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1. INTRODUCTION

A ternary ring of operators (or simply, TRO) between Hilbert spaces K

and H is a norm closed subspace V of BðK ;HÞ; which is closed under the
triple product

ðx; y; zÞ 2 V � V � V ! xynz 2 V :

A TRO V � BðK ;HÞ is called aW n-TRO if it is weakn closed (equivalently,
weak operator closed, or strong operator closed) in BðK ;HÞ: TROs were
first introduced by Hestenes [19], and have been intensively studied by
Harris [18], Zettl [43], Hamana [16, 17], Exel [14], Kirchberg [25], and
Effros–Ozawa–Ruan [12].
It is known (see [12, 39]) that every finite-dimensional TRO can be

identified with an ‘1-direct sum of rectangular matrix algebras, i.e. it has the
form

V ¼ Mmð1Þ;nð1Þ 	1 
 
 
 	1 MmðkÞ;nðkÞ:
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In general, a TRO V can be identified with the off-diagonal corner (at the
(1,2) position) of its linking Cn-algebra

AðV Þ ¼
C V

V ] D

" #
; ð1:1Þ

where C and D are Cn-algebras generated by VV ] and V ]V (see details in
Section 2). Actually, V is a non-degenerate and faithful Hilbert left-C and
right-D bimodule, and is a linking C–D imprimitive ideal such that the Cn-
algebras C and D are strongly Morita equivalent in the sense of Rieffel [36].
If we let MðCÞ and MðDÞ denote the multiplier Cn-algebras of C and D;

respectively, then V is a Hilbert left-MðCÞ and right-MðDÞ bimodule and we
may identify V with the off-diagonal corner of the unital Cn-algebra

RðV Þ ¼
MðCÞ V

V] MðDÞ

" #
: ð1:2Þ

If V is a W n-TRO, then it is known from [12] (or see Proposition 2.3) that
RðV Þ is a von Neumann algebra. In this case, we call RðV Þ the linking von

Neumann algebra of V :
TROs andW n-TROs have been abstractly characterized by Zettl [43]. It is

known that TROs share many similar properties of Cn-algebras and von
Neumann algebras. For example, it was shown by Harris [43] that every
TRO-homomorphism must be a contraction and must be a quotient map
onto the range space, which is again a TRO. Every injective TRO-
homomorphism must be an isometry. For W n-TROs, we have the
corresponding Kaplansky’s density theorem, Tomiyama’s conditional
expectation theorem, and Sakai’s theorem for unique preduals (see [12, 43]).
We also note that every TRO has a very important operator space

structure. To see this, let us assume that V is a TRO contained in BðK ;HÞ:
Then for each n 2 N; the matrix space MnðV Þ can be identified with a TRO
contained inMnðBðK ;HÞÞ ffi BðKn;HnÞ: This provides a canonical operator
space matrix norm on V such that each MnðV Þ is again a TRO. We call
this the TRO-matrix norm on V (obtained from BðK ;HÞ). We will see
in Proposition 2.1 that the TRO-matrix norm is uniquely determined on
each TRO and does not depend on the choice of representing Hilbert spaces.
TROs form a very interesting class of operator spaces. In many cases,

TROs come out more naturally than Cn-algebras in the theory of operator
spaces. For instance, it is known by Youngson [42] that TROs are closed
under completely contractive projections (comparing Choi and Effros’s
result [6] that Cn-algebras are closed under completely positive and
contractive projections). Some operator space properties for TROs have
been studied by Hamana [17], Kirchberg 25, and Effros–Ozawa–Ruan [12].
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The aim of this paper is to study the local operator space properties (such as
nuclearity, exactness and local reflexivity) for TROs. Quite surprisingly,
these local properties on TROs (or on the related imprimitive ideals) have
very close connections with (actually, totally determine) the corresponding
local properties of their linking Cn-algebras (or the whole Hilbert bimodule
systems). For instance, we can show that a TRO V is nuclear (respectively,
exact or locally reflexive) if and only if its linking Cn-algebra AðV Þ is nuclear
(respectively, exact or locally reflexive).
The paper is organized as follows. We recall some necessary notions and

useful properties for TROs in Section 2, and study the operator space
injective tensor product $�� and augmented injective tensor products : $�� and
$��: for TROs in Section 3. We show in Proposition 3.1 that if V is a TRO
and B is a (unital) Cn-algebra, then V $��B is again a TRO with linking Cn-
algebra

AðV $��BÞ ¼ AðV Þ $��B;

and show in Proposition 3.2 that Vnn : $��B and V $�� : Bnn are again TROs.
In Section 4, we first recall the generalized Archbold–Batty’s conditions C0

l
and C00

l ; which are equivalent to l-exactness and l-local reflexivity, for
operator spaces. We show that a TRO satisfies condition C0

l (respectively,
satisfies the condition C00

l ) for some l51 if and only if it satisfies condition
C0
1 (respectively, satisfies condition C00

1 ). Moreover, a TRO satisfies
condition C0

1 (respectively, satisfies condition C00
1 ) if and only if its linking

Cn-algebra AðV Þ satisfies condition C0
1 (respectively, satisfies condition C00

1 ).
We note that for general operator spaces, l-exactness and l-local

reflexivity need not imply 1-exactness and 1-local reflexivity, respectively.
For instance, Pisier [33] proved that for n > 2; ‘1ðnÞ with theMAX operator
space matrix norm is l-exact for some l5 n

2
ffiffiffiffiffiffi
n�1

p ; but it is not 1-exact. There

are examples of Cn-algebras (such as the full group Cn-algebras CnðFÞ on
free groups F), which are not 1-locally reflexive, and thus are not l-locally
reflexive for any finite l: In the Appendix we show that for each n > 2; there
exists an operator space which is ðn þ 1Þ-locally reflexive, and is only l-
locally reflexive for l5 n

2
ffiffiffiffiffiffi
n�1

p : Another such kind of example can be found

in [21, Proposition 3.12].
Motivated by the Cn-algebra theory, we introduce the maximal tensor

product�tmax for TROs in Section 5. We show that if V is a TRO and B is a
Cn-algebra, then V �tmax B can be identified with the off-diagonal corner of
AðV Þ�max B; where �max is the maximal Cn-algebra tensor product, and
we can obtain the Cn-isomorphism

AðV �
tmax

BÞ ¼ AðV Þ �
max

B:
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We show, in Section 6, that some corresponding equivalent nuclearity
conditions for Cn-algebras hold for TROs (see Theorem 6.5). In Sections 7
and 8, we discuss Haagerups’s decomposition property for completely
bounded maps on TROs, and show that Pisier’s d-norm and some
corresponding Cn-algebra results can be naturally generalized to TROs.
At the end of Section 8, we make some remarks on the connection of RðV Þ
with the injectivity of V and the connection of our decomposable maps with
the weakly decomposable maps discussed by Kirchberg in his talk [28].
We assume that readers are familiar with the theory of operator

spaces, which will play a very important role in this paper. The basic
properties of operator spaces and completely bounded maps can be found in
[13, 31, 35].

2. PRELIMINARIES

Let V and W be two TROs. A linear map y :V ! W is called a TRO-

homomorphism if it preserves the ternary product

yðxynzÞ ¼ yðxÞyðyÞnyðzÞ

for all x; y; z 2 V : If, in addition, y is an injection from V ontoW ; we call y a
TRO-isomorphism from V onto W : If y : V ! W is a TRO-homomorph-
ism, then yn : MnðV Þ ! MnðW Þ is again a TRO-homomorphism and thus
is a contraction (by Harris [18]) for every n 2 N: This shows that every
TRO-homomorphism is actually a complete contraction. Similarly, it is easy
to see that every TRO-homomorphism is a complete quotient map onto
the range space, and every injective TRO-homomorphism is a complete
isometry.
The following result of Hamana and Ruan (cf. [17, Proposition 2.1]),

shows that the TRO-matrix norm is uniquely determined on every TRO and
does not depend on the choice of representing Hilbert spaces.

Proposition 2.1. Let V � BðK ;HÞ and W � BðK 0;H 0Þ be TROs with

the canonical TRO-matrix norms and let y : V ! W be a linear isomorphism.

Then y is a TRO-isomorphism if and only if y is a complete isometry.

If V � BðK ;HÞ is a TRO, we let V] ¼ fxn 2 BðH;KÞ : x 2 Vg denote the
conjugate space of V : Then

VV ] ¼ span
X

i

viw
n

i : vi;wi 2 V

( )
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and

V]V ¼ span
X

i

vni wi : vi;wi 2 V

( )

are *-subalgebras of BðHÞ and BðKÞ; and we let CðV Þ and DðV Þ (or simply,
C and D if there is no confusion) to denote the Cn-algebras obtained by
taking norm closures of VV ] and V]V ; respectively. Then V is a non-
degenerate and faithful Hilbert left-C and right-D bimodule such that

CV ¼ V and VD ¼ V ;

and we have the Cn-isomorphisms

C ¼ KðVDÞ and Dop ¼ KðCV Þ;

where we let KðVDÞ denote the space of all compact right-D module
homomorphisms on V and let KðCV Þ denote the space of all compact left-C
module homomorphisms on V : It follows that we have

jjcjjC ¼ supfjjcvjjV : jjvjjVo1; v 2 Vg ð2:1Þ

and

jjd jjD ¼ supfjjvd jjV : jjvjjVo1; v 2 Vg: ð2:2Þ

It is easy to see that

AðV Þ ¼
C V

V ] D

" #
ð2:3Þ

is a Cn-algebra on H 	 K ; and we may identify V with the off-diagonal
corner of AðV Þ by the injective TRO-homomorphism

iV : v 2 V ! iV ðvÞ ¼
0 v

0 0

" #
2 AðV Þ:

Let V � BðK ;HÞ andW � BðK 0;H 0Þ be two TROs and let y : V ! W be
a TRO-homomorphism from V into W : It is known from Hamana [17]
that we may obtain a Cn-homomorphism j : CðV Þ ! CðW Þ defined by
letting

j
X

i

viw
n

i

 !
¼
X

i

yðviÞyðwiÞ
n; ð2:4Þ
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and a Cn-homomorphism c : DðV Þ ! DðW Þ defined by letting

c
X

i

vni wi

 !
¼
X

i

yðviÞ
nyðwiÞ ð2:5Þ

for vi 2 V and wi 2 W :

Proposition 2.2 (Hamana [17]). Let V and W be two TROs and let

y : V ! W be a TRO-homomorphism. Then

py ¼
j y

yn c

" #
: AðV Þ ! AðW Þ

is a well-defined Cn-homomorphism, where j : CðV Þ ! CðW Þ and c : DðV Þ
! DðW Þ are the Cn-homomorphisms given in (2.4) and (2.5).

It follows that V is TRO-isomorphic to W if and only if AðV Þ is

Cn-isomorphic to AðW Þ:

This shows that if V is a TRO, then the Cn-algebra AðV Þ is uniquely
determined by V and does not depend on the choice of Hilbert spaces K and
H:We call AðV Þ the linking Cn-algebra of V :Without loss of generality, we
may always assume that a TRO V is non-degenerately represented on
Hilbert spaces K and H; i.e. VK is norm dense in H and V ]H is norm dense
in K : In this case, it is easy to see that the induced Cn-algebras C and D are
non-degenerately represented on H and K ; and the identity operators 1H

and 1K are contained in the multiplier Cn-algebras MðCÞ and MðDÞ of C

and D; respectively. If we let

e ¼
1H 0

0 0

" #
and e? ¼

0 0

0 1K

" #
; ð2:6Þ

then we may write

iV ðV Þ ¼ eAðV Þe?: ð2:7Þ

We can also identify the Cn-algebras C and D with the diagonal Cn-
subalgebras eAðV Þe and e?AðV Þe? and identify V] with e?AðV Þe:
It was indicated by Zettl [43] that if V is a TRO non-degenerately

contained in BðK ;HÞ; then its weak operator closure coincides with its
strong operator closure. Actually, these closures also coincide with the
weakn closure of V ; i.e. we have

%VV
weakn

¼ %VV
w:o:t

¼ %VV
s:o:t

� BðK ;HÞ: ð2:8Þ



KAUR AND RUAN268
To see this, we note that for the Cn-algebra AðV Þ; we have

AðV Þ
weakn

¼ AðV Þ
w:o:t

¼ AðV Þ
s:o:t

� BðH 	 KÞ:

Then we may obtain (2.8) from the fact that

%VV
weakn

¼ eAðV Þ
weakn

e?; %VV
w:o:t

¼ eAðV Þ
w:o:t

e? and %VV
s:o:t

¼ eAðV Þ
s:o:t

e?:

It is known that if V is a TRO, then we have the Cn-isomorphisms

MðCÞ ¼ BðVDÞ and MðDÞop ¼ BðCV Þ;

where we let BðVDÞ denote the space of all (bounded) adjointable right-D
module homomorphisms and let BðCV Þ denote the space of all (bounded)
adjointable left-C module homomorphisms. If V is a non-degenerate W n-
TRO contained in BðK ;HÞ; then it is known from Zettl [43, Proposition 4.9]
that MðCÞ and MðDÞ are von Neumann algebras, and V is a faithful self-

dual left-MðCÞ and right-MðDÞ bimodule. Moreover, we may obtain the
following result, which has been discussed in [12]. We include a proof for the
convenience of readers.

Proposition 2.3. Let V be a non-degenerate W n-TRO contained in

BðK ;HÞ: Then we have

MðCÞ ¼ %CC
weakn

and MðDÞ ¼ %DD
weakn

:

Moreover,

RðV Þ ¼
%CC
weakn

V

V ] %DD
weakn

24 35 ¼ AðV Þ
weakn

¼ AðV Þ00 ð2:9Þ

is a (non-degenerate) von Neumann subalgebra of BðH 	 KÞ and we may

identify V with the off-diagonal corner of RðV Þ:

Proof. We will proveMðCÞ ¼ %CC
weakn

: The argument forMðDÞ ¼ %DD
weakn

is similar. Let us assume that V is a W n-TRO (which is non-degenerately

represented) on Hilbert spaces K and H: Then C ¼ VV ]
jj
jj
is a non-

degenerate Cn-algebra on H ; and thus

MðCÞ ¼ fx 2 BðHÞ : xy 2 C and yx 2 C for all y 2 Cg

is a Cn-subalgebra of %CC
weakn

¼ C00 (see [32]). On the other hand, given any

c̃ 2 %CC
weakn

; there exists a net of ca 2 C converging to c̃ in the weakn topology.
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Then for every v 2 V ; cav 2 V converges to c̃v in the weakn topology on
BðK ;HÞ: Since V is weakn closed in BðK ;HÞ; we must have c̃v 2 V : This
implies that

c̃ðvwnÞ ¼ ðc̃vÞwn 2 VV ] � C

for all v;w 2 V : Taking norm limit, we get c̃x 2 C for all x 2 C: Since we also
have cna ! c̃n in weakn topology, we obtain

xc̃ ¼ ðc̃nxnÞn 2 C

for all x 2 C: This shows that c̃ 2 MðCÞ and thus %CC
weakn

� MðCÞ:
Since V is a non-degenerate W n-TRO contained in BðK ;HÞ; then

RðV Þ ¼
MðCÞ V

V ] MðDÞ

" #
¼

%CC
weakn

V

V ] %DD
weakn

24 35 ¼ AðV Þ
weakn

¼ AðV Þ00

is a non-degenerate von Neumann subalgebra of BðH 	 KÞ and we may
identify V with the off-diagonal corner of RðV Þ: ]

Let V be a TRO and we let pu : AðV Þ ! BðHuÞ be the non-degenerate
universal representation of AðV Þ: Then we obtain a non-degenerate faithful
representation for the enveloping von Neumann algebra AðV Þnn such that

AðV Þ � AðV Þnn ¼ AðV Þ00 � BðHuÞ:

If we let fcag and fdag be positive contractive approximate identities of C

and D; respectively, they converge in weakn topology to mutually
orthogonal projections e and e? ¼ 1� e: These two mutually orthogonal
projections split the Hilbert space Hu into H ¼ eHu and K ¼ e?Hu: Then it
is easy to see that V is a non-degenerate TRO contained in BðK ;HÞ: The
weakn topologies on Cnn; Vnn and Dnn coincide with the corresponding
weak operator topologies on BðHÞ; BðK ;HÞ and BðKÞ; and Vnn is a W n-
TRO contained in BðK ;HÞ: In this case, we have the identifications

C ¼ eAðV Þe;V ¼ eAðV Þe?;V ] ¼ e?AðV Þe and D ¼ e?AðV Þe?

and

Cnn¼eAðV Þnne;Vnn¼eAðV Þnne?;V ]**¼e?AðV Þnne and Dnn¼e?AðV Þnne?:

The following proposition is an immediate consequence of Proposition 2.3.
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Proposition 2.4. With the above notation, we have

MðCðVnnÞÞ ¼ Cnn and MðDðVnnÞÞ ¼ Dnn;

and thus

RðVnnÞ ¼
MðCðVnnÞÞ Vnn

V ]** MðDðVnnÞÞ

" #
¼ AðV Þnn: ð2:10Þ

3. INJECTIVE TENSOR PRODUCTS FOR TROS

Let us first recall the injective (or spatial) tensor product for operator
spaces. Given operator spaces V � BðHÞ and W � BðKÞ; we let V $��W

denote the norm closure of V � W in BðH � KÞ: It is known from the
operator space theory that this tensor product is actually independent of the
choice of Hilbert spaces, and is injective in the sense that if i1 : V1 ! V2 and
i2 : W1 ! W2 are completely isometric injections, then the induced tensor
map

i1� i2 : V1 $��W1 ! V2 $��W2

is a completely isometric injection. If A and B are Cn-algebras, then A $��B is
equal to the minimal Cn-tensor product A �min B:

Proposition 3.1. Let V be a TRO and B a Cn-algebra. Then the

canonical TRO-inclusion iV : V+AðV Þ induces an injective TRO-homo-

morphism

iV � idB : V $��B ! AðV Þ $��B

from which we obtain the TRO-isomorphism

V $��B ¼ iV ðV Þ $��B;

and the Cn-isomorphism

AðV $��BÞ ¼ AðV Þ $��B:

We also have the Cn-isomorphisms

CðV $��BÞ ¼ CðV Þ $��B and DðV $��BÞ ¼ DðV Þ $��B:

Proof. If we let V be a non-degenerate TRO contained in BðK ;HÞ; then
AðV Þ is a non-degenerate Cn-subalgebra on H 	 K : Given any Cn-algebra
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B; which is non-degenerately represented on a Hilbert space L; it is easy to
see that

iV � idB : V $��B+AðV Þ $��B � BððH 	 KÞ � LÞ

is an injective TRO-homomorphism such that we can identify V $��B with
the off-diagonal corner iV ðV Þ $��B of AðV Þ $��B; and we may obtain the Cn-
isomorphism

AðV $��BÞ ¼ AðV Þ $��B:

Moreover, we can obtain the Cn-isomorphisms

CðV $��BÞ ¼ CðV Þ $��B and DðV $��BÞ ¼ DðV Þ $��B: ]

In this paper, we will be mainly interested in the injective tensor products
of TROs together with Cn-algebras (rather than with TROs). But it is worth
noting that in general, we may consider the injective tensor product V $��W

for two TROs V and W ; and it is not difficult to verify that this is again a
TRO. We leave the details to the readers.
Archbold and Batty introduced condition C and condition C0 for Cn-

algebras in [1]. These notions, together with condition C00; were generalized
to operator spaces by Effros and Haagerup [10]. To study these conditions,
we need to recall the augmented injective tensor products for operator
spaces (see [13]). Given operator spaces V and W ; there is a canonical
inclusion

tl : Vnn � W ! ðV $��W Þnn

given by

hṽ � w;Fi ¼ hṽ;F ð
 � wÞi

for all ṽ 2 Vnn;w 2 W and F 2 ðV $��W Þn: This inclusion induces an injective
operator space tensor product, which is called the left augmented injective

tensor product and is denoted by : $��; on Vnn � W : We let Vnn : $��W

denote its completion. Let #�� denote the operator space projective tensor

product. Then the canonical bilinear map

Vn � W n ! ðV $��W Þn : ðf ; gÞ/ f � g

extends to a complete contraction

f : Vn #�� W n ! ðV $��W Þn;
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and its adjoint map

fn : ðV $��W Þnn ! ðVn #�� W nÞn

is a complete contraction from ðV $��W Þnn into ðVn #�� W nÞn: Since

Vnn $��W+ðVn #�� W nÞn

is a completely isometric inclusion, the identity map on Vnn � W extends to
a complete contraction

fn

l : Vnn : $��W ! Vnn $��W ;

which can be identified with the restriction of fn to Vnn : $��W : Similarly,
using the canonical inclusion

tr : V � W nn ! ðV $��W Þnn

given by

hv � w̃;Fi ¼ hw̃;F ðv � 
Þi

for all v 2 V ; w̃ 2 W nn and F 2 ðV $��W Þn; we may obtain the right augmented

injective tensor product $�� :on V � W nn: If we let V $�� : W nn denote its
completion, then the identity map on V � W nn extends to a complete
contraction

fn

r : V $�� : W nn ! V $��W nn;

which can be identified with the restriction of fn to V $�� : W nn:

Proposition 3.2. Let V be a TRO and B a Cn-algebra.

(1) Vnn : $��B and V $�� : Bnn are TROs and can be identified with the off-

diagonal corners of AðV Þnn : $��B and AðV Þ $�� : Bnn; respectively.
(2) The induced complete contractions fn

l and fn

r are TRO-homomorph-

isms from Vnn : $��B and V $�� : Bnn onto Vnn $��B and V $��Bnn; respectively.

Proof. Let iV : V+AðV Þ denote the canonical inclusion from V into
AðV Þ:We may identify V with the off-diagonal corner iV ðV Þ ¼ eAðV Þe? by
(2.7), and identify Vnn with the off-diagonal corner eAðV Þnne? of AðV Þnn

(see Proposition 2.4). Then it is easy to see that Vnn � B can be identified
with the off-diagonal corner

eAðV Þnne? � B ¼ ðe � 1ÞðAðV Þnn � BÞðe � 1Þ? ð3:1Þ
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in the algebraic tensor product AðV Þnn � B; where we let 1 denote the unital
element of MðBÞ and let ðe � 1Þ? ¼ e? � 1:
It is known from Proposition 3.1 that V $��B is a TRO with the linking Cn-

algebra AðV $��BÞ ¼ AðV Þ $��B: Then ðV $��BÞnn is a W n-TRO and can be
identified with the off-diagonal corner of the von Neumann algebra

ðAðV Þ $��BÞnn ¼
ðCðV Þ $��BÞnn ðV $��BÞnn

ðV ] $��BÞnn ðDðV Þ $��BÞnn

" #

by Proposition 2.4. Since the canonical inclusion

tl : AðV Þnn : $��B+ðAðV Þ $��BÞnn ð3:2Þ

is a Cn-inclusion (also see [1] or [13]), we can deduce from (3.1) and the
following completely isometric diagram

AðV Þnn : $��B !
tl ðAðV Þ $��BÞnn

" "

Vnn : $��B !
tl ðV $��BÞnn

ð3:3Þ

that Vnn : $��B is a TRO, which is (completely isometrically) TRO-
isomorphic to the off-diagonal corner of AðV Þnn : $��B; i.e. we have the
TRO-isomorphism

Vnn : $��B ffi ðe � 1ÞðAðV Þnn : $��BÞðe � 1Þ?:

Using the same argument, we can prove that V $�� : Bnn is a TRO and we
have the TRO-isomorphism

V $�� : Bnn ffi ðe � 1ÞðAðV Þ $�� : BnnÞðe � 1Þ?:

To prove (2), we note that since fn

l : Vnn : $��B ! Vnn $��B is the
completely contractive extension of the identity map on Vnn � B; it is a
TRO-homomorphism from Vnn : $��B into Vnn $��B: Since the range of fn

l is
norm closed and contains the dense subspace Vnn � B; it must be onto.
Using similar arguments, we can show that fn

r : V $�� : Bnn ! V $��Bnn is
TRO-homomorphism from V $�� : Bnn onto V $��Bnn: ]

Remark 3.3. We note that if V is a TRO and B is a Cn-algebra, then we
can obtain the TRO-isomorphism

V $�� : Bnn ¼ ðe � 1ÞðAðV Þ $�� : BnnÞðe � 1Þ?;
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and thus obtain the Cn-isomorphisms

CðV Þ $�� : Bnn ¼ ðe � 1ÞðAðV Þ $�� : BnnÞðe � 1Þ

and

DðV Þ $�� : Bnn ¼ ðe? � 1ÞðAðV Þ $�� : BnnÞðe? � 1Þ:

Therefore, we can conclude that

AðV $�� : BnnÞ ¼ AðV Þ $�� : Bnn:

However, the situation is more subtle for the connection between AðV Þnn

: $��B and Vnn : $��B: For the details, the readers are referred to the proof for
Theorem 4.3.

4. EXACTNESS AND LOCAL REFLEXIVITY FOR TROS

Let us recall that an operator space V satisfies condition C0
l for some l51

if for every operator space W ;

fn

r : V $�� : W nn ! V $��W nn

is a (completely) contractive linear isomorphism with jjðfn

r Þ
�1jj4l; and V

satisfies condition C00
l if for every operator space W ;

fn

l : Vnn : $��W ! Vnn $��W

is a (completely) contractive linear isomorphism with jjðfn

l Þ
�1jj4l:

Since every operator space is contained in a unital Cn-algebra and the
augmented injective tensor products are injective, it suffices to replaceW by
a unital Cn-algebra B (or simply by B ¼ BðHÞ) in the above definitions.
More precisely, we may easily obtain the following lemma.

Lemma 4.1. An operator space V satisfies condition C0
l (respectively,

condition C00
l Þ for some l51 if and only if for every unital Cn-algebra B

(or simply B ¼ BðHÞÞ

fn

r : V $�� : Bnn ! V $��Bnn

(respectively,

fn

l : Vnn : $��B ! Vnn $��BÞ
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is a (completely) contractive linear isomorphism with jjðfn

r Þ
�1jj4l (respec-

tively, jjðfn

l Þ
�1jj4lÞ:

Proof. To see this, let us assume that for every B ¼ BðHÞ

fn

r : V $�� : Bnn ! V $��Bnn

is a contractive linear isomorphism with jjðfn

r Þ
�1jj4l: Then for any operator

spaceW we may identifyW as an operator subspace of some B ¼ BðHÞ and
thus obtain the completely isometric inclusions

V $�� : Wnn+V $�� : Bnn and V $��W nn+V $��Bnn:

Then we can deduce from the diagram

V $�� : Bnn !
fn

r V $��Bnn

" "

V $�� : W nn !
fn

r V $��W nn

that

fn

r : V $�� : W nn ! V $��W nn

is a completely contractive linear isomorphism with jjðfn

r Þ
�1jj4l: This shows

that V satisfies condition C0
l:

The equivalence for condition C00
l can be proved by a similar

argument. ]

It is obvious that condition C0
1 (respectively, condition C00

1 ) implies
condition C0

l (respectively, condition C00
l ). The converse does not hold for

general operator spaces (for example, see the Appendix). However, we may
obtain the following result for TROs (respectively, for Cn-algebras).

Proposition 4.2. Let V be a TRO. Then V satisfies condition C0
l

(respectively, condition C00
l ) if and only if V satisfies condition C0

1 (respectively,
condition C00

1 ).

Proof. Let us assume that V is a TRO satisfying condition C0
l for some

l51: Then for any Cn-algebra B;

fn

r : V $�� : Bnn ! V $��Bnn

induces a contractive linear isomorphism from V $�� : Bnn onto V $��Bnn:
Since V is a TRO, it is known from Proposition 3.2 that V $�� : Bnn is a TRO
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and fn

r is a TRO-isomorphism from V $�� : Bnn onto V $��Bnn: It follows from
Proposition 2.1 that fn

r must be a (completely) isometric isomorphism,
and thus we must have jjðfn

r Þ
�1jj ¼ 1: This shows that a TRO V satisfies

condition C0
l for some l51 if and only if it satisfies condition C0

1:
We can similarly prove the equivalence of condition C00

l and C00
1 : ]

Theorem 4.3. Let V be a TRO. Then V satisfies condition C0
1

(respectively, condition C00
1 ) if and only if its linking Cn-algebra AðV Þ satisfies

condition C0
1 (respectively, condition C00

1 ).

Proof. Let us first assume that V satisfies condition C0
1: Then for every

unital Cn-algebra B; we have the TRO-isomorphism V $�� : Bnn ¼ V $��Bnn

and thus obtain the Cn-isomorphisms

AðV Þ $�� : Bnn ¼AðV $�� : BnnÞ ¼ AðV $��BnnÞ

¼AðV Þ $��Bnn

from Lemma 4.1, Remark 3.3 and Proposition 3.1. This shows that AðV Þ
satisfies condition C0

1: The other direction is obvious since condition C0
1

passes to subspaces (see [10]).
The proof for condition C00

1 is more complicated since AðV Þnn $��B

and AðV Þnn : $��B are not equal to the linking Cn-algebras of Vnn $��B and
Vnn : $��B; respectively. Let us assume that B is a unital Cn-algebra. It is
known from Proposition 3.2 that

Vnn $��B ffi ðe � 1ÞðAðV Þnn $��BÞðe � 1Þ?

is the off-diagonal corner of the Cn-algebra AðV Þnn $��B: Then we have

CðVnn $��BÞ � ðe � 1ÞðAðV Þnn $��BÞðe � 1Þ ¼ CðV Þnn $��B:

Since we have CðV Þnn ¼ MðCðVnnÞÞ by Proposition 2.4, we can conclude
that

CðV Þnn $��B � MðCðVnn $��BÞÞ:

It follows that for every u 2 CðV Þnn $��B; we have

jjujjCðV Þnn $��B ¼ supfjjuxjjVnn $��B : x 2 Vnn $��B; jjxjjVnn $��Bo1g: ð4:1Þ

We may also obtain

jjujjCðV Þnn: $��B ¼ supfjjuxjjVnn: $��B : x 2 Vnn : $��B; jjxjjVnn: $��Bo1g ð4:2Þ

by applying a similar calculation.
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If V satisfies condition C00
1 ; then for any unital Cn-algebra B we have the

TRO-isomorphism Vnn : $��B ¼ Vnn $��B; and thus for every u 2 CðV Þnn � B

we can obtain

jjujjCðV Þnn: $��B ¼ supfjjuxjjVnn: $��B : x 2 Vnn : $��B; jjxjjVnn: $��Bo1g

¼ supfjjuxjjVnn $��B : x 2 Vnn $��B; jjxjjVnn $��Bo1g ¼ jjujjCðV Þnn $��B

from (4.1) and (4.2). This shows that

CðV Þnn : $��B ¼ CðV Þnn $��B:

Similarly, we can prove

DðV Þnn : $��B ¼ DðV Þnn $��B:

Therefore, the canonical Cn-homomorphism fn

l from AðV Þnn : $��B onto
AðV Þnn $��B must be an injection. This shows that

AðV Þnn : $��B ¼ AðV Þnn $��B;

and thus AðV Þ satisfies condition C00
1 :

The converse is also obvious since condition C00
1 passes to subspaces

(see [10]). ]

We note that conditions C0
l and C00

l are closely related to l-exactness
and l-local reflexivity, respectively. We recall that an operator space V is
said to be l-exact (for some l51) if for every finite-dimensional subspace
E � V and e > 0; there exists a linear isomorphism j : E ! S from E onto a
subspace S of someMn such that jjjjjcbjjj�1jjcbolþ e: An operator space is
said to be l-locally reflexive if for every finite-dimensional subspace E �
Vnn; there exists a net of complete bounded maps ja : E ! V such that
jjjajjcb4l and ja ! iE in the point-weak

n topology. An operator space is
usually called locally reflexive if it is 1-locally reflexive. The exactness for Cn-
algebras was first introduced by Kirchberg [23], and this was extended to
operator spaces by Pisier [33]. The local reflexivity for operator spaces was
first introduced by Effros–Haagerup [10].
It is known (see [13, Chap. 14]) that an operator space satisfies condition

C0
1 (respectively, condition C00

1 ) if and only if it is 1-exact (respectively,
locally reflexive). Using a similar argument, we can easily show that an
operator space V satisfies condition C0

l (respectively, condition C00
l ) if and

only if V is l-exact (respectively, l-locally reflexive). Then we may
summarize our results in the following theorems.
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Theorem 4.4. Let V be a TRO. Then the following are equivalent:

(1) V is 1-exact (or equivalently, l-exact),
(2) V satisfies condition C0

1 (or equivalently, condition C0
l),

(3) AðV Þ satisfies condition C0
1 (or equivalently, condition C0

l),
(4) AðV Þ is 1-exact (or equivalently, l-exact).

It was shown in [12, Sect. 4] that every 1-exact operator space is locally
reflexive. Then we can conclude from Theorem 4.4 that every l-exact TRO
must be locally reflexive. However, this is still an open question for general
operator spaces.

Theorem 4.5. Let V be a TRO. Then the following are equivalent:

(1) V is locally reflexive (or equivalently, l-locally reflexive),
(2) V satisfies condition C00

1 (or equivalently, condition C00
l ),

(3) AðV Þ satisfies condition C00
1 (or equivalently, condition C00

l ),
(4) AðV Þ is locally reflexive (or equivalently, l-locally reflexive).

5. MAXIMAL TRO TENSOR PRODUCT

Given Cn-algebras A and B; the operator space injective tensor product
A $��B is just the minimal Cn-algebra tensor product on A � B: On the other
hand, there is a maximal Cn-algebra tensor product on A � B given by

jjxjjmax ¼ supfjjpA 
 pBðxÞjjg;

where the supremum is taken over all Cn-homomorphisms pA : A ! BðHÞ
and pB : B ! BðHÞ with commuting ranges, i.e. we have

pAðaÞpBðbÞ ¼ pBðbÞpAðaÞ

for all a 2 A and b 2 B: The readers are referred to Takesaki’s book [41] for
details.
Motivated by this, we may define the maximal tensor product �tmax for

TROs. Given TROs V and W ; there is a canonical triple product on the
algebraic tensor product V � W given by

ðv1� w1Þðv2� w2Þ
nðv3� w3Þ ¼ v1v

n

2v3� w1w
n

2w3:

If we are given TRO-homomorphisms yV : V ! BðHÞ and yW : W ! BðHÞ
such that

yV ðvÞyW ðwÞ ¼ yW ðwÞyV ðvÞ and yV ðvÞyW ðwÞn ¼ yW ðwÞnyV ðvÞ ð5:1Þ



TROS AND THEIR LINKING C*-ALGEBRAS 279
for all v 2 W and w 2 W ; then we can define a linear map yV 
 yW :
V � W ! BðHÞ by letting

yV 
 yW ðxÞ ¼
X

i

yV ðviÞyW ðwiÞ

for x 2 V � W with x ¼
P

i vi � wi: This is a well-defined linear map which
preserves the triple product from V � W into BðHÞ; and extends to a
contraction from V #��W into BðHÞ: Then for every x 2 V � W ; we can
define

jjxjjtmax ¼ supfjjyV 
 yW ðxÞjjg4jjxjjV #��Wo1;

where the supremum is taken over all TRO-homomorphisms yV : V !
BðHÞ and yW : W ! BðHÞ satisfying (5.1). This is a well-defined (operator
space) cross norm on V � W since

jjxjj_4jjxjjtmax4jjxjj^ ð5:2Þ

for every x 2 V � W : We let V �tmaxW denote the norm completion of
V � W with respect to this tensor norm. There is a canonical completely
isometric triple product preserving inclusion

y ¼ 	
fyV ;yW ;Hg

yV 
 yW : V �
tmax

W ! PfyV ;yW ;HgBðHÞ

given by yðuÞ ¼ 	fyV ;yW ;HgyV 
 yW ðuÞ for all u 2 V � W ; where fyV ; yW ;Hg
are taken over all TRO-homomorphisms of V and W satisfying (5.1).
Therefore, V �tmaxW is a TRO, which can be identified with the norm
closure of yðV � W Þ in PfyV ;yW ;HgBðHÞ:

Lemma 5.1. Let B be a Cn-algebra. Then every TRO-homomorphism

y : B ! BðHÞ has the form y ¼ vp; where p : B ! BðHÞ is a Cn-homomorph-

ism and v is a partial isometry in BðHÞ:

Proof. Let us first assume that B is a unital Cn-algebra. We let 1 2 B

denote the unital element. If y : B ! BðHÞ is a TRO-homomorphism, then
v ¼ yð1Þ is a partial isometry in BðHÞ since it is a contractive operator
satisfying

vvnv ¼ yð1Þyð1Þnyð1Þ ¼ yð11n1Þ ¼ v:

Let p : B ! BðHÞ be the complete contraction given by

pðaÞ ¼ vnyðaÞ



KAUR AND RUAN280
for all a 2 B: Then p ¼ vnv ¼ pð1Þ is the orthogonal projection from H onto
pH ¼ vnH; and p is a unital completely contractive algebraic homomorph-
ism from B into BðpHÞ since

pðaÞ ¼ vnyðaÞ ¼ ðvnvvnÞðyðaÞyð1Þnyð1ÞÞ ¼ ppðaÞp

and

pðabÞ ¼ vnyða1nbÞ ¼ vnyðaÞyð1ÞnyðbÞ ¼ pðaÞpðbÞ

for all a; b 2 B: It follows (see [31]) that p is a unital Cn-homomorphism
from B into BðpHÞ such that

yðaÞ ¼ yð1Þyð1ÞnyðaÞ ¼ vpðaÞ:

If B is non-unital, we may pass the argument to its second dual Bnn: It is
known from the TRO analogue of Kaplansky’s density theorem that every
TRO-homomorphism y : B ! BðHÞ extends uniquely to a weakn contin-
uous TRO-homomorphism *yy : Bnn ! BðHÞ: Since Bnn is a von Neumann
algebra and thus unital, we may apply the unital case to *yy and thus obtain
the result for y: ]

IfW ¼ B is a Cn-algebra and p : B ! BðHÞ is a Cn-homomorphism, then
the first commuting condition in (5.1) implies the second one. In this case,
we can simply require that y and p have commuting ranges. It is clear that
for every x 2 V � B; we have

supfjjy 
 pðxÞjjg4jjxjjtmax;

where the supremum is taken over all TRO-homomorphisms y : V ! BðHÞ
and Cn-homomorphisms p : B ! BðHÞ with commuting ranges. On the
other hand, it follows from Lemma 5.1 that

jjxjjtmax ¼ supfjjyV 
 yBðxÞjjg

¼ supfjjyV 
 vpðxÞjjg

4 supfjjyV 
 pðxÞjjg;

where yV and yB are TRO-homomorphisms satisfying the commuting
conditions in (5.1), and yV and p have the commuting ranges. This shows
that we actually have the following result.
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Proposition 5.2. Let V be a TRO and B a Cn-algebra. Then for every

x 2 V � B; we have

jjxjjtmax ¼ supfjjy 
 pðxÞjjg; ð5:3Þ

where the supremum is taken over all TRO-homomorphisms y : V ! BðHÞ
and Cn-homomorphisms p : B ! BðHÞ with commuting ranges.

Similarly, we may obtain the following result for Cn-algebras.

Proposition 5.3. Let A and B be Cn-algebras. For any x 2 A � B; we

have

jjxjjtmax ¼ supfjjpA 
 pBðxÞjjg ¼ jjxjjmax; ð5:4Þ

where the supremum is taken over all Cn-homomorphisms pA : A ! BðHÞ and

pB : B ! BðHÞ with commuting ranges.
Therefore, we have the TRO-isomorphism A �tmax B ¼ A �max B:

Given a TRO V and a Cn-algebra B; we let iV ðV Þ %��
max

B denote the norm
closure of iV ðV Þ � B in AðV Þ�max B: Then iV ðV Þ %��

max
B is a TRO.

Theorem 5.4. The canonical map iV � idB : V � B ! iV ðV Þ � B ex-

tends to a TRO-isomorphism from V �tmax B onto iV ðV Þ %��
max

B; and we have

the Cn-isomorphism

AðV �
tmax

BÞ ¼ AðV Þ �
max

B:

Proof. If t : AðV Þ ! BðHÞ and p : B ! BðHÞ are commuting Cn-
homomorphisms, then y ¼ t 8 iV is a TRO-homomorphism from V into
BðHÞ with commuting range with pðBÞ: For any x 2 V � B; we have

jjt 
 pðiV � idBðxÞÞjj ¼ jjy 
 pðxÞjj4jjxjj
V �

tmax
B
:

This shows that

jjiV � idBðxÞÞjjiV ðV Þ %��
max

B4jjxjj
V �

tmax
B
:

On the other hand, if y : V ! BðHÞ is a TRO-homomorphism, then we
can obtain Cn-homomorphisms j : C ! BðHÞ and c : D ! BðHÞ as given
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in (2.4) and (2.5) such that

py ¼
j y

yn c

" #
: AðV Þ ! M2ðBðHÞÞ ¼ BðH 	 HÞ

is a well-defined Cn-homomorphism. If p : B ! BðHÞ is a Cn-homomorph-
ism having the commuting range with yðV Þ; then p	 p : B ! BðH 	 HÞ is
a Cn-homomorphism with the commuting range with pyðAðV ÞÞ: It follows
that for every x 2 V � B;

jjy 
 pðxÞjj ¼ jjpy 
 ðp	 pÞðiV � idBðxÞÞjj4jjiV � idBðxÞÞjj
AðV Þ �

max
B
:

Then we have

jjxjj
V �

tmax
B
4jjiV � idBðxÞÞjjiV ðV Þ %��

max
B:

This shows that the canonical map iV � idB induces an isometric TRO-
isomorphism from V �tmax B onto iV ðV Þ %��

max
B:

Let us assume that iCðCÞ %��
max

B and iDðDÞ %��
max

B denote the norm closure
of iCðCÞ � B and iDðDÞ � B in AðV Þ�max B; respectively. It is easy to show
that we have CðiV ðV Þ %��

max
BÞ ¼ iCðCÞ %��

max
B and DðiV ðV Þ %��

max
BÞ ¼ iDðDÞ

%��
max

B: If we identify V �tmax B with V %��
max

B in AðV Þ�max B; we obtain
the Cn-isomorphisms

AðV �
tmax

BÞ ffi AðiV ðV Þ %��
max

BÞ ¼
iCðCÞ %��

max
B iV ðV Þ %��

max
B

i %VV ð %VV Þ %��
max

B iDðDÞ %��
max

B

" #

¼ AðV Þ �
max

B: ]

The following result is an immediate consequence of Theorem 5.4.

Theorem 5.5. Let V be a TRO and B a Cn-algebra. We have V $��B ¼
V �tmax B if and only if AðV Þ $��B ¼ AðV Þ�max B:

Proof. It is easy to see that AðV Þ $��B ¼ AðV Þ�max B implies V $��B ¼
V �tmax B:
On the other hand, if V $��B ¼ V �tmax B; then we have from Proposition

3.1 and Theorem 5.4 that

AðV Þ $��B ¼ AðV $��BÞ ¼ AðV �
tmax

BÞ ¼ AðV Þ �
max

B: ]
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Remark 5.6. If V and W are two TROs, then we have the canonical
isometric TRO-inclusions

V $��W+V $��AðW Þ and V �
tmax

W+V �
tmax

AðW Þ:

Using a similar argument as above, we can show that V $��W ¼ V �tmaxW

if and only if V $��AðW Þ ¼ V �tmaxAðW Þ: We leave the details to the
readers.

6. NUCLEARITY AND INJECTIVITY FOR TROS

In [29] Lance introduced the notion of nuclearity for Cn-algebras. We
recall that a Cn-algebra A is said to be nuclear (or Lance-nuclear) if for every
Cn-algebra B; there is a unique Cn-algebra tensor norm on A � B; i.e. we
have A $��B ¼ A�max B:Motivated by this, we say that a TRO V is Lance-

nuclear if for every Cn-algebra B; there is a unique TRO tensor norm on
V � B; i.e. we have V $��B ¼ V �tmax B: We use the notion of ‘Lance-
nuclearity’ for TROs in this paper to avoid the confusion with another
notion ‘l-nuclearity’ defined below. The following result is an immediate
consequence of Theorem 5.5.

Theorem 6.1. A TRO V is Lance-nuclear if and only if its linking Cn-
algebra AðV Þ is nuclear.

Nuclear Cn-algebras have many nice properties. One of the most
important (equivalent) properties for nuclear Cn-algebras is that the identity
map on a nuclear Cn-algebra can be approximated by completely bounded
finite rank maps which can be factored through matrix algebras. Operator
algebraists have used the notion of l-nuclearity for this approximation
property. The equivalence was first proved by Choi–Effros [3] for completely
positive contractions (see Kirchberg [24] for another proof). It was
generalized to the general case by Smith [38] and Pisier [34]. Our goal of
this section is to investigate the equivalence between Lance-nuclearity and
l-nuclearity for TROs.
Let us first recall that an operator space V is said to be l-nuclear for some

l51 if there exist diagrams of completely bounded maps

ð6:1Þ

such that jjcajjcbjjjjjajjcb4l and ca 8ja ! idV in the point-norm topology.
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If a TRO V is Lance-nuclear, then its linking Cn-algebra AðV Þ is nuclear
by Theorem 6.1, and thus has the approximation by finite rank completely
positive contractions. Since V can be identified with off-diagonal corner
iV ðV Þ ¼ eAðV Þe? of AðV Þ; we may obtain diagrams of complete contrac-
tions

which approximately commute in the point-norm topology. This shows that
if a TRO V is Lance-nuclear, then it is 1-nuclear and thus l-nuclear for
every l51: We will show in the following that l-nuclearity implies Lance-
nuclearity for TROs. To obtain this result, we have to pass to the second
dual and show that Vnn and thus AðV Þnn are injective. Then using the well-
known Cn-algebra result, we can conclude that AðV Þ is nuclear and thus V is
Lance-nuclear by Theorem 6.1. Therefore, all corresponding equivalent
conditions still hold for TROs (see Theorem 6.5).
To begin with, let us recall that an operator space V is said to be l-

injective if for any operator spaces W1 � W2; every complete contraction
j : W1 ! V has a completely bounded extension *jj : W2 ! V with jj *jjjjcb
4l: If an operator space is 1-injective, we simply say that it is injective. It is
known from the Arveson–Wittstock–Hahn–Banach theorem that BðHÞ is
injective. Therefore, an operator space is l-injective if and only if it is l-
completely complemented in some BðHÞ:
For general operator spaces (even for Cn-algebras), l-injectivity does not

imply injectivity. Surprisingly, Pisier [34] and Christensen–Sinclair [8]
independently proved that for von Neumann algebras, l-injectivity is
equivalent to injectivity. It is known from [12, 43] that every W n-TRO has
the form V ¼ eRe? for some von Neumann algebra R and projection e 2 R:
Furthermore, we may assume that the central cover Ce ¼ Ce? ¼ 1 in R

(otherwise, we may replace R by pR with p ¼ CeCe?). Then the following
lemma shows that a W n-TRO is l-injective if and only if it is injective. We
omit the proof since it can be obtained by applying an argument similar to
that given in the proof of [12, Theorem 1.3] and by applying the Pisier and
Christensen–Sinclair result for l-injective von Neumann algebras.

Lemma 6.2. Let R be an von Neumann algebra and let e and f be

projections in R with central covers Ce ¼ Cf ¼ 1: If the W n-TRO V ¼ eRf is

l-injective (for some l51), then R is injective and thus V is injective.

It was shown in [12] that if V is an injective W n-TRO, then V is the off-
diagonal corner of some injective von Neumann algebra R: In the following
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theorem, we show that if V is an injective W n-TRO, then its linking von
Neumann algebra RðV Þ is also injective.

Theorem 6.3. Let V be a W n-TRO. Then V is l-injective for some l51
if and only if RðV Þ is injective.

Proof. Let us assume that V is a (non-degenerate) W n-TRO contained
in BðK ;HÞ: Then RðV Þ ¼ AðV Þ00 is a (non-degenerate) von Neumann
subalgebra of BðH 	 KÞ and we can write V ¼ eRðV Þe? (see (2.9)). It is
obvious that if RðV Þ is injective, then so is V :
On the other hand, we let O ¼ V1 denote the closed unit ball V1 of V :

Then O is a compact convex set with respect to the weakn topology on V :
We have from the Krein–Milman theorem that the set ExtðOÞ of all extreme

points of O is non-empty and satisfies

O ¼ coðExtðOÞÞ
weakn

:

Given any v 2 ExtðOÞ; it is known from Zettl [43] that v (identified with
iV ðvÞ) is a partial isometry in V ; i.e. it satisfies vvnv ¼ v: Then v is a partial
isometry in the von Neumann algebra RðV Þ; and we obtain projections
ev ¼ vvn 2 eRðV Þe ¼ MðCÞ ¼ C00 and fv ¼ vnv 2 e?RðV Þe? ¼ MðDÞ ¼ D00:
We let pv denote the central cover of ev in RðV Þ: Since fv is equivalent to
ev in RðV Þ; pv is also the central cover of fv (see [22, p. 410]). If we let
Vv ¼ evVfv and Rv ¼ pvRðV Þ; then we have

Vv ¼ evðeRðV Þe?Þfv ¼ evRðV Þfv ¼ evðpvRðV ÞÞfv ¼ evRvfv; ð6:2Þ

where the central covers of ev and fv are equal to 1 in Rv: It follows from
Lemma 6.2 that Rv is an injective von Neumann algebra.
Now let us assume that p ¼

W
v pv be the projection in RðV Þ spanned by all

pv with v 2 ExtðOÞ: Then p is a central projection in RðV Þ such that pv ¼ v

for all v 2 ExtðOÞ: It follows that we have px ¼ x for every x 2 V : Since RðV Þ
is a von Neumann subalgebra of BðH 	 KÞ generated by V ; we can
conclude that px ¼ x for every x 2 RðV Þ: This shows that pRðV Þ ¼ RðV Þ:
Since for each v 2 ExtðOÞ; pvRðV Þ is an injective von Neumann algebra,
we can conclude from Effros–Lance [11] that RðV Þ ¼ pRðV Þ is also
injective. ]

It was shown by Haagerup [15] that a von Neumann algebra R is injective
if and only if there exists a constant l51 such that for any n 2 N and any
complete contraction T : ‘1ðnÞ ! R; there exist completely positive maps
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Si : ‘1ðnÞ ! R such that maxfjjS1jj; jjS2jjg4l and the induced map

F ¼
S1 T

Tn S2

" #
: x 2 ‘1ðnÞ/

S1ðxÞ TðxÞ

TðxÞn S2ðxÞ

" #
2 M2ðRÞ

is completely positive. For W n-TROs we may obtain the following result,
which will be useful in Section 7.

Theorem 6.4. Let V be a W n-TRO. Then V is injective if and only if

there exists a constant l51 such that for any n 2 N and any complete

contraction T : ‘1ðnÞ ! V ; there exist completely positive maps S1 : ‘1ðnÞ !
MðCÞ and S2 : ‘1ðnÞ ! MðDÞ such that maxfjjS1jj; jjS2jjg4l and the induced

map

F ¼
S1 T

Tn S2

" #
: x 2 ‘1ðnÞ/

S1ðxÞ TðxÞ

TðxÞn S2ðxÞ

" #
2 RðV Þ

is completely positive.

Proof. ð)Þ If V is injective, then RðV Þ is an injective von Neumann
algebra by Theorem 6.3, and thus we may easily obtain the result for l ¼ 1
(and thus for every l51) by applying Paulsen’s off-diagonal trick (see [31]).

ð(Þ We need some notions and arguments developed in the proof of
Theorem 6.3. Let us first recall that if V is a (non-degenerate) W n-TRO
contained in BðK ;HÞ; then we have MðCÞ ¼ C00; MðDÞ ¼ D00 and

RðV Þ ¼ AðV Þ00 ¼
C00 V

V ] D00

" #
:

For every partial isometry v 2 ExtðOÞ; where O ¼ V1 is the closed unit ball
of V ; we obtain two projections ev ¼ vvn 2 C00 and fv ¼ vnv 2 D00; respec-
tively. It is known from Zettl [43] that Vv ¼ evVfv is a von Neumann algebra
with multiplication and involution given by

x 
 y ¼ xvny and x] ¼ vxnv

for all x; y 2 Vv: There is a complete isometry jv from Vv onto evC00ev

given by

jv : x 2 Vv ! xvn 2 evC00ev

which sends the unital element v 2 Vv to the unital element ev in evC00ev:
Then jv is a unital complete order isomorphism and thus is a unital (spatial)

*-isomorphism from Vv onto the von Neumann algebra evC
00ev: Similarly,
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the map

cv : x 2 Vv ! vnx 2 fvD00fv

is a unital (spatial) *-isomorphism from Vv onto the von Neumann algebra
fvD

00fv:
If we are given a complete contraction T : ‘1ðnÞ ! Vv; then it is known

from the hypothesis that there exist completely positive maps S1 : ‘1ðnÞ !
C00 and S2 : ‘1ðnÞ ! D00 such that maxfjjS1jj; jjS2jjg4l and the induced map

F ¼
S1 T

Tn S2

" #
: x 2 ‘1ðnÞ/

S1ðxÞ TðxÞ

TðxÞn S2ðxÞ

" #
2 RðV Þ

is completely positive. Then Sev
¼ evS1ev : ‘1ðnÞ ! evC00ev and Sfv

¼ fvS2fv :
‘1ðnÞ ! fvD00fv are completely positive maps such that maxfjjSev

jj; jjSfv
jjg4l

and the induced map

Fv ¼
Sev

T

Tn Sfe

" #
: x 2 ‘1ðnÞ/

Sev
ðxÞ TðxÞ

TðxÞn Sfv
ðxÞ

" #
2

evC
00ev Vv

V ]
v fvD00fv

" #

is completely positive since Fv ¼ ðev 	 fvÞFðev 	 fvÞ: Then we can conclude
from Haagerup’s result that Vv is an injective von Neumann algebra. Let pv

be the central cover of ev and fv: It follows from (6.2) and Lemma 6.2 that
Rv ¼ pvRðV Þ is an injective von Neumann algebra. Using the same
argument as that given in Theorem 6.3, we can conclude that RðV Þ is an
injective von Neumann algebra, and thus V is an injective W n-TRO. ]

Summarizing our results, we can obtain the following theorem.

Theorem 6.5. Let V be a TRO. Then the following are equivalent:

(1) V is Lance-nuclear,
(2) V is 1-nuclear (or l-nuclear for some l51),
(3) Vnn is injective (or l-injective for some l51),
(4) AðV Þnn is injective,
(5) AðV Þ is nuclear.

Proof. We have discussed (1) ) (2) after Theorem 6.1. If V is a l-
nuclear TRO, then it is l-exact and thus 1-exact by Theorem 4.4. This
implies that V is locally reflexive (see [12, Sect. 4]). We may use the same
argument as that given in [12, Theorem 4.5(i) ) (ii)] to show that Vnn is l-
injective. This proves (2) ) (3). It follows from Lemma 6.2 that the
injectivity is equivalent to l-injectivity on W n-TROs. To prove (3) ) (4),
we can assume that Vnn is an injective W n-TRO. Since we have
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AðV Þnn ¼ RðVnnÞ by Proposition 2.4, we can conclude from Theorem 6.3
that AðV Þnn is an injective von Neumann algebra. Using Connes’ deep work
[7], Choi and Effros proved (4) , (5) for Cn-algebras in [4, 5]. Finally, we
can obtain (5) ) (1) from Theorem 6.1. ]

An intriguing aspect for TROs is that, like Cn-algebras, one does not need
to assume the local reflexivity to prove (3)) (2) in Theorem 6.5. Kirchberg
also observed this in [25, Sect. 6] for Cn-spaces, where he indicated that an
operator space V is 1-nuclear if and only if it is a Cn-space and its second
dual Vnn is injective. However, the local reflexivity is a necessary condition
for general operator spaces (see [12]) since there exist examples of operator
spaces V ; for which Vnn are 1-injective, but V are not 1-nuclear (see [13, 26]).
A dual operator space V is said to be l-semidiscrete (or semidiscrete if

l ¼ 1) if there exist diagrams of weakn continuous completely bounded
maps

such that jjjajjcbjjcajjcb4l and ca 8ja ! idV in the point-weak
n topology. It

is known from [12, Proposition 3.1] that a dual operator space is injective if
and only if it is semidiscrete. In this case, we can conclude that V is weakn

homeomorphic and completely isometrically isomorphic to an (injective)
W n-TRO. For l > 1; it is still an open question whether every l-injective (or
l-semidiscrete) dual operator space is completely isomorphic to some
injective (or semidiscrete) Wn-TRO. As a consequence of Theorem 6.3, we
may obtain the following corollary for W n-TROs.

Corollary 6.6. Let V be a W n-TRO. Then the following are equivalent:

(1) V is l-injective for some l51 (or equivalently, V is injective),
(2) V is l-semidiscrete for some l51 (or equivalently, V is semidiscrete).

7. DECOMPOSABLE MAPS AND PISIER’S d-NORM ON TROS

In [15] Haagerup introduced the notion of decomposable maps between
Cn-algebras. We recall that given Cn-algebras A and B; a linear map
T : A ! B is called decomposable if it can be written as

T ¼ ðT1 � T2Þ þ iðT3 � T4Þ;
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where Ti : A ! B are completely positive maps. In this case, there exist
completely positive maps Si : A ! B such that the map

F ¼
S1 T

Tn S2

" #
: a 2 A/

S1ðaÞ TðaÞ

TðaÞn S2ðaÞ

" #
2 M2ðBÞ

is completely positive, or equivalently, the corresponding map

C ¼
S1 T

Tn S2

" #
:

a1 a2

an
3 a4

" #
2 M2ðAÞ/

S1ða1Þ Tða2Þ

Tða3Þ
n S2ða4Þ

" #
2 M2ðBÞ ð7:1Þ

is completely positive. Then DðA;BÞ; the space of all decomposable maps
from A to B; is a Banach space with the norm given by

jjT jjdec ¼ inffmaxfjjS1jj; jjS2jjgg:

Motivated by (7.1), we can define decomposable maps between TROs as
follows. Let V and W be TROs. A linear map T : V ! W is called
decomposable if there exists completely positive maps S1 : CðV Þ ! CðW Þ
and S2 : DðV Þ ! DðW Þ such that the map C : AðV Þ ! AðW Þ given by

C ¼
S1 T

Tn S2

" #
:

c v

wn d

" #
2 AðV Þ/

S1ðcÞ TðvÞ

TðwÞn S2ðdÞ

" #
2 AðW Þ ð7:2Þ

is completely positive. In this case, we let

jjT jjdec ¼ inffmaxfjjS1jj; jjS2jjgg;

where the infimum is taken over all completely positive maps Si in (7.2). If
V ¼ B and W ¼ C are Cn-algebras, we have AðV Þ ¼ M2ðBÞ and AðW Þ ¼
M2ðCÞ: Then it is clear that our definition is a natural generalization of
decomposable maps on Cn-algebras.
It is easy to see from the definition that if T1 : V ! W and T2 : W ! Z

are decomposable maps, then T2 8T1 : V ! Z is decomposable with

jjT2 8T1jjdec4jjT2jjdecjjT1jjdec: ð7:3Þ

If V is a TRO, then the canonical inclusion iV : V+AðV Þ is a
decomposable map with jjiV jjdec ¼ 1: We may obtain this by considering
the canonical inclusions S1 ¼ iC and S2 ¼ iD of CðV Þ and DðV Þ into AðV Þ:
Similarly, it is easy to see that the canonical projection PV : AðV Þ ! V is a
decomposable map with jjPV jjdec ¼ 1: If T : V ! W is a completely
bounded map between TRO’s V and W ; then T̃ ¼ iW 8T 8PV : AðV Þ !
AðW Þ is a completely bounded map between the linking Cn-algebras AðV Þ



KAUR AND RUAN290
and AðW Þ: Since T ¼ PW 8 T̃ 8 iV ; we actually have jjT jjcb ¼ jjT̃ jjcb: More-
over, we may conclude from (7.3) that T : V ! W is decomposable if and
only if T̃ : AðV Þ ! AðW Þ is decomposable with jjT jjdec ¼ jjT̃ jjdec: Therefore,
we may identify DðV ;W Þ; the space of all decomposable maps from V into
W ; with a norm closed subspace of DðAðV Þ;AðW ÞÞ:We can also deduce the
inequality

jjT jjcb ¼ jjT̃ jjcb4jjT̃ jjdec ¼ jjT jjdec: ð7:4Þ

Let T : V ! W be a decomposable map. Then for any Cn-algebra
B; T � idB extends to a decomposable map from V �tmax B intoW �tmax B

with

jjT � idBjjdec4jjT jjdec: ð7:5Þ

This follows from the fact that if C ¼
S1 T

Tn S2

� �
: AðV Þ ! AðW Þ is

completely positive, then C� idB extends to a completely positive map
from AðV Þ�max B into AðW Þ�max B: As a consequence of (7.3)–(7.5), we
obtain

jjT1� T2jjcb4jjT1� T2jjdec4jjT1jjdecjjT2jjdec ð7:6Þ

for any decomposable maps T1 : V ! W and T2 : B1 ! B2:
In [35], Pisier introduced a d norm on the tensor product of a Cn-algebra

A and an operator space E:We recall that for any y 2 A � E; the d norm is
defined by

dðyÞ ¼ supfjjp 
 sðyÞjjg;

where the supremum is taken over all Cn-homomorphisms p : A ! BðHÞ
and complete contractions s : E ! BðHÞ with commuting ranges.
Pisier proved that the d norm can also be expressed in the following
form:

dðyÞ ¼ inf jjxjjMnðEÞ

Xn

i¼1

aia
n

i

�����
�����

�����
�����
1
2 Xn

j¼1

bn

j bj

�����
�����

�����
�����
1
2

8><>:
9>=>;; ð7:7Þ

where the infimum runs over all possible representations of y with the
form

y ¼
X

ij

aibj � xij :
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Motivated by Pisier’s result, we can define a *dd norm on the tensor product
V � E for a TRO V and an operator space E by letting

*ddðyÞ ¼ supfjjy 
 sðyÞjjg

for y 2 V � E; where the supremum is taken over all TRO-homomorphisms
y : V ! BðHÞ and complete contractions s : E ! BðHÞ which satisfy the
commuting condition

yðvÞsðxÞ ¼ sðxÞyðvÞ and yðvÞsðxÞn ¼ sðxÞnyðvÞ ð7:8Þ

for all v 2 V and x 2 E:We note that if V ¼ A is a Cn-algebra, then we can
conclude from Lemma 5.1 that

*ddðyÞ ¼ dðyÞ

for all y 2 A � E:
We let V �*dd E denote the completion of V � E with respect to the

*dd norm. If we let CnhEi be the free Cn-algebra generated by E; then
every complete contraction s : E ! BðHÞ extends (uniquely) to a Cn-
homomorphism ps : CnhEi ! BðHÞ: The commuting condition (7.8)
implies that y and ps have the commuting ranges. Therefore, we may
isometrically identify V �*dd E with a norm closed subspace of V �tmax

CnhEi: As a consequence of this fact and (7.6), we may easily obtain the
following result.

Corollary 7.1. Let T1 2 DðV ;W Þ be a decomposable map between

TRO’s V and W ; and let T2 2 CBðE;F Þ be a completely bounded map between

operator spaces E and F : Then for any y 2 V � E; we have

*ddððT1� T2ÞðyÞÞ4jjT1jjdecjjT2jjcb *ddðyÞ: ð7:9Þ

The following proposition shows that there is a close connection between
V �*dd E and AðV Þ �d E:

Proposition 7.2. Let V be a TRO and E an operator space. Then we

have the diagram of isometric inclusions

ð7:10Þ
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Proof. It is obvious that the column inclusions are isometries. It is also
known from Theorem 5.4 that we may identify V �tmax CnhEi with the off-
diagonal corner iV ðV Þ %��

max
CnhEi in AðV Þ�max CnhEi; and thus the map

on the top is an isometric TRO-inclusion. This implies that the map on the
bottom is an isometric inclusion. ]

It was shown in [35] that AðV Þ �d E can be identified with a quotient of
the Haagerup tensor product AðV Þ �h E �h AðV Þ with the quotient map q

given by

qða � x � bÞ ¼ ab � x:

Since we may identify V �tmax CnhEi with the off-diagonal corner

iV ðV Þ %��
max

CnhEi ¼ ðe � 1ÞðAðV Þ �
max

CnhEiÞðe? � 1Þ

in AðV Þ�max CnhEi; the map q restricts to a quotient map

q̃ : ½CðV ÞV � �h E �h
V

DðV Þ

" #
¼ eAðV Þ �h E �h AðV Þe? ! V �

*dd E:

Then we may obtain the following expression for *dd from Proposition 7.2 and
(7.7). For every y 2 V � E;

*ddðyÞ ¼ inf jjxjjMnðEÞjj
Xn

i¼1

cic
n

i þ viv
n

i jj
1
2
C jj
Xn

j¼1

wn

j wj þ dn

j dj jj
1
2
D

( )
; ð7:11Þ

where the infimum runs over all possible representations

y ¼
X

ij

ðciwj þ vidjÞ � xij :

If E ¼ Fn is a dual operator space, then every element y 2 V � E is one-to-
one correspondent to a finite rank map Ty : F ! V given by Tyðf Þ ¼
ðidV � f ÞðyÞ: We can obtain the following TRO analogue of Pisier’s results
in [35, Sect. 12].

Lemma 7.3. Let V be a TRO.

(1) If E ¼ Mn
n (or E ¼ ‘1ðnÞ), then for every y 2 V � E; we have

*ddðyÞ ¼ jjTyjjdec:

(2) If E ¼ Fn is a dual operator space and y 2 V �*dd E; then we

have *ddðyÞol if and only if there exists a diagram of completely bounded
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maps

such that jjjjjcbjjcjjdecol:

Therefore, we can obtain

*ddðyÞ ¼ inffjjjjjcbjjcjjdecg;

where the infimum is taken over all decompositions Ty ¼ c 8j:

Proof. Let us first recall that the canonical inclusion iV : V+AðV Þ and
the canonical projection PV : AðV Þ ! V are decomposable maps with
jjiV jjdec ¼ jjPV jjdec ¼ 1: Since PV 8 iV ¼ idV ; it is easy to see that Ty : F ! V

is decomposable if and only if iV 8Ty : F ! AðV Þ is decomposable. In this
case, we have

jjTyjjdec ¼ jjiV 8Tyjjdec:

Since iV 8Ty : F ! AðV Þ corresponds to the element ðiV � idEÞðyÞ 2 AðV Þ
�E; we obtain

jjiV 8Tyjjdec ¼ dððiV � idEÞðyÞÞ

from Pisier [35]. It follows from Proposition 7.2 that

*ddðyÞ ¼ dððiV � idEÞðyÞÞ ¼ jjTyjjdec:

This proves (1). Similarly, we may obtain (2) by applying Pisier’s
result to the induced map iV 8Ty : F ! AðV Þ and the fact that
Ty ¼ PV 8 ðiV 8TyÞ: ]

The following proposition is a TRO analogue of [20, Sect. 2].3

Proposition 7.4. Let T : V ! W be a finite rank map between TRO’s
V and W : Then for every e > 0; there exists a diagram of completely

bounded maps

3We wish to thank M. Junge for pointing out this simple argument to us.
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such that jjjjjcbjjcjjdecoð1þ eÞjjT jjdec:
If we let y 2 W � Vn denote the element corresponding to T ; then

we have

*ddðyÞ ¼ jjT jjdec: ð7:12Þ

Proof. If V and W are Cn-algebras, the result is known by Junge and
Le Merdy [20, Sect. 2]. This can be easily generalized to TRO case since
T : V ! W is decomposable if and only if the induced map T̃ ¼ iW 8T 8
PV : AðV Þ ! AðW Þ is decomposable with jjT jjdec ¼ jjT̃ jjdec: Then we may
obtain the TRO result by simply considering T̃ and the fact that
T ¼ PW 8 T̃ 8 iV : ]

8. MORE EQUIVALENT CONDITIONS FOR NUCLEARITY

Motivated by Kirchberg [27], Pisier [35], and Smith and William [40], we
discuss some more conditions equivalent to nuclearity for TRO’s.

Theorem 8.1. Let V be a TRO. Then the following are equivalent:

(1) V is Lance-nuclear,
(2) for every (finite-dimensional) operator spaces E; we have

V �
tmax

CnhEi ¼ V $��CnhEi;

(3) for every (finite-dimensional) operator space E; we have the isometry

V �
*dd E ¼ V $��E;

(4) for some (or for every) l > 1; there exists a net of finite rank maps

Ti : V ! V such that jjTijjdec4l and Ti ! idV in the point-norm topology.

Proof. It is obvious that (1) ) (2) ) (3).
To prove (3) ) (4), we let E be an arbitrary finite-dimensional subspace

of V and let iE : E+V be the inclusion map from E into V : Then condition
(3) implies that *ddðiEÞ ¼ jjiE jjcb ¼ 1: It follows from Lemma 7.3 that for any
l > 1; there exists an integer n and a diagram of completely bounded
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maps

ð8:1Þ

such that jjjjjcb41 and jjcjjdecol: Since Mn is injective, j has a completely
contractive extension jE : V ! Mn which satisfies jjjE jjdec ¼ jjjE jjcb41: Let
cE ¼ c: Then we obtain a net of finite rank maps TE ¼ cE 8jE on V such
that

jjTE jjdec4jjcE jjdecjjjE jjdecol;

and TE converges to idV in the point-norm topology. This proves (4).
Finally, let us prove (4) ) (1). Let B be an arbitrary Cn-algebra, and let

Ti : V ! V be a net of finite rank maps satisfying condition (4). It follows
from (7.5) that each Ti � idB extends to a decomposable map on V �tmax B

with

jjTi � idBjjdec4jjTijjdec4l:

Let pq : V �tmax B ! V $��B denote the canonical quotient map from
V �tmax B onto V $��B: Since Ti are finite rank maps, we must have
Ti � idBðkerpqÞ ¼ f0g; and thus deduce a net of bounded maps

gTi � idBTi � idB : V $��B ¼ V �
tmax

B=kerpq ! V �
tmax

B

such that jj gTi � idBTi � idB jj4l: Since Ti ! idV in the point-norm topology, we
can conclude that gTi � idBTi � idB converges to a bounded map on V $��B;
which extends the identity map on V � B: This shows that we must have
V $��B ¼ V �tmax B; and thus V is Lance-nuclear. ]

We may weaken the condition (2) in Theorem by considering the TRO-
isomorphisms

V �
tmax

CnðFÞ ¼ V $��CnðFÞ

for all free groups (with finite or infinite generators). Then we may obtain
the following TRO analogue of Lance [29, Theorem 3.3] (also see [11,
Theorem 6.3]) and Kirchberg [27, Theorem 1.1 (iii)] for Cn-algebras.
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Proposition 8.2. Let V be a TRO. Then the following are equivalent:

(1) For any TRO-inclusion i : V+W and any Cn-algebra B; the induced

map

i� idB : V �
tmax

B ! W �
tmax

B

is an isometric TRO-homomorphism,
(2) for any free group F; we have the TRO-isomorphism

V �
tmax

CnðFÞ ¼ V $��CnðFÞ;

(3) the linking Cn-algebra AðV Þ has the WEP.

Proof. Let V be a TRO non-degenerately contained in BðK ;HÞ: It
is known from Kirchberg [27] that for every free group F; we have the
Cn-isomorphism

BðH 	 KÞ �
max

CnðFÞ ¼ BðH 	 KÞ $��CnðFÞ:

Taking the off-diagonal corners, we obtain

BðK ;HÞ �
tmax

CnðFÞ ¼ BðK ;HÞ $��CnðFÞ:

If we have (1), then we may obtain the following commutative diagram:

where the column maps are isometric TRO-inclusions. This implies that the
bottom line must be an isometric TRO-isomorphism, i.e. we must have
V �tmax CnðFÞ ¼ V $��CnðFÞ:
If we have (2), then for any free group F we may obtain the Cn-

isomorphism

AðV Þ �
max

CnðFÞ ¼ AðV Þ $��CnðFÞ

from Theorem 5.5. This implies that AðV Þ has WEP by Kirchberg [27].
To see (3) ) (1), let us assume that AðV Þ has WEP. If W is a TRO

containing V as a sub-TRO, then it is clear that AðV Þ is a Cn-subalgebra of
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AðW Þ: For any Cn-algebra B; we may obtain the isometric Cn-inclusion

AðV Þ �
max

B+AðW Þ �
max

B

from Lance [29, Theorem 3.3] (also see [11, Theorem 6.3]). Taking the off-
diagonal corners, we can obtain the isometric TRO-inclusion

V �
tmax

B+W �
tmax

B:

Let us recall that a Cn-algebra A is said to have the weak expectation

property (or simply, WEP) of Lance [29] if for every (non-degenerate)
faithful representation i : A+BðHÞ there exists a completely positive
contraction P : BðHÞ ! %AA

weakn

such that PðxÞ ¼ x for all x 2 A: We can
analogously consider this property for TROs. Following Lance’s definition,

we say that a TRO V has WEP if for every isometric TRO-inclusion

i : V+BðK ;HÞ; there exists a complete contraction P : BðK ;HÞ ! iðV Þ
weakn

such that PðvÞ ¼ v for all v 2 V : Equivalently, we may simply replace iðV Þ
weakn

by Vnn and assume that there exists a complete contraction P from BðK ;HÞ
into Vnn such that PðvÞ ¼ v for all v 2 V : To see the equivalence, we may
apply the Kaplanski’s density theorem for dual TROs (see [43]) to show that
every isometric TRO-inclusion i : V+ %VV

weakn

can be extended to a weakn

continuous TRO-homomorphism *ii : Vnn ! %VV
weakn

:
It is clear that the WEP of AðV Þ (and thus any of the equivalent

conditions in Proposition 8.2) implies the WEP of V : However, we cannot
prove that they are equivalent at this moment. The difficulty is that we do
not know if we can extend the (completely contractive) weak expectation P

from BðK ;HÞ to Vnn to a completely positive weak expectation P̃

from BðH 	 KÞ into AðV Þnn: However, if we add the local reflexivity to
V ; then we may obtain the following result, which is a TRO analogue
of Effros–Haagerup [10, Proposition 5.4] and Robertson–Smith [40,
Theorem 2.1].

Corollary 8.3. Let V be a TRO. Then the following are equivalent:

(1) V is Lance-nuclear,
(2) V is locally reflexive and for any free group F we have the TRO-

isomorphism

V �
tmax

CnðFÞ ¼ V $��CnðFÞ;

(3) V is locally reflexive and for any n 2 N; we have the isometry

V �
*dd ‘1ðnÞ ¼ V $��‘1ðnÞ;
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(30) V is locally reflexive and for any n 2 N and any T : ‘1ðnÞ ! V ; we

have

jjT jjdec ¼ jjT jjcb;

(4) V is locally reflexive and V has WEP.

Proof. It is easy to see that we can obtain: ð1Þ ) ð2Þ by Theorem 8.1,
ð2Þ ) ð3Þ since for every n 2 N ‘1ðnÞ is completely isometric to the operator
subspace En (spanned by the generators) of CnðFnÞ and the free Cn-algebra
Cnh‘1ðnÞi generated by ‘1ðnÞ is equal to the full free group Cn-algebra
CnðFnÞ; ð3Þ , ð30Þ by Lemma 7.3, and ð2Þ ) ð4Þ by Proposition 8.2.
Moreover, ð4Þ ) ð1Þ can be obtained by using the same argument as that
given in [10, Proposition 5.4], i.e. we need to show that Vnn is injective. The
readers are referred to [10] for details. Here we only need to prove ð30Þ ) ð1Þ:
Suppose that we have ð30Þ: Then by the local reflexivity, for any T :

‘1ðnÞ ! Vnn with jjT jjcb ¼ 1; there exists a net of complete contractions
Ta : ‘1ðnÞ ! V such that Ta converges to T in the point-weakn topology.
Since for every a we have jjTajjdec ¼ jjTajjcb ¼ 1; for any given l > 1 there
exist completely positive maps Sa

1 : ‘1ðnÞ ! CðV Þ and Sa
2 : ‘1ðnÞ ! DðV Þ

such that maxfjjSa
1 jj; jjS

a
2 jjgol and the map

Ca ¼
Sa
1 Ta

Tn
a Sa

2

" #
: M2ð‘1ðnÞÞ/AðV Þ

defined in (7.1) is completely positive. Passing to subnets if necessary,
we may assume that Sa

1 and Sa
2 converges to completely positive maps S1 :

‘1ðnÞ ! CðV Þnn and S2 : ‘1ðnÞ ! DðV Þnn in the weakn topology. Then
it is easy to see that maxfjjS1jj; jjS2jjg4l and that induced map

C ¼
S1 T

Tn S2

" #
: M2ð‘1ðnÞÞ/AðV Þnn ¼ RðVnnÞ

is completely positive. Since t : ‘1ðnÞ ! M2ð‘1ðnÞÞ given by

tðxÞ ¼
x x

x x

" #

is completely positive, the composition map

F ¼ C 8 t : x 2 ‘1ðnÞ !
S1ðxÞ TðxÞ

TnðxÞ S2ðxÞ

" #
2 RðVnnÞ ¼ AðV Þnn
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is completely positive. Then we can conclude from Theorem 6.4 that Vnn is
an injective W n-TRO. Therefore, V is Lance-nuclear by Theorem 6.5. ]

Finally we wish to end this section with the following remarks.

Remark 8.4. It has been shown that some local properties of a TRO V

are closely related to the corresponding local properties of its linking Cn-
algebras AðV Þ: However, this is not true for injectivity. For example, if
V ¼ BðC; ‘2Þ is the column Hilbert space, then V is an injective TRO. In this
case, we have C ¼ Kð‘2Þ and D ¼ C: The linking Cn-algebra AðV Þ ¼
Kð‘2	 CÞ is not injective.
To preserve the injectivity, we need to consider RðV Þ defined in (1.2). If V

is a TRO, we may consider Paulsen’s operator system

LV ¼
C V

V] C

" #
:

It is known from Hamana [17] and Ruan [37] that the injective envelope
IðLV Þ of LV has the form

IðLV Þ ¼
I11 IðV Þ

IðV ]Þ I22

" #
;

where I11 and I22 are injective Cn-algebras and IðV Þ and IðV]Þ are the
(operator space) injective envelopes of V and V]; respectively. Moreover, it
was shown by Blecher and Paulsen [2, Sect. 1] that I11 ¼ MðCðIðV ÞÞÞ and
I22 ¼ MðDðIðV ÞÞÞ: From this we can conclude that a TRO V is injective (we
have IðV Þ ¼ V in this case) if and only if RðV Þ ¼ IðLV Þ is an injective Cn-
algebra. In particular, if V is aW n-TRO it is known from Theorem 6.3 that
V is injective if and only if RðV Þ is an injective von Neumann algebra.

Remark 8.5. In his talk [28], Kirchberg discussed weakly decomposable
maps on TROs. Let us recall that a map T : V ! W is called weakly

decomposable if there exist completely positive maps S̃1 : CðV Þ ! CðW Þnn

and S̃2 : DðV Þ ! DðW Þnn such that the induced map

*CC :
c v

wn d

" #
2 AðV Þ/

S̃1ðcÞ jW 8TðvÞ

jW 8TðwÞn S̃2ðdÞ

" #
2 AðW Þnn ð8:2Þ

is completely positive, where we let jW : W+W nn denote the canonical
inclusion. If T is weakly decomposable, we let

jjT jjwdec ¼ inffmaxfjjS̃1jj; jjS̃2jjgg
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to denote the weakly decomposable norm of T ; where the infimum is taken
over all completely positive maps S̃i in (8.2).
It is clear from the definition that if T : V ! W is decomposable, then

jW 8T : V ! W nn is decomposable, and thus T is weakly decomposable
with

jjT jjwdec4jjjW 8T jjdec4jjT jjdec:

There are examples of weakly decomposable maps on TROs (even on Cn-
algebras) which are not decomposable (see [20, Sect. 2]). If T is a finite rank
map between TROs, then T is decomposable (and thus weakly decom-
posable), and we may obtain

jjT jjwdec ¼ jjT jjdec; ð8:3Þ

which is the TRO analogue of Junge–Le Merdy [20, Corollary 2.6]. To see
this, we may apply a similar discussion as that given in Section 7, i.e. we can
first show that a map T : V ! W is weakly decomposable if and only if
iW 8T : V ! AðW Þ is weakly decomposable. Since AðW Þ is a Cn-algebra,
we have

AðAðW ÞÞnn ¼ M2ðAðW ÞÞnn ¼ M2ðAðW ÞnnÞ ¼ AðAðW ÞnnÞ;

and thus can obtain the equalities

jjT jjwdec ¼ jjiW 8T jjwdec ¼ jjjAðW Þ 8 iW 8T jjdec:

Let y 2 W � Vn denote the element corresponding to T : Then we can
obtain the equalities

jjjAðW Þ 8 iW 8T jjdec ¼ *ddðjAðW Þ 8 iW � idVnðyÞÞ ¼ *ddðiW � idVnðyÞÞ

¼ jjiW 8T jjdec ¼ jjT jjdec

from Proposition 7.4 and the fact that

jW � idVn : AðW Þ �d Vn ! AðW Þnn �d Vn

is an isometric inclusion. This proves (8.3).

APPENDIX

In this section, we will construct an operator space which is l-locally
reflexive for some 1olo1: More precisely, we will prove the following
theorem.
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Theorem A.1. For n > 2; there exists an operator space V such that

(1) V is ðn þ 1Þ-locally reflexive,
(2) if V is l-locally reflexive, then we must have l5 n

2
ffiffiffiffiffiffi
n�1

p :

Proof. To prove the theorem, we will use the operator space constructed
in [13, Theorem 14.5.6]. Let us first recall from Pisier [33] that for n > 2; ‘1ðnÞ
with the MAX operator space matrix norm is not 1-exact. More precisely,
Pisier proved that if we let p : Bð‘2Þ ! Qð‘2Þ denote the canonical quotient
map, then the contractive linear map

id‘1ðnÞ � p : ‘1ðnÞ $��Bð‘2Þ ! ‘1ðnÞ $��Qð‘2Þ

induces a contractive linear isomorphism

T : ‘1ðnÞ $��Bð‘2Þ=‘1ðnÞ $��Kð‘2Þ ! ‘1ðnÞ $��Qð‘2Þ

with jjT�1jj5 n

2
ffiffiffiffiffiffi
n�1

p :

Then for every e > 0 (sufficiently small), there exists a contractive element
v 2 ‘1ðnÞ $��Qð‘2Þ such that

jjT�1ðvÞjj >
n

2
ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p � e: ðA:1Þ

Since ‘1ðnÞ $��Qð‘2Þ ¼ CBð‘1ðnÞ;Qð‘2ÞÞ; we may let j : ‘1ðnÞ ! Qð‘2Þ denote
the complete contraction corresponding to v: Then we can deduce from
(A.1) that any completely bounded lifting c : ‘1ðnÞ ! Bð‘2Þ of j (with
p 8c ¼ j) must have the cb-norm jjcjjcb >

n

2
ffiffiffiffiffiffi
n�1

p � e: Moreover, we may

assume that j : ‘1ðnÞ ! Qð‘2Þ is a complete isometry (see the discussion
given in [13, Theorem 14.5.6]). If we let L ¼ jð‘1ðnÞÞ � Qð‘2Þ be the image
space of j in Qð‘2Þ; then V ¼ p�1ðLÞ � Bð‘2Þ is the operator space we wish
to construct for the theorem.
Let us first prove (1). Since the second adjoint pnn : Bð‘2Þ

nn ! Qð‘2Þ
nn is a

weakn continuous quotient map from Bð‘2Þ
nn onto Qð‘2Þ

nn; there exists a

central projection e 2 Bð‘2Þ
nn such that eBð‘2Þ

nn ¼ kerpnn ¼ Kð‘2Þ
weakn

and
ð1� eÞBð‘2Þ

nn ffi Qð‘2Þ
nn: It follows that we have the ‘1-decomposition

Bð‘2Þ
nn ¼ eBð‘2Þ

nn þ ð1� eÞBð‘2Þ
nn ffi Kð‘2Þ

weakn

	1 Qð‘2Þ
nn:

We let p : Qð‘2Þ
nn ! ðð1� eÞBð‘2Þ

nn denote the canonical (completely
isometric) *-isomorphism from Qð‘2Þ

nn onto ðð1� eÞBð‘2Þ
nn; which satisfies
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pnn
8 p ¼ idQð‘2Þ

nn : It follows from the commutative diagram

that we have Vnn ¼ ðpnnÞ�1ðLnnÞ and p restricted to Lnn is a complete
isometry from Lnn onto pðLnnÞ ¼ ð1� eÞVnn: Then we may obtain the ‘1-
decomposition

Vnn ¼ ðpnnÞ�1ðLnnÞ ¼ Kð‘2Þ
weakn

	1 pðLnnÞ:

For every finite-dimensional subspace E � Vnn; we can decompose E into

E ¼ E1	1 E2;

where E1 � Kð‘2Þ
weakn

ffi Kð‘2Þ
nn and E2 � pðLnnÞ: Since Kð‘2Þ is locally

reflexive, there exists a net of complete contractions c1a : E1 ! Kð‘2Þ � V

such that c1a converges to iE1 in the point-weak
n topology in Vnn: On the

other hand, we note that the space V is always locally reflexive in Banach
space sense. Then there exists a net of contractions c2a : E2 ! V such that c2a
converges to iE2 in the point-weak

n topology in Vnn: Since E2 is a finite-
dimensional subspace of Vnn with dim E24dim L ¼ n; we can conclude
from [10] that jjc2ajjcb4njjc2ajj4n: It follows that ca : E ¼ E1	1 E2 ! V

given by

caðx1 þ x2Þ ¼ c1aðx1Þ þ c2aðx2Þ

is a net of completely bounded maps such that jjcajjcb4n þ 1 and ca ! iE in
the point-weakn topology. This shows that V is ðn þ 1Þ-locally reflexive.
To prove (2), let us identify L ¼ Lnn and let i : L+Lnn denote the

canonical embedding of L onto Lnn: Then

*cc ¼ p 8j : ‘1ðnÞ ! Vnn

is a completely contractive lifting of the complete isometry

*jj ¼ i 8j : ‘1ðnÞ ! Lnn:

Since we have the isometry CBð‘1ðnÞ;VnnÞ ¼ ‘1ðnÞ $��Vnn; *cc 2 CBð‘1ðnÞ;
VnnÞ corresponds to a contractive element u *cc 2 ‘1ðnÞ $��Vnn: If V is l-locally
reflexive, then it satisfies condition C00

l and thus the canonical map

fn : ð‘1ðnÞ $��V Þnn ! ‘1ðnÞ $��Vnn
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is a contractive linear isomorphism with jjf*�1jj4l: It follows that
u00 ¼ f*�1ðu *ccÞ is an element in ð‘1ðnÞ $��V Þnn with jju00jj4l: It is easy to see
that

id � p : ‘1ðnÞ $��V ! ‘1ðnÞ $��L

is a (complete) contraction from ‘1ðnÞ $��V onto ‘1ðnÞ $��L; and

F ¼ ðid � pÞnðð‘1ðnÞ $��LÞnÞ ¼ ðid � pnÞð‘1ðnÞ #��LnÞ

is a finite-dimensional subspace of ð‘1ðnÞ $��V Þn: It follows from Helly’s
lemma (see [9, p. 73]) that for the given e > 0; there exists an element
u 2 ‘1ðnÞ $��V such that

jjujj4ð1þ eÞjju00jj4ð1þ eÞl ðA:2Þ

and

hu;x � pnðf Þi ¼ hu00;x � pnðf Þi ðA:3Þ

for all x � pnðf Þ 2 F ¼ ðid � pnÞð‘1ðnÞ #��LnÞ: If we let c 2 CBð‘1ðnÞ;V Þ
denote the map corresponding to u; then can deduce from (A.2) and (A.3)
that

jjcjjcb4ð1þ eÞjjcjjcb4ð1þ eÞl;

and p 8c ¼ j: This shows c : ‘1ðnÞ ! V � Bð‘2Þ is a completely bounded
lifting of j and thus must satisfy

n

2
ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p � e4jjcjjcb4ð1þ eÞjj *ccjjcb4ð1þ eÞl:

Letting e ! 0; we obtain n

2
ffiffiffiffiffiffi
n�1

p 4l: ]

REFERENCES

1. R. Archbold and C. Batty, C�-norms and slice maps, J. London Math. Soc. 22 (1980),

127–138.

2. D. Blecher and V. Paulsen, Multipliers of operator spaces, and the injective envelope,

Pacific J. Math. 200 (2001), 1–17.

3. M.-D. Choi and E. Effros, Nuclear C�-algebras and the approximation property, Amer. J.

Math. 100 (1975), 61–79.

4. M.-D. Choi and E. Effros, Seperable nuclear C�-algebras and injectivity, Duke Math. J. 43

(1976), 309–322.

5. M.-D. Choi and E. Effros, Nuclear C�-algebras and injectivity: The general case, Indiana

Univ. Math. J. 26 (1977), 443–446.



KAUR AND RUAN304
6. M.-D. Choi and E. Effros, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156–

209.

7. A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 585–609.

8. E. Christensen and A. Sinclair, On von Neumann algebras which are complemented

subspaces of BðHÞ; J. Funct. Anal. 122 (1994), 91–102.

9. A. Defant and K. Floret, ‘‘Tensor Norms and Operator Ideals,’’ Mathematics Studies,

Vol. 176, North-Holland, Amsterdam, 1993.

10. E. Effros and U. Haagerup, Lifting problems and local reflexivity for C�-algebras, Duke

Math. J. 52 (1985), 103–128.

11. E. Effros and C. Lance, Tensor products of operator algebras, Adv. in Math. 25 (1977),

1–34.

12. E. Effros, N. Ozawa, and Z-J. Ruan, On injectivity and nuclearity for operator spaces,Duke

Math. J. 110 (2001), 489–521.

13. E. Effros and Z.-J. Ruan, ‘‘Operator Spaces,’’ London Mathematical Society. Monographs,

New Series, Vol. 23, Oxford Univ. Press, New York, 2000.

14. R. Exel, Twisted partial actions: A classification on regular C�-algebraic bundles, Proc.

London Math. Soc. 74 (1997), 417–443.

15. U. Haagerup, Injectivity and decomposition of completely bounded maps, in ‘‘Operator

Algebras and Their Connections with Topology and Ergodic Theory’’ (Busteni, 1983),

Lecture Notes in Mathematics, Vol. 1132, pp. 170–222. Springer-Verlag, Berlin,

1985.

16. M. Hamana, Injective envelope of dynamical systems, in ‘‘Operator Algebras and Operator

Theory,’’ Pitman Research Notes in Mathematics Series, Vol. 271, pp. 69–77, Longman

Scientific and Technical, Essex, 1992.
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