = 2x (10)

holds. Then for every k ∈ N the mapping [2k
X] is locally (R/2k,R)-invertible and lipR([2k

X]−1) �
2−k .

Proof. Since X is a metric group it is enough to check that [2k
X] is locally (R/2k,R)-invertible

at 0 and lip([2k
X]−1

0 ) � 1/2k . We are going to do this by applying Proposition 1.
Let y ∈ B(0,R) be arbitrary. We put x = [1/2]ky. Clearly by (4) ‖x‖ � ‖y‖/2k and

2kx = y. Suppose that there exists x̃ ∈ B(0,R/2k), x̃ 	= x, such that 2kx̃ = y. Then there exists
l ∈ {1, . . . , n} such that 2lx = 2l x̃, 2l−1x 	= 2l−1x̃. We obtain a contradiction with uniqueness
in (10).

Making use of (5) we get∥∥[1/2]ku − [1/2]kv∥∥ � ‖u − v‖/2k. �
Theorem 3. Let R > 0, let G be an Abelian group and let X be a complete metric Abelian group
satisfying the condition

∀S ∈ [0,2R] ∀y ∈ B(0, S) ∃!x ∈ B(0, S/2): y = 2x.

Let ε � R/8 be arbitrary and let f :G → X be such that∥∥f (x + y) + f (x − y) − 2f (x) − 2f (y)
∥∥ � ε for x, y ∈ G. (11)
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Then there exists a unique function F :G → X such that

F(x + y) + F(x − y) = 2F(x) + 2F(y) for x, y ∈ G,

and ∥∥F(x) − f (x)
∥∥ � ε/2 for x ∈ G.

Proof. By Lemma 1 we obtain that the mapping [4X] is locally (R/4,R)-invertible and
lipR([4X]−1

2 ) � 1/4.
Putting x = y = 0 in (11) we obtain that ‖2f (0)‖ � ε � R. Let

f̃ (x) := f (x) − (
f (0) − [1/2](2f (0)

))
.

Then ∥∥f̃ (x + y) + f̃ (x − y) − 2
(
f̃ (x) + f̃ (y)

)∥∥ � ε.

As ‖f̃ (0)‖ = ‖[1/2](2f (0))‖ � ε/2, the above inequality yields∥∥f̃ (2x) − 4f̃ (x)
∥∥ � 3

2
ε.

We are going to apply Theorem 2 for the function f̃ . So let l = 1/4, δ = 3
2ε, a1 = a2 = 2 idX ,

a3 = a4 = idX , K = 2. Then

δ � (1 − l)R,

2∑
i=1

lip(ai)δ � (1 − l)R, ε +
4∑

i=3

lip(ai)
lδ

1 − l
� lR.

Thus all the assumptions of Theorem 2 are satisfied, and therefore we conclude that there exists
a unique function F̃ :G → X such that

F̃ (2x) = 4F̃ (x) for x ∈ G,

F̃ (x + y) + F̃ (x − y) = 2F̃ (x) + 2F̃ (y) for x, y ∈ G,∥∥f̃ (x) − F̃ (x)
∥∥ � lδ

1 − l
= ε/2 for x ∈ G. (12)

We put F(x) := F̃ (x) + (f (0) − [1/2](2f (0))). Then F satisfies

F(x + y) + F(x − y) = 2F(x) + 2F(y) for x, y ∈ G,∥∥f (x) − F(x)
∥∥ � ε/2 for x ∈ G. (13)

We prove the uniqueness part. Suppose that there exists another function F1 satisfying (13).
Let F̃1(x) := F1(x) − (f (0) − [1/2](2f (0))). Then

F̃1(x + y) + F̃1(x − y) = 2F̃1(x) + 2F̃1(y) for x, y ∈ G,∥∥f̃ (x) − F̃1(x)
∥∥ � ε/2 for x ∈ G.

Since ‖f̃ (0)‖ � ε/2, we obtain that ‖F̃1(0)‖ � ε. Since 2F̃1(0) = 0, by the uniqueness of the
local division by two we get F̃1(0) = 0, and consequently F̃1(2x) = 4F̃1(x). Thus F̃1 satisfies
(12), and by the uniqueness we obtain that F̃1 = F̃ . Thus F1 = F̃1 + (f (0) − [1/2](2f (0))) =
F̃ + (f (0) − [1/2](2f (0))) = F . �

As a direct consequence of the previous theorem and Remark 1 we obtain stability of the
quadratic functional equation in the case when the target space is the group T.
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Corollary 2. Let G be an Abelian group. Let ε ∈ (0,1/32) be arbitrary and let f :G → X be
such that

dT

(
f (x + y) + f (x − y),2f (x) + 2f (y)

)
� ε for x, y ∈ G.

Then there exists a unique function F :G → T such that

F(x + y) + F(x − y) = 2F(x) + 2F(y) for x, y ∈ G,

and

dT

(
f (x),F (x)

)
� ε/2 for x ∈ G.
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