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We show that some local properties (such as nuclearity, exactness, and local
reflexivity) of ternary rings of operators (TROs) are closely related to the local
properties of their linking C*-algebras. We also show some equivalent conditions for
nuclear TROs, and show that Haagerup’s decomposition property for completely
bounded maps and Pisier’s d-norm can be naturally generalized to TROs. © 2002
Elsevier Science (USA)
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1. INTRODUCTION

A ternary ring of operators (or simply, TRO) between Hilbert spaces K
and H is a norm closed subspace V' of B(K, H), which is closed under the
triple product

Ly, eVX VXV -xyzeV.

A TRO V c B(K, H) is called a W*-TRO if it is weak™ closed (equivalently,
weak operator closed, or strong operator closed) in B(K, H). TROs were
first introduced by Hestenes [19], and have been intensively studied by
Harris [18], Zettl [43], Hamana [16,17], Exel [14], Kirchberg [25], and
Effros—Ozawa—Ruan [12].

It is known (see [12,39]) that every finite-dimensional TRO can be
identified with an ¢,-direct sum of rectangular matrix algebras, i.e. it has the
form

V= Mm(l),n(l) P P Mm(k),n(k)-
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In general, a TRO ¥V can be identified with the off-diagonal corner (at the
(1,2) position) of its linking C*-algebra

AV) = lc v , (1.1)

V¥ D

where C and D are C*-algebras generated by V'V* and V*V (see details in
Section 2). Actually, V' is a non-degenerate and faithful Hilbert left-C and
right-D bimodule, and is a linking C—D imprimitive ideal such that the C*-
algebras C and D are strongly Morita equivalent in the sense of Rieffel [36].

If we let M(C) and M (D) denote the multiplier C*-algebras of C and D,
respectively, then V' is a Hilbert left-M(C) and right-M (D) bimodule and we
may identify V' with the off-diagonal corner of the unital C*-algebra

M) vV

RO=1ve )

. (1.2)

If V' is a W*-TRO, then it is known from [12] (or see Proposition 2.3) that
R(V) is a von Neumann algebra. In this case, we call R(V) the linking von
Neumann algebra of V.

TROs and W*-TROs have been abstractly characterized by Zettl [43]. It is
known that TROs share many similar properties of C*-algebras and von
Neumann algebras. For example, it was shown by Harris [43] that every
TRO-homomorphism must be a contraction and must be a quotient map
onto the range space, which is again a TRO. Every injective TRO-
homomorphism must be an isometry. For W*-TROs, we have the
corresponding Kaplansky’s density theorem, Tomiyama’s conditional
expectation theorem, and Sakai’s theorem for unique preduals (see [12, 43]).

We also note that every TRO has a very important operator space
structure. To see this, let us assume that ¥ is a TRO contained in B(K, H).
Then for each n € N, the matrix space M,(}") can be identified with a TRO
contained in M,(B(K, H)) =~ B(K", H"). This provides a canonical operator
space matrix norm on V' such that each M,(V) is again a TRO. We call
this the TRO-matrix norm on V (obtained from B(K, H)). We will see
in Proposition 2.1 that the TRO-matrix norm is uniquely determined on
each TRO and does not depend on the choice of representing Hilbert spaces.

TROs form a very interesting class of operator spaces. In many cases,
TROs come out more naturally than C*-algebras in the theory of operator
spaces. For instance, it is known by Youngson [42] that TROs are closed
under completely contractive projections (comparing Choi and Effros’s
result [6] that C*-algebras are closed under completely positive and
contractive projections). Some operator space properties for TROs have
been studied by Hamana [17], Kirchberg 25, and Effros—Ozawa—Ruan [12].



264 KAUR AND RUAN

The aim of this paper is to study the local operator space properties (such as
nuclearity, exactness and local reflexivity) for TROs. Quite surprisingly,
these local properties on TROs (or on the related imprimitive ideals) have
very close connections with (actually, totally determine) the corresponding
local properties of their linking C*-algebras (or the whole Hilbert bimodule
systems). For instance, we can show that a TRO V is nuclear (respectively,
exact or locally reflexive) if and only if its linking C*-algebra A(V) is nuclear
(respectively, exact or locally reflexive).

The paper is organized as follows. We recall some necessary notions and
useful properties for TROs in Section 2, and study the operator space
injective tensor product @ and augmented injective tensor products : ® and
®: for TROs in Section 3. We show in Proposition 3.1 that if V' is a TRO
and B is a (unital) C*-algebra, then V@B is again a TRO with linking C*-
algebra

AV ®B) = A(V)®B,

and show in Proposition 3.2 that V**: @ B and V'® : B** are again TROs.
In Section 4, we first recall the generalized Archbold-Batty’s conditions C
and C7, which are equivalent to A-exactness and A-local reflexivity, for
operator spaces. We show that a TRO satisfies condition C) (respectively,
satisfies the condition C7) for some 42> 1 if and only if it satisfies condition
C} (respectively, satisfies condition CYf). Moreover, a TRO satisfies
condition Cj (respectively, satisfies condition CY) if and only if its linking
C*-algebra A(V) satisfies condition C} (respectively, satisfies condition CY).

We note that for general operator spaces, A-exactness and A-local
reflexivity need not imply l-exactness and 1-local reflexivity, respectively.
For instance, Pisier [33] proved that for n > 2, £;(n) with the MAX operator

space matrix norm is A-exact for some 4>—"— but it is not 1-exact. There
n—1

are examples of C*-algebras (such as the full group C*-algebras C*(F) on
free groups F), which are not 1-locally reflexive, and thus are not A-locally
reflexive for any finite 4. In the Appendix we show that for each n > 2, there
exists an operator space which is (n + 1)-locally reflexive, and is only 4-
locally reflexive for A>—2"—. Another such kind of example can be found

n—1
in [21, Proposition 3.12].

Motivated by the C*-algebra theory, we introduce the maximal tensor
product ®™** for TROs in Section 5. We show that if V' isa TRO and Bis a
C*-algebra, then V' ®™* B can be identified with the off-diagonal corner of
A(V) ®™* B, where ®™** is the maximal C*-algebra tensor product, and
we can obtain the C*-isomorphism

AV'® By = A(V) '® B.
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We show, in Section 6, that some corresponding equivalent nuclearity
conditions for C*-algebras hold for TROs (see Theorem 6.5). In Sections 7
and 8, we discuss Haagerups’s decomposition property for completely
bounded maps on TROs, and show that Pisier’s ¢-norm and some
corresponding C*-algebra results can be naturally generalized to TROs.
At the end of Section 8, we make some remarks on the connection of R(}V)
with the injectivity of 7 and the connection of our decomposable maps with
the weakly decomposable maps discussed by Kirchberg in his talk [28].

We assume that readers are familiar with the theory of operator
spaces, which will play a very important role in this paper. The basic
properties of operator spaces and completely bounded maps can be found in
[13,31,35].

2. PRELIMINARIES

Let V' and W be two TROs. A linear map 0:V — W is called a TRO-
homomorphism if it preserves the ternary product

0(xy*z) = 0(x)0(»)*0(2)

for all x,y,z € V. If, in addition, 0 is an injection from V onto W, we call 6 a
TRO-isomorphism from V onto W. If 6 : V — W is a TRO-homomorph-
ism, then 0, : M,(V) — M,(W) is again a TRO-homomorphism and thus
is a contraction (by Harris [18]) for every n e N. This shows that every
TRO-homomorphism is actually a complete contraction. Similarly, it is easy
to see that every TRO-homomorphism is a complete quotient map onto
the range space, and every injective TRO-homomorphism is a complete
isometry.

The following result of Hamana and Ruan (cf. [17, Proposition 2.1]),
shows that the TRO-matrix norm is uniquely determined on every TRO and
does not depend on the choice of representing Hilbert spaces.

ProposiTION 2.1. Let V < B(K,H) and W < B(K', H') be TROs with
the canonical TRO-matrix norms and let 0 : V' — W be a linear isomorphism.
Then 0 is a TRO-isomorphism if and only if 0 is a complete isometry.

If V. B(K,H)isaTRO, we let V¥ = {x* € B(H,K) : x € V} denote the
conjugate space of V. Then

VVE = Spal’l{z viwE v, Wi € V}
f
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and

ViV = span{z viwi v, wi € V}
7

are *-subalgebras of B(H) and B(K), and we let C(V) and D(V) (or simply,
C and D if there is no confusion) to denote the C*-algebras obtained by
taking norm closures of VV* and V*V, respectively. Then V is a non-
degenerate and faithful Hilbert left-C and right-D bimodule such that

V=V and VD=1V,
and we have the C*-isomorphisms
C=KVp) and DP = K(.V),

where we let K(Vp) denote the space of all compact right-D module
homomorphisms on ¥ and let K(- V') denote the space of all compact left-C
module homomorphisms on V. It follows that we have

llelle = sup{llevlly : llvlly <1,ve V3 2.1
and
ldllp = sup{llvdlly : llvlly <1,ve V3. (2.2)
It is easy to see that
A(V) = ©v (2.3)
V¢ D

is a C*-algebra on H ® K, and we may identify 7 with the off-diagonal
corner of A(V) by the injective TRO-homomorphism

0 v
yivelV -y = lo 0] e A(V).

Let V< B(K,H) and W < B(K’,H') be two TROs and let 6 : V' — W be
a TRO-homomorphism from V into W. It is known from Hamana [17]
that we may obtain a C*-homomorphism ¢ : C(V) — C(W) defined by
letting

® <Z u,-w;*‘> = 0w)00w), (2.4)
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and a C*-homomorphism  : D(V) — D(W) defined by letting

v (Z v:»“wz) = 00)*00w) 2.5)
forv;e V and w; e W.

PropoOSITION 2.2 (Hamana [17]). Let V and W be two TROs and let
0:V — W be a TRO-homomorphism. Then

CAV) = AW)

Ty = ? 0

is a well-defined C*-homomorphism, where ¢ : C(V) - C(W) and  : D(V)
— D(W) are the C*-homomorphisms given in (2.4) and (2.5).

It follows that V is TRO-isomorphic to W if and only if A(V) is
C*-isomorphic to A(W).

This shows that if ¥ is a TRO, then the C*-algebra A(V) is uniquely
determined by V" and does not depend on the choice of Hilbert spaces K and
H. We call A(V) the linking C*-algebra of V. Without loss of generality, we
may always assume that a TRO V is non-degenerately represented on
Hilbert spaces K and H,i.e. VK is norm dense in H and V*H is norm dense
in K. In this case, it is easy to see that the induced C*-algebras C and D are
non-degenerately represented on H and K, and the identity operators 1y
and lg are contained in the multiplier C*-algebras M(C) and M (D) of C
and D, respectively. If we let

ly 0 0 0
e=1|" and et = ) (2.6)
0 0 0 1k

then we may write
1y (V) = ed(V)et. (2.7)

We can also identify the C*-algebras C and D with the diagonal C*-
subalgebras eA(V)e and et A(V)et and identify V* with et A(V)e.

It was indicated by Zettl [43] that if }J is a TRO non-degenerately
contained in B(K, H), then its weak operator closure coincides with its
strong operator closure. Actually, these closures also coincide with the
weak™ closure of ¥, i.e. we have

w.0.t —S.0.t

V' < B(K, H). (2.8)
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To see this, we note that for the C*-algebra 4A(V), we have

weak™ w.o.t $.0.t

A =A™ =4V < BH & K).

Then we may obtain (2.8) from the fact that

weak™ ——weak™ L

v =eA(V)

———5S.0.t l

I7W.0.l _ eTV)W'O'tEL and I;,S. o A(V)
It is known that if V is a TRO, then we have the C*-isomorphisms
M(C)=B(Vp) and  M(D)® = B(cV),

where we let B(Vp) denote the space of all (bounded) adjointable right-D
module homomorphisms and let B(-V) denote the space of all (bounded)
adjointable left-C module homomorphisms. If V' is a non-degenerate W*-
TRO contained in B(K, H), then it is known from Zettl [43, Proposition 4.9]
that M(C) and M (D) are von Neumann algebras, and V' is a faithful self-
dual left-M(C) and right-M (D) bimodule. Moreover, we may obtain the
following result, which has been discussed in [12]. We include a proof for the
convenience of readers.

PRrOPOSITION 2.3. Let V be a non-degenerate W*-TRO contained in
B(K, H). Then we have

M(C) wedk and M(D) weak
Moreover,
C—,weak* % i
R(V) = | =AY = ay (29)
V# —~ weak

is a (non-degenerate) von Neumann subalgebra of B(H @ K) and we may
identify V with the off-diagonal corner of R(V).

weak

Proof. We will prove M(C) = The argument for M(D) =
is similar. Let us assume that V' is a W*-TRO (which is non- degenerately

represented) on Hilbert spaces K and H. Then C = VV* 1 is a non-
degenerate C*-algebra on H, and thus

M(C):{xeB(H):xyeCandyxeCfor all ye C}

isa C*-subalgebra of C"™ = C” (see [32]). On the other hand, given any
- — weak %
ceC , there exists a net of ¢, € C converging to ¢ in the weak™ topology.
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Then for every ve V, c,v e V converges to év in the weak™ topology on
B(K,H). Since V is weak™ closed in B(K, H), we must have év e V. This
implies that

ow*) = (ow* e V¥ < C

for all v, w € V. Taking norm limit, we get ¢x € C for all x € C. Since we also
have ¢ — & in weak™ topology, we obtain

xé = (&FxH*eC

for all x € C. This shows that ¢ e M(C) and thus éweak c M(C).
Since V is a non-degenerate W*-TRO contained in B(K, H), then

_ éweak v o mweak*

— weak™®
V# D

M(C) 4

R=1 vy

= A( V)//

is a non-degenerate von Neumann subalgebra of B(H @ K) and we may
identify V with the off-diagonal corner of R(V). |

Let ¥ be a TRO and we let «, : A(V) — B(H,) be the non-degenerate
universal representation of A(V). Then we obtain a non-degenerate faithful
representation for the enveloping von Neumann algebra A(V)™ such that

A(V) c A(VY™ = A(V)' < B(H,).

If we let {c,} and {d,} be positive contractive approximate identities of C
and D, respectively, they converge in weak™ topology to mutually
orthogonal projections e and e' = 1 — e. These two mutually orthogonal
projections split the Hilbert space H, into H = eH, and K = e*H,,. Then it
is easy to see that V' is a non-degenerate TRO contained in B(K, H). The
weak™® topologies on C*, V** and D** coincide with the corresponding
weak operator topologies on B(H), B(K, H) and B(K), and V** is a W*-
TRO contained in B(K, H). In this case, we have the identifications

C=eA(V)e,V = eA(V)et, VF = et A(V)e and D = e~ A(V)e*
and
C¥=eA(V)™e, Vi*=eAd(V )™ et, Vi =t A(V)*™e and D* =et A(V)* e .

The following proposition is an immediate consequence of Proposition 2.3.
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PROPOSITION 2.4.  With the above notation, we have
M(C(V™)) = C** and M(D(V*)) = D**,
and thus

R(V ) = Vii sk M(D( V**))

= A(V)*. (2.10)

3. INJECTIVE TENSOR PRODUCTS FOR TROS

Let us first recall the injective (or spatial) tensor product for operator
spaces. Given operator spaces V < B(H) and W < B(K), we let VW
denote the norm closure of VV® W in B(H ® K). It is known from the
operator space theory that this tensor product is actually independent of the
choice of Hilbert spaces, and is injective in the sense that if 1; : V1 — V5, and
1, : Wi — W, are completely isometric injections, then the induced tensor
map

H®n:VIQW, —» QW)

is a completely isometric injection. If 4 and B are C*-algebras, then A® B is
equal to the minimal C*-tensor product 4 ®™" B,

ProprosSITION 3.1. Let V be a TRO and B a C*-algebra. Then the
canonical TRO-inclusion 1y : V< A(V) induces an injective TRO-homo-
morphism

Iy ® idg : VB — A(V)®B
from which we obtain the TRO-isomorphism
V@B =1/(V)®B,
and the C*-isomorphism
A(V®B) = A(V)®B.
We also have the C*-isomorphisms
C(V®B) = C(V)®B and D(V®B) = D(V)XB.

Proof. 1If we let V' be a non-degenerate TRO contained in B(K, H), then
A(V) is a non-degenerate C*-subalgebra on H @ K. Given any C*-algebra
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B, which is non-degenerately represented on a Hilbert space L, it is easy to
see that

1y ®idg: VOB AV)®B< B(H ® K)® L)

is an injective TRO-homomorphism such that we can identify V@B with
the off-diagonal corner 1,(V)®B of A(V)® B, and we may obtain the C*-
isomorphism

A(V®B) = A(V)®B.
Moreover, we can obtain the C*-isomorphisms
C(V®B)=C(V)®B and D(V®B)=DV®B. 1

In this paper, we will be mainly interested in the injective tensor products
of TROs together with C*-algebras (rather than with TROs). But it is worth
noting that in general, we may consider the injective tensor product V@ W
for two TROs V and W, and it is not difficult to verify that this is again a
TRO. We leave the details to the readers.

Archbold and Batty introduced condition C and condition C’ for C*-
algebras in [1]. These notions, together with condition C”, were generalized
to operator spaces by Effros and Haagerup [10]. To study these conditions,
we need to recall the augmented injective tensor products for operator
spaces (see [13]). Given operator spaces V and W, there is a canonical
inclusion

VR W > (VW)™
given by
GRw,Fy=<0,F(- ®w))

for all 5e V**, we W and F € (V® W)*. This inclusion induces an injective
operator space tensor product, which is called the left augmented injective
tensor product and is denoted by : ®, on V¥ ® W. We let V¥ : QW
denote its completion. Let ® denote the operator space projective tensor
product. Then the canonical bilinear map

VEXW* > (VWY : (f.9)—>f®g
extends to a complete contraction

G VEQ W > (VRW)*,
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and its adjoint map
¢t (VRW)™ = (V* & Wy
is a complete contraction from (V'@ W)™ into (V* ® W*)*. Since
VEQW & (V* @ WH)*

is a completely isometric inclusion, the identity map on V** ® W extends to
a complete contraction

GV QW - VW,

which can be identified with the restriction of ¢* to V** : @ W. Similarly,
using the canonical inclusion

T VR W 5 (VW)™
given by
W@ W, F) =, Flu® )

forallve V,we W* and F € (V® W)*, we may obtain the right augmented
injective tensor product @ on V @ W*. If we let V® : W** denote its
completion, then the identity map on ¥V ® W** extends to a complete
contraction

P VR W S VRW™,
which can be identified with the restriction of ¢* to V& : W**.

ProproSITION 3.2. Let V be a TRO and B a C*-algebra.

(1) V*: @Band VQ : B* are TROs and can be identified with the off-
diagonal corners of A(VY™ : @ B and A(V)® : B™, respectively.

(2) The induced complete contractions ¢} and ¢ are TRO-homomorph-
isms from V** : @B and V®Q : B* onto V*QB and V Q B**, respectively.

Proof. Let 1y : V< A(V) denote the canonical inclusion from V' into
A(V). We may identify V' with the off-diagonal corner 1,/(V) = eA(V)et by
(2.7), and identify V** with the off-diagonal corner eA(V)™ et of A(V)**
(see Proposition 2.4). Then it is easy to see that V** ® B can be identified
with the off-diagonal corner

eAV) ™ et @ B= (e ® 1)(A(V)™* ® B)(e ® 1)* (3.1)
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in the algebraic tensor product A(V)™ ® B, where we let 1 denote the unital
element of M(B) and let (¢ ® 1)* = el ® 1.

It is known from Proposition 3.1 that ¥ ® B is a TRO with the linking C*-
algebra A(V®B) = A(V)®B. Then (V®B)** is a W*-TRO and can be
identified with the oft-diagonal corner of the von Neumann algebra

(CHeB™  (VeB™

A(V)®B)*™ = . .

by Proposition 2.4. Since the canonical inclusion
71 AV)™ : @ B (A(V)R BY™ (3.2)

is a C*-inclusion (also see [1] or [13]), we can deduce from (3.1) and the
following completely isometric diagram

T

AVY™: ®B - (A(V)®B)*™
) 7 (3.3)
V¥ . QB 5 (V®B)™

that V**: ®B is a TRO, which is (completely isometrically) TRO-
isomorphic to the off-diagonal corner of A(V)™ : ®B, i.e. we have the
TRO-isomorphism

V¥ : QB ~ (e ® NAV)™*: @B)e ® 1)*.

Using the same argument, we can prove that V'® : B** is a TRO and we
have the TRO-isomorphism

V® :B¥ ~ (e ®@ DNAV)® : B¥) (e ® 1)*.

To prove (2), we note that since ¢F: V*™:®B — V*®B is the
completely contractive extension of the identity map on V** ® B, it is a
TRO-homomorphism from V** : ® Binto V**® B. Since the range of ¢} is
norm closed and contains the dense subspace V** ® B, it must be onto.
Using similar arguments, we can show that ¢*: V® : B* — V@B** is
TRO-homomorphism from V® : B* onto V@B*. 1

Remark 3.3. We note that if VV is a TRO and B is a C*-algebra, then we
can obtain the TRO-isomorphism

V® :B¥ = (e ® NAV)® : B*)(e ® 1)*,
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and thus obtain the C*-isomorphisms
CN® : B* = (e ®@ NANV)® : BF)e® 1)
and
D(V)® : B = (et @ NUAV)® : B¥) (et ® 1).
Therefore, we can conclude that
AV ® : B¥) = A(V)® : B*.

However, the situation is more subtle for the connection between A(V)**
: ®Band V** : ®B. For the details, the readers are referred to the proof for
Theorem 4.3.

4. EXACTNESS AND LOCAL REFLEXIVITY FOR TROS

Let us recall that an operator space V satisfies condition C’, for some 1> 1
if for every operator space W,

PV W S VQWH

is a (completely) contractive linear isomorphism with ||(¢f)71||<;u, and V
satisfies condition CY if for every operator space W,

OF VHF QW - VHEQW

is a (completely) contractive linear isomorphism with ||((]57‘)*1|| <A

Since every operator space is contained in a unital C*-algebra and the
augmented injective tensor products are injective, it suffices to replace W by
a unital C*-algebra B (or simply by B = B(H)) in the above definitions.
More precisely, we may easily obtain the following lemma.

LEMMA 4.1.  An operator space V satisfies condition C (respectively,
condition CY) for some A>1 if and only if for every unital C*-algebra B
(or simply B= B(H))

P VR : B » VRB™

(respectively,

¢F V¥ QB - V*®B)
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is a (completely) contractive linear isomorphism with ||(q5f)71||<)» (respec-
tively, (¢7) 1< 7).

Proof. To see this, let us assume that for every B = B(H)
¥V : B* - VRB*™
is a contractive linear isomorphism with ||((15:f‘)_l || <A. Then for any operator

space W we may identify W as an operator subspace of some B = B(H) and
thus obtain the completely isometric inclusions

VR : W™V :B¥*  and VW™ o VRB™.
Then we can deduce from the diagram

¢

V®:B* 3 VRB™
1 1
ve w5 yowe

that
PV W S VQWH

is a completely contractive linear isomorphism with ||(q§’f)*l || < A. This shows
that V' satisfies condition C.

The equivalence for condition C} can be proved by a similar
argument. 1

It is obvious that condition Cj (respectively, condition C}) implies
condition C (respectively, condition C7). The converse does not hold for
general operator spaces (for example, see the Appendix). However, we may
obtain the following result for TROs (respectively, for C*-algebras).

PROPOSITION 4.2. Let V be a TRO. Then V satisfies condition C;
(respectively, condition CY) if and only if 'V satisfies condition C} (respectively,
condition CY).

Proof. Let us assume that V" is a TRO satisfying condition C/ for some
2=1. Then for any C*-algebra B,

¢ VR : B » V®B™

induces a contractive linear isomorphism from V® : B* onto V& B*.
Since V is a TRO, it is known from Proposition 3.2 that V'® : B** isa TRO
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and ¢* is a TRO-isomorphism from V' ® : B** onto V' ® B**. It follows from
Proposition 2.1 that ¢¥ must be a (completely) isometric isomorphism,
and thus we must have ||(¢:’,‘)*1|| = 1. This shows that a TRO V satisfies
condition C’ for some A>1 if and only if it satisfies condition Cj.

We can similarly prove the equivalence of condition C/ and Cj. §

THEOREM 4.3. Let V be a TRO. Then V satisfies condition Cj
(respectively, condition CY) if and only if its linking C*-algebra A(V) satisfies
condition C| (respectively, condition CY).

Proof. Let us first assume that V satisfies condition Cj. Then for every
unital C*-algebra B, we have the TRO-isomorphism V® : B* = V' ® B**
and thus obtain the C*-isomorphisms

AV)® : BF =A(V® : B**) = A(VQ®B*)
= A(V)®B™

from Lemma 4.1, Remark 3.3 and Proposition 3.1. This shows that A(V)
satisfies condition Cj. The other direction is obvious since condition Cj
passes to subspaces (see [10]).

The proof for condition Cj is more complicated since A( VY*®B
and A(V)™ : @B are not equal to the linking C*-algebras of V**® B and
I . @B, respectively. Let us assume that B is a unital C*-algebra. It is
known from Proposition 3.2 that

V¥*®B = (e @ N(AVY*®B)e ® 1)"
is the off-diagonal corner of the C*-algebra A(V)*® B. Then we have
C(V*Q@B) < (e ® N(AV)*®B)(e ® 1) = C(V)*QB.

Since we have C(V)™ = M(C(V**)) by Proposition 2.4, we can conclude
that

C(VY*®B < M(C(V*®B)).
It follows that for every u € C(V)*® B, we have
lullcry=gp = SUpllux| g p - X € V*QB, ||x|l g5 <1} 4.1)
We may also obtain
llell cpry.op = SUpLlux|lyegp : X € | ®B,||x||V**:®B<1} 4.2)

by applying a similar calculation.
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If V satisfies condition CY, then for any unital C*-algebra B we have the
TRO-isomorphism V** : @ B = V**®B, and thus for every u € C(V)*™* ® B
we can obtain

lull oy = supUluxllpss. gy = X € V¥ 2 @B, [Ixl gy p < 1}
= sup{|lux|ljmgp: X € V*® B, Xl p <13 = llull =g 5
from (4.1) and (4.2). This shows that
C(Vy™: ®B = C(V)*Q®B.
Similarly, we can prove
D(VY* : @B = D(V)Y*®B.

Therefore, the canonical C*-homomorphism ¢; from A(V)* : ® B onto
A(V)*® B must be an injection. This shows that

AVY*: @B = AV)*®B,

and thus A(V) satisfies condition C7.
The converse is also obvious since condition C| passes to subspaces

(see [10]). 1

We note that conditions C and C} are closely related to A-exactness
and /-local reflexivity, respectively. We recall that an operator space V is
said to be A-exact (for some A>=1) if for every finite-dimensional subspace
E < V and ¢ > 0, there exists a linear isomorphism ¢ : E — S from E onto a
subspace S of some M, such that ||¢|s]l¢ " |lc, <4 + & An operator space is
said to be A-locally reflexive if for every finite-dimensional subspace E
V** there exists a net of complete bounded maps ¢, : E —» V such that
llo,lley </ and @, — 15 in the point-weak™ topology. An operator space is
usually called locally reflexive if it is 1-locally reflexive. The exactness for C*-
algebras was first introduced by Kirchberg [23], and this was extended to
operator spaces by Pisier [33]. The local reflexivity for operator spaces was
first introduced by Effros—Haagerup [10].

It is known (see [13, Chap. 14]) that an operator space satisfies condition
C} (respectively, condition CY) if and only if it is l-exact (respectively,
locally reflexive). Using a similar argument, we can easily show that an
operator space V satisfies condition C) (respectively, condition C7) if and
only if V is J-exact (respectively, A-locally reflexive). Then we may
summarize our results in the following theorems.
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THEOREM 4.4. Let V be a TRO. Then the following are equivalent:

(1) V is 1-exact (or equivalently, A-exact),
(2) V satisfies condition C| (or equivalently, condition C?),
(3) A(V) satisfies condition C| (or equivalently, condition C7),
(4) A(V) is 1-exact (or equivalently, J-exact).
It was shown in [12, Sect. 4] that every 1-exact operator space is locally
reflexive. Then we can conclude from Theorem 4.4 that every A-exact TRO

must be locally reflexive. However, this is still an open question for general
operator spaces.

THEOREM 4.5. Let V be a TRO. Then the following are equivalent:

(1) V is locally reflexive (or equivalently, A-locally reflexive),
(2) V satisfies condition C{ (or equivalently, condition C),

(3) A(V) satisfies condition C| (or equivalently, condition C7),
(4) A(V) is locally reflexive (or equivalently, A-locally reflexive).

5. MAXIMAL TRO TENSOR PRODUCT

Given C*-algebras 4 and B, the operator space injective tensor product
A® B is just the minimal C*-algebra tensor product on 4 ® B. On the other
hand, there is a maximal C*-algebra tensor product on 4 ® B given by

||x||max = sup{||nA : TCB(X)H},

where the supremum is taken over all C*-homomorphisms 74 : 4 — B(H)
and np : B - B(H) with commuting ranges, i.c. we have

ny(a)np(b) = np(b)m4(a)

for all @ € A and b € B. The readers are referred to Takesaki’s book [41] for
details.

Motivated by this, we may define the maximal tensor product ®™** for
TROs. Given TROs V' and W, there is a canonical triple product on the
algebraic tensor product V' ® W given by

(11 @ wi)(v2 ® wa)*(v3 @ w3) = v1vivs @ wiwiws.

If we are given TRO-homomorphisms 0y : V' — B(H) and 0y : W — B(H)
such that

0y (@)0w(w) = 0w (w)0y(v) and Op()0w(w)* = 0w (W) 0y ()  (5.1)
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for all ve W and we W, then we can define a linear map 0y -0y :
V ® W — B(H) by letting

0y - Ow(x) = Z 0y (v:)0w(w;)

forxe V® W with x = ). v; ® w;. This is a well-defined linear map which
preserves the triple product from V' ® W into B(H), and extends to a
contraction from V® W into B(H). Then for every xe V ® W, we can
define

¥l lmax = suptllfy - Ow (I} <llxlly g p <00,

where the supremum is taken over all TRO-homomorphisms 6y : V —
B(H) and 0y : W — B(H) satisfying (5.1). This is a well-defined (operator
space) cross norm on V' @ W since

[ty < TPellimax < 111 o (5.2)

for every xe V® W. We let ¥V @™ I¥ denote the norm completion of
V ® W with respect to this tensor norm. There is a canonical completely
isometric triple product preserving inclusion

max
0= @ QV . QW 4 ® W — H{Oy,()W,H}B(H)
10y,0w,H}
given by 0(u) = ®@¢,.0,,.m10v - Ow(u) forallue V@ W, where {0y,0p, H}
are taken over all TRO-homomorphisms of V' and W satisfying (5.1).
Therefore, V ®™* I is a TRO, which can be identified with the norm
closure of O(V ® W) in Iy, 6,1y B(H).

LEMMA 5.1. Let B be a C*-algebra. Then every TRO-homomorphism
0 : B — B(H) has the form 0 = vr, where n : B — B(H) is a C*-homomorph-
ism and v is a partial isometry in B(H).

Proof. Let us first assume that B is a unital C*-algebra. We let 1 € B
denote the unital element. If 6 : B — B(H) is a TRO-homomorphism, then
v=0(1) is a partial isometry in B(H) since it is a contractive operator
satisfying

vo*v = 0(HO(1)*0(1) = 0(11*1) = v.
Let 7w : B — B(H) be the complete contraction given by

n(a) = v*0(a)
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for all @ € B. Then p = v*v = n(1) is the orthogonal projection from H onto
pH = v*H, and = is a unital completely contractive algebraic homomorph-
ism from B into B(pH) since

m(a) = v*0(a) = (Foo*)(0(a)0(1)*0(1)) = pr(a)p
and
n(ab) = v*0(al*b) = v*0(a)0(1)*0(b) = n(a)n(b)

for all a,b € B. It follows (see [31]) that m is a unital C*-homomorphism
from B into B(pH) such that

0(a) = 0(1)0(1)*0(a) = vn(a).

If B is non-unital, we may pass the argument to its second dual B**. It is
known from the TRO analogue of Kaplansky’s density theorem that every
TRO-homomorphism 0 : B — B(H) extends uniquely to a weak™® contin-
uous TRO-homomorphism 6 : B* — B(H). Since B** is a von Neumann
algebra and thus unital, we may apply the unital case to § and thus obtain
the result for 0. 1

If W = Bisa C*-algebraand n : B - B(H) is a C*-homomorphism, then
the first commuting condition in (5.1) implies the second one. In this case,
we can simply require that 6 and = have commuting ranges. It is clear that
for every x € V' ® B, we have

sup{|0 - 7)1} <Xl rmax.

where the supremum is taken over all TRO-homomorphisms 0 : V' — B(H)
and C*-homomorphisms 7 : B — B(H) with commuting ranges. On the
other hand, it follows from Lemma 5.1 that

X[l imax = supllOy - Op(x)Il}
=sup{[|0y - vn(x)I[}

< supf||0y - (%)},

where 0y and Op are TRO-homomorphisms satisfying the commuting
conditions in (5.1), and 0y and = have the commuting ranges. This shows
that we actually have the following result.
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PROPOSITION 5.2. Let V be a TRO and B a C*-algebra. Then for every
x eV ® B, we have

X[ smax = supillo - w(x)l}, (5.3)

where the supremum is taken over all TRO-homomorphisms 0 :V — B(H)
and C*-homomorphisms © : B — B(H) with commuting ranges.

Similarly, we may obtain the following result for C*-algebras.

PROPOSITION 5.3. Let A and B be C*-algebras. For any xe A ® B, we
have

X[ imax = sup{lima - (I} = [IX]lmaxs (54
where the supremum is taken over all C*-homomorphisms n4 : A — B(H) and
ng . B — B(H) with commuting ranges.

Therefore, we have the TRO-isomorphism A @ ™* B = 4 ®™* B.

Given a TRO V and a C*-algebra B, we let 1(V)® ' B denote the norm
— max

closure of 1y(V) ® B in A(V) ®@™** B. Then 1(V)® ~Bisa TRO.

THEOREM 5.4. The canonical map 1y ® idg : V ® B_—> (V) ® B ex-
tends to a TRO-isomorphism from V @™ B onto 1,(V)@" B, and we have
the C*-isomorphism

AV'® By = 4(n)'® B.

Proof. If ©1:A(V)—> B(H) and n:B — B(H) are commuting C*-
homomorphisms, then 0 =701, is a TRO-homomorphism from ¥V into
B(H) with commuting range with n(B). For any x € V' ® B, we have

Il 7y ® idp(DIl = 110 - RO <X s -

This shows that

Iy ® idpCoL,, e <l e

On the other hand, if 6 : V' — B(H) is a TRO-homomorphism, then we
can obtain C*-homomorphisms ¢ : C —» B(H) and y : D — B(H) as given
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in (2.4) and (2.5) such that

0 — 9* l//

is a well-defined C*-homomorphism. If = : B —» B(H) is a C*-homomorph-
ism having the commuting range with 0(V),thenn ® n: B -> B(H ® H) is
a C*-homomorphism with the commuting range with 74(4(7)). It follows
that for every xe V ® B,

tA(V) » My(B(H)) = B(H © H)

10 - ()l = o - (1 @ My ® idp(X))|<lty @ idp(x)I]  mox

AV)® B
Then we have

||x||V/n(|>§xB < ||1V ® idB(xD”ly(V)@“‘“B

This shows that the canonical map 1y ® idp induces an isometric TRO-
isomorphism from ¥ ®™¥ B onto 1,(V)®" B.

Let us assume that 1¢(C)®@™ " Band ip(D)® " B denote the norm closure
of 1c(C) ® Band 1p(D) ® Bm A(V) ®maX B respectively. It is easy to show
that we have C(1y(V)®""B) = 1c(C)®™ B and D1y (V)@ B) = 1p(D)
®" B. If we identify ¥V ® ™ B with V" B in A(V) ®@™** B, we obtain
the C*-isomorphisms

max max

fmax C B |4 B
AV B = a0, (nE™ By — | ' )®m " )®mdx
D™ B 1p(D)O™ B

—A)® B. 1

The following result is an immediate consequence of Theorem 5.4.

THEOREM 5.5. Let V be a TRO and B a C*-algebra. We have VB =
V @™ B if and only if A(V)®B = A(V) @™ B.

Proof. Tt is easy to see that A(V)®B = A(V) ®™* B implies V®B =
V ®tmax B

On the other hand, if V®B = V ®™* B, then we have from Proposition
3.1 and Theorem 5.4 that

AVYOB= AVOB) — AV '® B = A)'® B. 1
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Remark 5.6. If V and W are two TROs, then we have the canonical
isometric TRO-inclusions

VOW S VRAW) and  V'® WV & AW).

Using a similar argument as above, we can show that VW =V @Mmax
if and only if V®A(W)=V @™ A(W). We leave the details to the
readers.

6. NUCLEARITY AND INJECTIVITY FOR TROS

In [29] Lance introduced the notion of nuclearity for C*-algebras. We
recall that a C*-algebra A is said to be nuclear (or Lance-nuclear) if for every
C*-algebra B, there is a unique C*-algebra tensor norm on 4 ® B, i.e. we
have AQB = A ®™* B. Motivated by this, we say that a TRO V is Lance-
nuclear if for every C*-algebra B, there is a unique TRO tensor norm on
V' ® B, i.e. we have VOB =V ®™>* B We use the notion of ‘Lance-
nuclearity’ for TROs in this paper to avoid the confusion with another
notion ‘A-nuclearity’ defined below. The following result is an immediate
consequence of Theorem 5.5.

THEOREM 6.1. A TRO V is Lance-nuclear if and only if its linking C*-
algebra A(V) is nuclear.

Nuclear C*-algebras have many nice properties. One of the most
important (equivalent) properties for nuclear C*-algebras is that the identity
map on a nuclear C*-algebra can be approximated by completely bounded
finite rank maps which can be factored through matrix algebras. Operator
algebraists have used the notion of A-nuclearity for this approximation
property. The equivalence was first proved by Choi—Effros [3] for completely
positive contractions (see Kirchberg [24] for another proof). It was
generalized to the general case by Smith [38] and Pisier [34]. Our goal of
this section is to investigate the equivalence between Lance-nuclearity and
A-nuclearity for TROs.

Let us first recall that an operator space V' is said to be A-nuclear for some
A>=1 if there exist diagrams of completely bounded maps

My (o)
pu) Nt 6.1)
1% SELLEN 1%

such that |y, |l llll@,lles <4 and Y, o @, — idy in the point-norm topology.
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If a TRO V is Lance-nuclear, then its linking C*-algebra A(V) is nuclear
by Theorem 6.1, and thus has the approximation by finite rank completely
positive contractions. Since V' can be identified with off-diagonal corner
(V) = eA(V)et of A(V), we may obtain diagrams of complete contrac-
tions

Mn(a)

wa/‘ \{wo{
Ve A(V) i

AV) =V,

which approximately commute in the point-norm topology. This shows that
if a TRO V is Lance-nuclear, then it is 1-nuclear and thus A-nuclear for
every 4>1. We will show in the following that A-nuclearity implies Lance-
nuclearity for TROs. To obtain this result, we have to pass to the second
dual and show that V** and thus A(V)** are injective. Then using the well-
known C*-algebra result, we can conclude that A(V) is nuclear and thus V is
Lance-nuclear by Theorem 6.1. Therefore, all corresponding equivalent
conditions still hold for TROs (see Theorem 6.5).

To begin with, let us recall that an operator space V is said to be A-
injective if for any operator spaces W, < W,, every complete contraction
¢ : Wy — V has a completely bounded extension § : W, — V with |||y
< A. If an operator space is l-injective, we simply say that it is injective. It is
known from the Arveson—Wittstock—-Hahn—Banach theorem that B(H) is
injective. Therefore, an operator space is A-injective if and only if it is A-
completely complemented in some B(H).

For general operator spaces (even for C*-algebras), A-injectivity does not
imply injectivity. Surprisingly, Pisier [34] and Christensen—Sinclair [8]
independently proved that for von Neumann algebras, J-injectivity is
equivalent to injectivity. It is known from [12,43] that every W*-TRO has
the form V' = eRe* for some von Neumann algebra R and projection e € R.
Furthermore, we may assume that the central cover C, = C,. =1 in R
(otherwise, we may replace R by pR with p = C,C,.). Then the following
lemma shows that a W*-TRO is /-injective if and only if it is injective. We
omit the proof since it can be obtained by applying an argument similar to
that given in the proof of [12, Theorem 1.3] and by applying the Pisier and
Christensen—Sinclair result for A-injective von Neumann algebras.

LEMMA 6.2. Let R be an von Neumann algebra and let e and f be
projections in R with central covers C, = Cy = 1. If the W*-TRO V = eRf is
A-injective (for some A>=1), then R is injective and thus V is injective.

It was shown in [12] that if 7 is an injective W*-TRO, then V is the off-
diagonal corner of some injective von Neumann algebra R. In the following
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theorem, we show that if V' is an injective W*-TRO, then its linking von
Neumann algebra R(V) is also injective.

THEOREM 6.3. Let V be a W*-TRO. Then V is i-injective for some A= 1
if and only if R(V) is injective.

Proof. Let us assume that V is a (non-degenerate) W*-TRO contained
in B(K,H). Then R(V)= A(V)" is a (non-degenerate) von Neumann
subalgebra of B(H @ K) and we can write V = eR(V)e* (see (2.9)). It is
obvious that if R(V) is injective, then so is V.

On the other hand, we let Q = V; denote the closed unit ball V; of V.
Then Q is a compact convex set with respect to the weak™ topology on V.
We have from the Krein—Milman theorem that the set Ex#(Q2) of all extreme
points of Q is non-empty and satisfies

weak™®

Q = co(Ext(Q)) .

Given any v € Ext(2), it is known from Zettl [43] that v (identified with
17(v)) is a partial isometry in V, i.e. it satisfies vv™v = v. Then v is a partial
isometry in the von Neumann algebra R(}'), and we obtain projections
e, =vw*eeR(V)e=M(C)=C" and f, =v*veetR(V)et = M(D)=D".
We let p, denote the central cover of e, in R(V). Since f, is equivalent to
e, in R(V), p, is also the central cover of f, (see [22, p. 410]). If we let
V, =e,Vf, and R, = p,R(V), then we have

Vo = eo(eR(V)e )y = eR(V)fy = es(puROV)fy = euRof, (6.2)

where the central covers of e, and f, are equal to 1 in R,. It follows from
Lemma 6.2 that R, is an injective von Neumann algebra.

Now let us assume that p = \/, p, be the projection in R(¥') spanned by all
py With v € Ext(Q2). Then p is a central projection in R(V') such that pv =v
for all v € Ext(Q2). It follows that we have px = x for every x € V. Since R(V)
is a von Neumann subalgebra of B(H @ K) generated by V, we can
conclude that px = x for every x € R(V). This shows that pR(V) = R(V).
Since for each v e Ext(R2), p,R(V) is an injective von Neumann algebra,
we can conclude from Effros—Lance [I11] that R(V)=pR(V) is also
injective. 1

It was shown by Haagerup [15] that a von Neumann algebra R is injective
if and only if there exists a constant A>1 such that for any n € N and any
complete contraction T : £+ (n) — R, there exist completely positive maps
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S; : {x(n) = R such that max{||Si]|, ||S2||} <4 and the induced map

Six)  T(x)

Q= %
T(x)" Sax)

€ Mx(R)

ST N
X €ly(n) —
T S,

is completely positive. For W*-TROs we may obtain the following result,
which will be useful in Section 7.

THEOREM 6.4. Let V be a W*-TRO. Then V is injective if and only if
there exists a constant =1 such that for any ne N and any complete
contraction T : £x,(n) — V, there exist completely positive maps S, : {ro(n) -
M(C) and S, : €o(n) —» M(D) such that max{||Si|], ||S2]|} <A and the induced
map

Si(x)  T(x)

= %
T(x)" Sa(x)

R(V)

S T
™ 5 i X €Ly(n) —

is completely positive.

Proof. (=) If V is injective, then R(V) is an injective von Neumann
algebra by Theorem 6.3, and thus we may easily obtain the result for 4 =1
(and thus for every 4> 1) by applying Paulsen’s oft-diagonal trick (see [31]).

(<) We need some notions and arguments developed in the proof of
Theorem 6.3. Let us first recall that if V' is a (non-degenerate) W*-TRO
contained in B(K, H), then we have M(C) = C", M(D) = D" and

v

RO =40 = | .

For every partial isometry v € Ext(Q), where Q = V] is the closed unit ball
of ¥, we obtain two projections ¢, = vv* € C” and f, = v*v € D", respec-
tively. It is known from Zettl [43] that V, = e, Vf, is a von Neumann algebra
with multiplication and involution given by

x-y=xvy and xF = ox*v

for all x,y e V,. There is a complete isometry ¢, from V, onto e¢,C"e,
given by

¢, xeV, > xt*ee, (e,

which sends the unital element v € V, to the unital element e, in e,C"e,.
Then ¢, is a unital complete order isomorphism and thus is a unital (spatial)
x-isomorphism from ¥V, onto the von Neumann algebra ¢,C"¢,. Similarly,
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the map
v, xeV, > v*xef,D"f,

is a unital (spatial) %-isomorphism from V), onto the von Neumann algebra
JoD"fo.

If we are given a complete contraction 7 : £5,(n) — V,, then it is known
from the hypothesis that there exist completely positive maps S| : (1) —
C" and S, : €o(n) — D" such that max{||Sy]|, [|S>]|} <4 and the induced map

Si(x)  T(x)

?= Tt S| <X

™ S

St T
1 X € loo(n) >

is completely positive. Then S, = e,Sie, : {oo(n) = e,C"e, and Sy, = £,5:f, :
lno(n) — f,D"f, are completely positive maps such that max{[S,,II, ISy ||} <4
and the induced map

e,C"e, v,
Ve D',

S, T
™" S

Se,(x)  T(x)

b, = .
T(x)" Sp,(x)

1 1 x € ls(n) —

is completely positive since @, = (e, @ f,)P(e, @ f,). Then we can conclude
from Haagerup’s result that ¥V, is an injective von Neumann algebra. Let p,
be the central cover of e, and f,. It follows from (6.2) and Lemma 6.2 that
R, =p,R(V) is an injective von Neumann algebra. Using the same
argument as that given in Theorem 6.3, we can conclude that R(V) is an
injective von Neumann algebra, and thus V is an injective W*-TRO. 1

Summarizing our results, we can obtain the following theorem.

THEOREM 6.5. Let V be a TRO. Then the following are equivalent:

(1) V is Lance-nuclear,

(2) V is 1-nuclear (or A-nuclear for some />1),
(3) V* is injective (or i-injective for some 1= 1),
(4) A(VY™ is injective,

(5) A(V) is nuclear.

Proof. We have discussed (1) = (2) after Theorem 6.1. If V' is a A-
nuclear TRO, then it is A-exact and thus I-exact by Theorem 4.4. This
implies that V' is locally reflexive (see [12, Sect. 4]). We may use the same
argument as that given in [12, Theorem 4.5(1) = (ii)] to show that V** is J-
injective. This proves (2) = (3). It follows from Lemma 6.2 that the
injectivity is equivalent to A-injectivity on W*-TROs. To prove (3) = (4),
we can assume that V** is an injective W*-TRO. Since we have
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A(V)*™ = R(V**) by Proposition 2.4, we can conclude from Theorem 6.3
that A(V)* is an injective von Neumann algebra. Using Connes’ deep work
[7], Choi and Effros proved (4) < (5) for C*-algebras in [4, 5]. Finally, we
can obtain (5) = (1) from Theorem 6.1. |}

An intriguing aspect for TROs is that, like C*-algebras, one does not need
to assume the local reflexivity to prove (3) = (2) in Theorem 6.5. Kirchberg
also observed this in [25, Sect. 6] for C*-spaces, where he indicated that an
operator space V is l-nuclear if and only if it is a C*-space and its second
dual V** is injective. However, the local reflexivity is a necessary condition
for general operator spaces (see [12]) since there exist examples of operator
spaces V, for which 77** are 1-injective, but ¥ are not 1-nuclear (see [13, 26)).

A dual operator space V is said to be A-semidiscrete (or semidiscrete if
2 =1) if there exist diagrams of weak™ continuous completely bounded
maps

Po /‘ \(d)a

1% BN 14
such that ||, |lep|Vylle, <4 and Y, © @, — idy in the point-weak™ topology. It
is known from [12, Proposition 3.1] that a dual operator space is injective if
and only if it is semidiscrete. In this case, we can conclude that V' is weak™
homeomorphic and completely isometrically isomorphic to an (injective)
W*-TRO. For /> 1, it is still an open question whether every /-injective (or
A-semidiscrete) dual operator space is completely isomorphic to some
injective (or semidiscrete) W*-TRO. As a consequence of Theorem 6.3, we
may obtain the following corollary for W*-TROs.

COROLLARY 6.6. Let V be a W*-TRO. Then the following are equivalent:

(1) V is A-injective for some A>=1 (or equivalently, V is injective),
(2) V is A-semidiscrete for some 1.2 1 (or equivalently, V is semidiscrete).

7. DECOMPOSABLE MAPS AND PISIER’S 6-NORM ON TROS

In [15] Haagerup introduced the notion of decomposable maps between
C*-algebras. We recall that given C*-algebras 4 and B, a linear map
T : A — B is called decomposable if it can be written as

T=(T—T)+i(T; — Ty),
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where T;: A —» B are completely positive maps. In this case, there exist
completely positive maps S; : 4 — B such that the map

Sy T
ta€eA—
T S,

Si(a) T(a)
T(a)* Sy(a)

€ M>(B)

is completely positive, or equivalently, the corresponding map

S, T\
T S|

is completely positive. Then D(A, B), the space of all decomposable maps
from A4 to B, is a Banach space with the norm given by

Si(a) T(a)
T(a3)*  Sy(as)

a, a

ay as

] € My(A) —

] e Mx(B) (1.1)

1T llgee = inf{max{||Si[l, [1S2]1}}.

Motivated by (7.1), we can define decomposable maps between TROs as
follows. Let ¥ and W be TROs. A linear map 7 :V — W is called
decomposable if there exists completely positive maps S; : C(V) - C(W)
and Sy : D(V) - D(W) such that the map ¥ : A(V) —» A(W) given by

S, T
T S,

4

v Si(c) T
w* d

T(w)*  Sx(d)

= : eAV)— edW) (7.2)

is completely positive. In this case, we let
ITllgec = inf {max{||Sull, [1S2]1} 5,

where the infimum is taken over all completely positive maps S; in (7.2). If
V =B and W = C are C*-algebras, we have A(V) = M»(B) and A(W) =
M>(C). Then it is clear that our definition is a natural generalization of
decomposable maps on C*-algebras.

It is easy to see from the definition that if 77 : V - Wand T, : W - Z
are decomposable maps, then 7,0 7T} : V' — Z is decomposable with

T2 ° Tillgee <N T2llaecll Tl dec- (7.3)

If VV is a TRO, then the canonical inclusion 1y : VS A(V) is a
decomposable map with ||iy|l4c = 1. We may obtain this by considering
the canonical inclusions S| = 1¢c and S; = 1p of C(V) and D(V) into A(V).
Similarly, it is easy to see that the canonical projection Py : A(V) - Vis a
decomposable map with |[Py|lg.=1. If T:V —> W is a completely
bounded map between TRO’s ¥ and W, then T =1y oToPy: A(V) -
A(W) is a completely bounded map between the linking C*-algebras A(V)
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and A(W). Since T = Py > To 1y, we actually have ||T||, = IITllcb. More-
over, we may conclude from (7.3) that 7' : VV —» W is decomposable if and
only if 7: A(V) - A(W) is decomposable with ||T||gec = ||7 ||gec. Therefore,
we may identify D(V, W), the space of all decomposable maps from V into
W, with a norm closed subspace of D(A(V), A(W)). We can also deduce the
inequality

I1T1eb = 1T lle < N7 Nlgee = 17 Nee- (7.4)

Let T:V — W be a decomposable map. Then for any C*-algebra
B, T ® idp extends to a decomposable map from V ®™** Binto W ® ™ B
with

1T ® idpllgec < II7Tlgec- (7.5)
S, T
™ S
completely positive, then ¥ ® idp extends to a completely positive map

from A(V) ®™* B into A(W) ®™* B. As a consequence of (7.3)—(7.5), we
obtain

This follows from the fact that if ¥ = { } TAV) > A(W) s

IT1 ® Taller <NIT1 ® Tallaee <N T llaecll T2 laec (7.6)

for any decomposable maps 7 : V' — W and T, : By — B».

In [35], Pisier introduced a § norm on the tensor product of a C*-algebra
A and an operator space E. We recall that for any y € 4 ® E, the § norm is
defined by

o(y) = sup{lz - a(y)ll;,

where the supremum is taken over all C*-homomorphisms 7 : 4 — B(H)
and complete contractions o:E — B(H) with commuting ranges.
Pisier proved that the 6 norm can also be expressed in the following
form:

1 1
2 2

o(y) = inf ||x||Mn(E) > (7.7

n
E a;df
=1

Zn: b'b;
Jj=1

where the infimum runs over all possible representations of y with the
form

y= Z aibj ®x,]

i
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Motivated by Pisier’s result, we can define a 4 norm on the tensor product
V' ® E for a TRO V and an operator space E by letting

5(y) = sup{[l0 - c()II}

for y e V' ® E, where the supremum is taken over all TRO-homomorphisms
0:V — B(H) and complete contractions ¢ : E — B(H) which satisfy the
commuting condition

0(v)o(x) = a(x)0(v) and 0(v)o(x)* = a(x)*0(v) (7.8)

for all ve V and x € E. We note that if V' = A4 is a C*-algebra, then we can
conclude from Lemma 5.1 that

5() = d(»)

forallye A® E.

We let ¥V ®° E denote the completion of V' ® E with respect to the
6 norm. If we let C*(E) be the free C*-algebra generated by E, then
every complete contraction ¢ : E — B(H) extends (uniquely) to a C*-
homomorphism 7, : C¥*(E) — B(H). The commuting condition (7.8)
implies that 0 and =, have the commuting ranges. Therefore, we may
isometrically identify ¥ ®° E with a norm closed subspace of ¥ @M
C*(E>. As a consequence of this fact and (7.6), we may easily obtain the
following result.

COROLLARY 7.1. Let Ty e D(V, W) be a decomposable map between
TRO’s V and W, and let T, € CB(E, F) be a completely bounded map between
operator spaces E and F. Then for any y e V ® E, we have

(T ® T2)(1) <IITlgecl Tallen0(). (7.9)

The following proposition shows that there is a close connection between
V ®°E and A(V) ®° E.

PROPOSITION 7.2. Let V be a TRO and E an operator space. Then we
have the diagram of isometric inclusions

Vtrgxc* <E> Ly ®idox gy A(V)n(gxc* <E>
1 1t . (7.10)

velE 2R AWV)e'E
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Proof. It is obvious that the column inclusions are isometries. It is also
known from Theorem 5.4 that we may identify V' ®™** C*{E with the off-
diagonal corner 1,(V)®" " C*(E) in A(V) @™ C*(E), and thus the map
on the top is an isometric TRO-inclusion. This implies that the map on the

bottom is an isometric inclusion. 1

It was shown in [35] that 4(V) ®° E can be identified with a quotient of
the Haagerup tensor product A(V) ®" E ®" A(V) with the quotient map ¢
given by

ga®x®b)=ab® x.

Since we may identify V ®™** C*(E) with the off-diagonal corner

= max

(N@™ CHEY = (e ® NAV) ® C*EN(e ® 1)

in A(V) ®™** C*(E>, the map ¢ restricts to a quotient map

G [COVV]®"E ®" —eA(V)®"E ®" A(V)et » V ®°E.

D(V)

Then we may obtain the following expression for é from Proposition 7.2 and
(7.7). Forevery ye V ® E,

n 1 n 1
o) = inf{nxnwan > et + oIl wiw + dfdjn%}, (7.11)
i=1 j=1

where the infimum runs over all possible representations
y= Z (ciw; + vid)) @ xj.
7

If E = F* is a dual operator space, then every element y € V' ® E is one-to-
one correspondent to a finite rank map 7, :F — V given by T,(f) =
(idy ® f)(y). We can obtain the following TRO analogue of Pisier’s results
in [35, Sect. 12].

LEmmaA 7.3. Let V be a TRO.
(1) If E = M (or E = {1(n)), then for every y € V ® E, we have
00) = 1T lgec-

(2) If E=F* is a dual operator space and ye€ v ®° E, then we
have §(y)<AX if and only if there exists a diagram of completely bounded
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maps

such that |||l [V llgec < 2.

Therefore, we can obtain

5(v) = inf {[1pllep W llgec >

where the infimum is taken over all decompositions T, = o ¢.

Proof. Let us first recall that the canonical inclusion 1y : V' < A(V) and
the canonical projection Py : A(V) —» V are decomposable maps with
iy llgee = 1PV llgec = 1. Since Py o1y = idy, it is easy to see that 7, : F - V
is decomposable if and only if 1y o T, : F — A(V) is decomposable. In this
case, we have

ITylldee = 1w © Tllaec-

Since 1y o T, : F — A(V) corresponds to the element (1y ® idg)(y) € A(V)
®E, we obtain

ity o Tyllaee = 0((tv ® idE)(y))

from Pisier [35]. It follows from Proposition 7.2 that

5() = 81y ® idp)(»)) = | Ty llgee-

This proves (1). Similarly, we may obtain (2) by applying Pisier’s
result to the induced map iyoT,:F — A(V) and the fact that
TyZPVO(lVOTy). I

The following proposition is a TRO analogue of [20, Sect. 2].

ProrosiTION 7.4. Let T : V — W be a finite rank map between TRO’s
V and W. Then for every ¢>0, there exists a diagram of completely
bounded maps

3We wish to thank M. Junge for pointing out this simple argument to us.
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M,

such that ||¢lleplWllgee <(1 + &7 llgec-
If we let ye W ® V* denote the element corresponding to T, then
we have

5() = 1Tl gec- (7.12)

Proof. If V and W are C*-algebras, the result is known by Junge and
Le Merdy [20, Sect. 2]. This can be easily generalized to TRO case since
T:V — W is decomposable if and only if the induced map 7= 1y T o
Py A(V) = AW) is decomposable with ||T]|yec = || |l4ec. Then we may
obtain the TRO result by simply considering 7 and the fact that
T = PW o TO ly. l

8. MORE EQUIVALENT CONDITIONS FOR NUCLEARITY

Motivated by Kirchberg [27], Pisier [35], and Smith and William [40], we
discuss some more conditions equivalent to nuclearity for TRO’s.

THEOREM 8.1. Let V be a TRO. Then the following are equivalent:

(1) V is Lance-nuclear,
(2) for every (finite-dimensional) operator spaces E, we have

V'® CHEY = VRCHED,
(3) for every (finite-dimensional) operator space E, we have the isometry
V ®°E=VQE,
(4) for some (or for every) 2> 1, there exists a net of finite rank maps

T;: V — V such that ||Ti||gec <4 and T; — idy in the point-norm topology.

Proof. 1t is obvious that (1) = (2) = (3).

To prove (3) = (4), we let E be an arbitrary finite-dimensional subspace
of V and let 15 : E< V be the inclusion map from E into V. Then condition
(3) implies that 8(1) = lliglley = 1. It follows from Lemma 7.3 that for any
A>1, there exists an integer n and a diagram of completely bounded
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maps

e p (8.1)

E — v

such that ||p||,, <1 and ||{/||4ec <4. Since M, is injective, ¢ has a completely
contractive extension ¢ : V' — M, which satisfies ||¢gllgec = ll@Elle, < 1. Let
VY = . Then we obtain a net of finite rank maps T = Yo ¢y on V such
that

||TE||dec<||!//E||dec||<0E||dec</1:

and Tg converges to idy in the point-norm topology. This proves (4).

Finally, let us prove (4) = (1). Let B be an arbitrary C*-algebra, and let
T;: V — V be a net of finite rank maps satisfying condition (4). It follows
from (7.5) that each T; ® idp extends to a decomposable map on V ® ™ B
with

||Ti ® idB”decS”Tinecgj"

Let m,: V@M B VQB denote the canonical quotient map from
V @M B onto V®B. Since T; are finite rank maps, we must have
T; ® idp(kerm,;) = {0}, and thus deduce a net of bounded maps

— . rmax rmax
T, Qidy: VOB=V ® Blkern, > V ® B

such that ||T; ® idp||<A. Since T; — idy in the point-norm topology, we
can conclude that 7; ® idg converges to a bounded map on VB,
which extends the identity map on V' &® B. This shows that we must have
VB =V ®™* B and thus V is Lance-nuclear. I

We may weaken the condition (2) in Theorem by considering the TRO-
isomorphisms

V'® CHEF) = V& CHF)

for all free groups (with finite or infinite generators). Then we may obtain
the following TRO analogue of Lance [29, Theorem 3.3] (also see [l1,
Theorem 6.3]) and Kirchberg [27, Theorem 1.1 (iii)] for C*-algebras.
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ProrosITION 8.2.  Let V be a TRO. Then the following are equivalent:

(1) For any TRO-inclusion 1 : V< W and any C*-algebra B, the induced
map

rmax rmax

1®idg:V  B>W ® B

is an isometric TRO-homomorphism,
(2) for any free group F, we have the TRO-isomorphism

V'® CHF) = V& CHF),

(3) the linking C*-algebra A(V') has the WEP.

Proof. Let V be a TRO non-degenerately contained in B(K, H). It
is known from Kirchberg [27] that for every free group F, we have the
C*-isomorphism

BH @ K)® C*([F) = BUH & K)QCHP).
Taking the off-diagonal corners, we obtain
BK.H)'® C*(F) = BK. H)® C*(P).

If we have (1), then we may obtain the following commutative diagram:

B(K,H) & C*(F) = B(K,H)&C*(F)
) 0 ;
VI om — V&OH(F)

where the column maps are isometric TRO-inclusions. This implies that the
bottom line must be an isometric TRO-isomorphism, i.e. we must have
vV ®tmax C*([F) _ V® C*([F)

If we have (2), then for any free group F we may obtain the C*-
isomorphism

A)'® CHF) = ANSCHE)
from Theorem 5.5. This implies that A(}) has WEP by Kirchberg [27].

To see (3) = (1), let us assume that A(V) has WEP. If W is a TRO
containing V" as a sub-TRO, then it is clear that A(}V) is a C*-subalgebra of
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A(W). For any C*-algebra B, we may obtain the isometric C*-inclusion
max max
AV) ® B AW) ® B

from Lance [29, Theorem 3.3] (also see [11, Theorem 6.3]). Taking the off-
diagonal corners, we can obtain the isometric TRO-inclusion

rmax fmax

V® BW ® B

Let us recall that a C*-algebra A is said to have the weak expectation
property (or simply, WEP) of Lance [29] if for every (non-degenerate)
faithful representation 1: A<s> B(H) there exists a completely positive
contraction P: B(H) — 4™ ak’ such that P(x) = x for all x € 4. We can
analogously consider this property for TROs. Following Lance’s definition,
we say that a TRO V has WEP if for every isometric TRO-inclusion

: V& B(K, H), there exists a complete contraction P : B(K, H) — l(V)Wed
such that P(v) = v for all v € V. Equivalently, we may simply replace 1( V) eak”
by V** and assume that there exists a complete contraction P from B(K, H)
into V** such that P(v) = v for all ve V. To see the equivalence, we may
apply the Kaplanski’s density theorem for dua*.l TROs (see [43]) to show that
every isometric TRO-inclusion 1: V<& 78 can, be extended to a weak®
continuous TRO-homomorphism 7: V** — P

It is clear that the WEP of A(V) (and thus any of the equivalent
conditions in Proposition 8.2) implies the WEP of V. However, we cannot
prove that they are equivalent at this moment. The difficulty is that we do
not know if we can extend the (completely contractive) weak expectation P
from B(K,H) to V* to a completely positive weak expectation P
from B(H @ K) into A(V)**. However, if we add the local reflexivity to
V, then we may obtain the following result, which is a TRO analogue
of Effros—Haagerup [10, Proposition 5.4] and Robertson—Smith [40,
Theorem 2.1].

COROLLARY 8.3. Let V be a TRO. Then the following are equivalent:
(1) V is Lance-nuclear,
(2) V is locally reflexive and for any free group F we have the TRO-
isomorphism
tmax .
V ® CHF) = V®C*F),

(3) V is locally reflexive and for any n € N, we have the isometry

V@ ti(n) = V&),
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(3") V is locally reflexive and for any n € N and any T : o(n) — V, we
have

||T||dec = ||T||cb>

4) V is locally reflexive and V' has WEP.

Proof. 1t is easy to see that we can obtain: (1) = (2) by Theorem 8.1,
(2) = (3) since for every n € N £1(n) is completely isometric to the operator
subspace E, (spanned by the generators) of C*(F,) and the free C*-algebra
C*{t\(n))y generated by £(n) is equal to the full free group C*-algebra
C*(F,), 3)<=(3) by Lemma 7.3, and (2) = (4) by Proposition 8.2.
Moreover, (4) = (1) can be obtained by using the same argument as that
given in [10, Proposition 5.4], i.e. we need to show that V** is injective. The
readers are referred to [10] for details. Here we only need to prove (3') = (1).

Suppose that we have (3'). Then by the local reflexivity, for any T :
loo(n) = V** with ||T]||y, = 1, there exists a net of complete contractions
T, : t,(n) — V such that T, converges to T in the point-weak™ topology.
Since for every o we have ||T,|l4ec = l|Tulles = 1, for any given 4> 1 there
exist completely positive maps S5 : o(n) = C(V) and S% : {o(n) = D(V)
such that max{[|S{|],[|S5]|} <4 and the map

ST,

Yo

] Mo (loo(n)) > A(V)

defined in (7.1) is completely positive. Passing to subnets if necessary,
we may assume that S} and S5 converges to completely positive maps S :
(@) = C(V)™* and S, : €o(n) » D(V)™ in the weak™ topology. Then
it is easy to see that max{||Si]|,||S2||} <4 and that induced map

S

Y= T

T
52] t Mo(Co(n)) > A(V)™ = R(V*™)

is completely positive. Since 1 : £ro(n) = M1 (£~ (n)) given by

X X
w-[1 ]

is completely positive, the composition map

Six)  T(x)

d=Vor: o
T:x€ln(n) — T Sy

e R(V¥) = A(V)™




TROS AND THEIR LINKING C*-ALGEBRAS 299

is completely positive. Then we can conclude from Theorem 6.4 that V** is
an injective W*-TRO. Therefore, V is Lance-nuclear by Theorem 6.5. 1

Finally we wish to end this section with the following remarks.

Remark 8.4. 1t has been shown that some local properties of a TRO V'
are closely related to the corresponding local properties of its linking C*-
algebras A(V). However, this is not true for injectivity. For example, if
V = B(C, t,) is the column Hilbert space, then V is an injective TRO. In this
case, we have C = K({;) and D = C. The linking C*-algebra A(V) =
Kt @ C) is not injective.

To preserve the injectivity, we need to consider R(V) defined in (1.2). If V'
is a TRO, we may consider Paulsen’s operator system

cC v

=1y ¢

It is known from Hamana [17] and Ruan [37] that the injective envelope
I(Zy) of £y has the form

Iy I(V)

1&v) = IV In

b}

where I;; and I, are injective C*-algebras and I(V) and I(V*) are the
(operator space) injective envelopes of ¥ and V*, respectively. Moreover, it
was shown by Blecher and Paulsen [2, Sect. 1] that I;; = M(C(I(V))) and
Ly = M(D(I(V))). From this we can conclude that a TRO V is injective (we
have I(V) = V in this case) if and only if R(V) = I(Zy) is an injective C*-
algebra. In particular, if V' is a W*-TRO it is known from Theorem 6.3 that
V' is injective if and only if R(}V) is an injective von Neumann algebra.

Remark 8.5. 1In his talk [28], Kirchberg discussed weakly decomposable
maps on TROs. Let us recall that a map 7 : V —» W is called weakly
decomposable if there exist completely positive maps S; : C(V) — C(W)*
and S> : D(V) —» D(W)* such that the induced map

Si(e)  jweoT()

eAV)— . -
JweoTw)*  Sy(d)

% e AW)Y™  (8.2)
w

is completely positive, where we let jy : W< W** denote the canonical
inclusion. If 7" is weakly decomposable, we let

I T llwaee = inf{max{[|Sill, 115511} }
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to denote the weakly decomposable norm of T, where the infimum is taken
over all completely positive maps S; in (8.2).

It is clear from the definition that if 7: V' — W is decomposable, then
JweT :V — W* is decomposable, and thus T is weakly decomposable
with

||T||wdec<HjW °© T”dec<||T||d€:C'

There are examples of weakly decomposable maps on TROs (even on C*-
algebras) which are not decomposable (see [20, Sect. 2]). If T is a finite rank
map between TROs, then T is decomposable (and thus weakly decom-
posable), and we may obtain

||T||Wdec = ||T||decs (83)

which is the TRO analogue of Junge—Le Merdy [20, Corollary 2.6]. To see
this, we may apply a similar discussion as that given in Section 7, i.e. we can
first show that a map 7 : V' — W is weakly decomposable if and only if
iwoT : V — A(W) is weakly decomposable. Since A(W) is a C*-algebra,
we have

AAW)™ = May(AW )™ = Ma(A(W)™) = A(AW)™),
and thus can obtain the equalities
||T||wdec = HlW °© T”wdec = HjA(W) olw e T”dSC'

Let ye W ® V* denote the element corresponding to 7. Then we can
obtain the equalities

liawy = 1w > Tllaee = 8Gacw © 1w ® idyx(v)) = 81w ® idy+(v))
=lltw © Tllgec = 1T lgec
from Proposition 7.4 and the fact that
Jw @ idy« s A(W) @° V* — A(W)™* ®@° V*

is an isometric inclusion. This proves (8.3).

APPENDIX

In this section, we will construct an operator space which is A-locally
reflexive for some 1<l<o0o. More precisely, we will prove the following
theorem.
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THEOREM A.1. For n> 2, there exists an operator space V such that

(1) Vis (n+ 1)-locally reflexive,
(2) if V is A-locally reflexive, then we must have A>—"—.
2

n—1

Proof. To prove the theorem, we will use the operator space constructed
in [13, Theorem 14.5.6]. Let us first recall from Pisier [33] that for n > 2, £1(n)
with the MAX operator space matrix norm is not 1-exact. More precisely,
Pisier proved that if we let w : B(£2) — Q(¢;) denote the canonical quotient
map, then the contractive linear map

idp, iy @ (M@ B(L) — LM O(62)
induces a contractive linear isomorphism

T : (i (m)® B(t2)/6i(M) Q@K (6r) — £1(n)® O(L2)

with || 77| > —2
24/n—1

Then for every ¢ > 0 (sufficiently small), there exists a contractive element
v e {1(n)® Q({») such that

1T )| > —— — . (A1)

24/n—1

Since £1(n)® O(£>) = CB(L~(n), O(£>)), we may let ¢ : £ (n) — O(£>) denote
the complete contraction corresponding to v. Then we can deduce from
(A.1) that any completely bounded lifting v : £;(n) — B({;) of ¢ (with
moy = ¢) must have the cb-norm ||y||y, > ] 4 - &. Moreover, we may

assume that ¢ : £ (n) - Q(f) is a complete isometry (see the discussion
given in [13, Theorem 14.5.6]). If we let L = ¢(£~(n)) < O(£») be the image
space of ¢ in Q(£»), then V = n~'(L) < B((») is the operator space we wish
to construct for the theorem.

Let us first prove (1). Since the second adjoint ©** : B(£,)™ — O(£,)™ is a

weak™ continuous quotient map from B(£,)™ onto Q(£>)**, there exists a
weak™

central projection e € B(£,)™ such that eB(£,) = kern™ = K((,) and
(1 — e)B(£>)*™ =~ O(£,)™:. 1t follows that we have the £,,-decomposition

————weak®

B(6)™ = eB(£)™ + (1 — ) B(t2)™ =~ K((>) Do O(62)™.

We let p: Q)™ — ((1 — e)B(£:)™ denote the canonical (completely
isometric) *-isomorphism from Q(£)** onto ((1 — e)B(£,)**, which satisfies
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¥ op = id g,y 1t follows from the commutative diagram

S |

that we have V** = (7*)"!(L**) and p restricted to L* is a complete
isometry from L* onto p(L**) = (1 — ¢)V**. Then we may obtain the .-
decomposition

weak™®

V= () (L) = K(6) @o p(L™).

For every finite-dimensional subspace E < V**, we can decompose E into

E=E @« E,

where E; g@weak* ~ K(6,)™ and E, c p(L*). Since K(£>) is locally
reflexive, there exists a net of complete contractions lp; CEl > KV
such that zp; converges to 1g, in the point-weak™ topology in V**. On the
other hand, we note that the space V is always locally reflexive in Banach
space sense. Then there exists a net of contractions lﬁi : E; — V such that lﬁi
converges to i, in the point-weak™ topology in V**. Since E, is a finite-
dimensional subspace of V** with dim E;<dim L = n, we can conclude
from [10] that |2, <nlly2||<n. It follows that ¥, : E = E; @ Ey » V
given by

Y, (1 + x2) = Ph(x1) + Ya(x2)

is a net of completely bounded maps such that ||y, ||, <r + 1 and , — 1gin
the point-weak™ topology. This shows that V is (n + 1)-locally reflexive.

To prove (2), let us identify L = L** and let 1: L< L* denote the
canonical embedding of L onto L**. Then

J=pog:la(n) > V™
is a completely contractive lifting of the complete isometry
Q=100 : ly(n) > L™,

Since we have the isometry CB(lx(n), V) = ;)@ V**, J € CB(lx(n),
V**) corresponds to a contractive element uj € L)@V If V is J-locally
reflexive, then it satisfies condition C7 and thus the canonical map

O* (LR V)™ - L)@V
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is a contractive linear isomorphism with ||</)*71|| <A. It follows that
u' = ¢>*’l(u‘;) is an element in (£;(n)® V)™ with ||| <. It is easy to see
that

id@n: 6V - ()L
is a (complete) contraction from ¢;(n)@ V onto £;(n)®L, and
F = (id ® 0" (((mQL)*) = (id ® 7*)(lx(n)@L¥)

is a finite-dimensional subspace of (£;(n)® V)*. It follows from Helly’s
lemma (see [9, p. 73]) that for the given &> 0, there exists an element
ue{i(n)®V such that

lll <1 + &)l < (1 + &)A (A.2)
and
u,x @ () = ', x @ T*(f)) (A.3)
for all x ® 7*(f) € F = (id ® 1*)(lx(n)®L*). If we let € CB(L~(n), V)
denote the map corresponding to u, then can deduce from (A.2) and (A.3)
that
Wller <+ Yl < + )4,

and meoyy = ¢. This shows Y : {(n) = V < B({;) is a completely bounded
lifting of ¢ and thus must satisfy

n 7 b
/T Sl <C 2l <1+ )4
Letting ¢ — 0, we obtain —4—=<. 1

24/ n—1
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