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Abstract

The estimation of the covariance matrix or the multivariate components of variance is considered in the
multivariate linear regression models with effects being fixed or random. In this paper, we propose a new
method to show that usual unbiased estimators are improved on by the truncated estimators. The method is
based on the Stein–Haff identity, namely the integration by parts in the Wishart distribution, and it allows
us to handle the general types of scale-equivariant estimators as well as the general fixed or mixed effects
linear models.
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1. Introduction

The problems of estimating the covariance matrix or the multivariate components of variance
in the fixed or mixed effects linear models are addressed in a decision-theoretic framework. The
dominance properties of truncated estimators over non-truncated and unbiased estimators have
been studied in the literature. Most of the dominance results have been shown based on the
conventional method of using conditional distributions given pivot or test statistics. However,
it seems difficult to apply the method to general types of estimators in complicated models. To

∗ Corresponding author. Fax: +81 3 5841 5521.
E-mail addresses: tatsuya@e.u-tokyo.ac.jp (T. Kubokawa), mttsai@stat.sinica.edu.tw (M.-T. Tsai).

0047-259X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2005.11.004

http://www.elsevier.com/locate/jmva
mailto:tatsuya@e.u-tokyo.ac.jp
mailto:mttsai@stat.sinica.edu.tw


T. Kubokawa, M.-T. Tsai / Journal of Multivariate Analysis 97 (2006) 2242–2261 2243

show the dominance results in such a general setup, in this paper, we propose a new method based
on the so-called Stein–Haff identity, namely the integration by parts in the Wishart distribution
developed by Stein [21] and Haff [4].

The model we treat here is the multivariate linear regression model with effects being fixed or
random, described by

y = �B + �A + ε, (1.1)

where y is a p × N matrix of observations, B is a q × N matrix of explanatory variables, � is a
p×q matrix of unknown coefficients, A is a k×N design matrix, � is a p×k matrix of coefficients
and ε is a p×N matrix of random error variables. It is assumed that ε has the multivariate normal
distribution Np,N (0, �, IN) for a p × p unknown positive definite matrix �A and the N × N

identity matrix IN , where we follow the notation of Srivastava and Khatri [17, p. 54, 76]. Two
cases are considered for �: � is assumed as a matrix of unknown parameters or as a random matrix.
The model (1.1) is called a fixed effects model for � unknown, and a mixed effects model for �

random.
Our primary interest is in the estimation of the covariance matrix � in the fixed effects linear

model (1.1) in a decision-theoretic framework. Estimator �̂ is evaluated in terms of the risk
function R(�, �, �, �̂) = E[LS(�̂, �)], where LS(�̂, �) is the Stein loss function defined by

LS(�̂, �) = tr �̂�−1 − |�̂�−1| − p. (1.2)

As demonstrated in Section 2, there exists a sufficient statistic (S, X) such that S is a p × p

symmetric matrix having a Wishart distribution, X is a p×m matrix having a multivariate normal
distribution with an unknown mean matrix, and S and X are mutually independently distributed.
Ordinary estimators of � such as the maximum likelihood and unbiased estimators are constructed
based on S, and the statistic X is not employed for estimating �. Sinha and Ghosh [16] showed that
the unbiased estimator can be improved on by a truncated estimator by utilizing the information
contained in X. Perron [15] and Kubokawa et al. [11] provided some dominance results for m = 1.
These are multivariate extensions of the well-known inadmissibility result of Stein [19]. For a
good account and review in the univariate case, see Kubokawa [10]. Hara [6] showed that Sinha
and Ghosh’s estimator is further dominated by another truncated estimator, and Kubokawa and
Srivastava [12] gave minimax and truncated estimators improving on the James–Stein estimator.
These dominance results can be derived based on the method of using conditional distributions
given test statistics. For example, Kubokawa and Srivastava [12] used a conditional distribution of
W = XXt given W−1/2SW−1/2. This method in their paper requests not only that W has full rank,
namely, m�p, but also that treated estimators are limited to a specific class of scale-equivariant
estimators.

Instead of using the conventional method based on the conditional argument, in this paper, we
propose a new method of using the Stein–Haff identity developed by Stein [21] and Haff [5].
In Section 2, we first handle the case of m�p and use the new method to extend the results of
Kubokawa and Srivastava [12] to the general class of scale-equivariant estimators, which satisfy
�̂(ASAt,AW At) = A�̂(S,W)At for any p × p nonsingular matrix A. That is, the general scale-
equivariant estimators are shown to be improved on by their truncated estimators under the Stein
loss (1.2). From this dominance result, we derive several truncated estimators improving on the
unbiased and/or the James–Stein minimax estimators. We next handle the case of m < p, which
means that the matrix XXt is singular. The method based on the Stein–Haff identity allows us not
only to obtain scale-equivariant estimators dominating the unbiased estimator, but also to show
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that the scale-equivariant estimators are improved on by their truncated ones. All the proofs of
the results in Section 2 are given in the Appendix. Numerical studies are also given in Section 2
to investigate the risk behaviors of the proposed estimators.

In Section 3, we treat the mixed linear model (1.1) with � assumed to be a random variable
having the distribution Np,k(0, �A, C) for a p×p positive definite unknown matrix �A and a k×k

positive definite known matrix C. In the mixed effects linear model, the covariance matrices � and
�A are referred to as the ‘within’ and between’ multivariate components of variance, respectively,
and we treat the estimation of the components � and �A. Although the estimation of variance
components in univariate mixed linear models have been considered extensively in the literature,
the estimation of multivariate components of variance has not been well studied primarily due to
technical difficulties. For some explanations on this topic, see Amemiya [1], Calvin and Dykstra
[3], Mathew et al. [14] and Srivastava and Kubokawa [18]. In the estimation of the ‘within’
component of variance �, in Section 3, we derive general types of truncated estimators improving
on the unbiased and/or the James–Stein minimax estimators in the general mixed effects model
(1.1). These dominance results can be derived from the results given in Section 2 by considering
a conditional argument given �i’s. In the estimation of the ‘between’ component of variance �A,
nonnegative definite estimators improving on the usual non-truncated ones can be developed by
using the Stein–Haff identity.

2. Estimation in fixed effects models

2.1. Canonical forms

To derive a canonical form of the fixed effects model (1.1) for unknown �, let us decompose A
as A = (0;A∗)HA for a k × k nonsingular matrix A∗ and an N ×N orthogonal matrix HA. Let us
decompose yHt

A and BHt
A as yHt

A = (y1, y2) and BHt
A = (B1, B2) where Ht

A is the transpose of
HA, and y1 and B1 are, respectively, p × (N − k) and q × (N − k) matrices. Then the exponent
in the joint density of y is proportional to

tr �−1(y − �B − �A)(y − �B − �A)t

= tr �−1(y1 − �B1)(y1 − �B1)
t

+tr �−1(y2 − �B2 − �A∗)(y2 − �B2 − �A∗)t.

The least squares estimator of � in terms of minimizing the quadratic form tr �−1(y1 −�B1)(y1 −
�B1)

t is given by

�̂1 = y1Bt
1(B1Bt

1)
−,

where B− is a generalized inverse of a matrix B. Using the equation Bt
1(B1Bt

1)
−B1Bt

1 = Bt
1, we

see that the quadratic form tr �−1(y1 − �B1)(y1 − �B1)
t is rewritten as

tr �−1(y1 − �̂1B1)(y1 − �̂1B1)
t + tr �−1(̂�1 − �)B1Bt

1(̂�1 − �)t

Then, the term tr �−1(y − �B − �A)(y − �B − �A)t is decomposed as

tr �−1S + tr �−1(̂�1 − �)B1Bt
1(̂�1 − �)t

+tr �−1(y2 − �B2 − �A∗)(y2 − �B2 − �A∗)t, (2.1)

where S = (y1 − �̂1B1)(y1 − �̂1B1)
t . Let q1 denote the rank of B1, and it is noted that q1 � min(q,

N − k). Assumed that q1 < N − k. Then we get the following canonical form: S, �̂1 and y2



T. Kubokawa, M.-T. Tsai / Journal of Multivariate Analysis 97 (2006) 2242–2261 2245

are mutually independently distributed as

S ∼ Wp(�, n), n = N − k − q1,

�̂1B1 ∼ Np,N−k(�B1, �, Bt
1(B1Bt

1)
−B1),

y2 ∼ Np,k(�B2 + �A∗, �, Ik). (2.2)

The canonical form (2.2) is further simplified by decomposing B1 as B1 = (B∗; 0)HB , where
B∗ is a p × q1 matrix with full rank and HB is an (N − k) × (N − k) orthogonal matrix.
Letting X = (̂�1B∗, y2), from (2.2), we have the following canonical form: S and X are mutually
independently distributed as

S ∼ Wp(�, n),

X ∼ Np,m(�, �, Im), (2.3)

where � = (�B∗, �B2 +�A∗) and m = q1 + k. The set of unknown parameters (�, �, �) or (�, �)

is denoted by � through this paper.

2.2. Dominance results

We now consider the estimation of the covariance matrix � based on S and X in the canonical
form (2.3) under the Stein loss function (1.2). One of well known estimators is the unbiased

estimator, denoted by �̂
0 = n−1S, with the risk R(�, �̂

0
) = −E[log |S�−1|] + p log n for

� = (�, �). The non-minimaxity of �̂
0

was established by James and Stein [8], who derived the

minimax estimator of the form �̂
JS = TDTt , where S = TTt , T is a lower triangular matrix with

positive diagonal elements (and hence unique), and D = diag (d1, . . . , dp) for di = (n+p + 1 −
2i)−1. The risk of �̂

JS
is given by

R(�, �̂
JS

) = −E[log |S�−1|] −
p∑

i=1

log di, (2.4)

which is smaller than R(�, �̂
0
) for any � and p�2 since −∑p

i=1 log di = ∑p
i=1 log(n + p +

1 − 2i)�p log n.

The estimators �̂
0

and �̂
JS

are based on the only statistic S, and we are interested in developing
estimators improving on them by using the information contained in the statistic X. Some domi-
nance results are provided below in the two cases of the rank m = rank (X): m�p and m < p. A

couple of estimators dominating �̂
0

and/or �̂
JS

will be derived for m�p, while we can find out

estimators dominating �̂
0

in the case of m < p.
[1] Case of m�p: Let W = XXt , and W has full rank. Let Q be a p × p nonsingular matrix

such that

S = QQt and W = Q�Qt (2.5)

where � = diag (�1, . . . , �p), �1 � · · · ��p, namely, {�1, . . . , �p} is a set of eigenvalues of
S−1W. Then we consider estimators of the form

�̂(�) = Q�(�)Qt, (2.6)
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where �(�) = diag (�1(�), . . . ,�p(�)) is a diagonal matrix of absolutely continuous func-
tions of �. This is the general form of estimators satisfying the equivariance under the scale
transformation �̂(ASAt,AWAt) = A�̂(S,W)At for any p × p nonsingular matrix A.

Kubokawa and Srivastava [12] treated a special class of (2.6), and Q in (2.5) corresponds to
W1/2P�−1/2 in their paper, where W1/2 is a symmetric half matrix of W and P is an orthogonal
matrix such that W−1/2SW−1/2 = P�−1Pt . They provided some dominance results by using
the conventional method based on a conditional distribution. We here obtain similar dominance
results for the more general class of scale equivariant estimators �̂(�) given by (2.6) by using a
new method based on the Stein–Haff identity.

For any estimator �̂(�) in (2.6), we define the truncation rule [�(�)]TR by

[�(�)]TR = min
{
�(�), (n + m)−1(Ip + �)

}
, (2.7)

where for two diagonal matrices A = diag (a1, . . . , ap) and B = diag (b1, . . . , bp), the nota-
tion min{A, B} denotes that min{A, B} = diag

(
min{a1, b1}, . . . , min{ap, bp}), which will be

used throughout the paper. That is, [�(�)]TR = diag(�TR
1 (�), . . . , �TR

p (�)) for �TR
i (�) =

min{�i (�), (n + m)−1(1 + �i )}, and the corresponding truncated estimator is of the form

�̂([�]TR) = Qdiag (�TR
1 (�), . . . ,�TR

p (�))Qt. (2.8)

Then we get the following general dominance result which will be proved in the Appendix.

Theorem 2.1. Assume that m�p. Then the truncated estimator �̂([�]TR) given by (2.8) dom-
inates the scale-equivariant estimator �̂(�) relative to the Stein loss function LS(�̂, �) if P�[[�(�)]TR �= �(�)

]
> 0 at some �.

Before applying Theorem 2.1, we provide a couple of estimators within the class �̂(�) which

improve on the unbiased estimator �̂
0

or the James–Stein estimator �̂
JS

. The following expression
of the risk is useful for this purpose.

Proposition 2.1. For the risk function R(�, �̂(�)) of the scale-equivariant estimator �̂(�) given
by (2.6), the term R(�, �̂(�)) + E[log |S�−1] is expressed by

p∑
i=1

E

⎡⎣(n − p + 2i − 1)�i − 2�i

��i

��i

− 2
∑
j>i

�i (�i − �j )

�i − �j

− log �i

⎤⎦− p. (2.9)

From Proposition 2.1, the unbiased estimator �̂
0 = Q(n−1Ip)Qt has the risk that R(�, �̂

0
) =

p log n−E[log |S�−1], and applying Theorem 2.1 to the unbiased estimator yields the improved

truncated one �̂
UTR = �̂([n−1Ip]TR) = Q min{n−1Ip, (n + m)−1(Ip + �)}Qt , which was given

by Hara [6]. Putting � = D∗ where

D∗ = diag (d∗
1 , . . . , d∗

p) for d∗
i = (n − p + 2i − 1)−1, (2.10)

we get the Stein type estimator

�̂
S = QD∗Qt,
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which has the risk R(�, �̂
S
) = −E[log |S�−1|] −∑p

i=1 E[2∑j>i �i (d
∗
i − d∗

j )/(�i − �j ) +
log d∗

i ], being smaller than the risk (2.4) of the James–Stein estimator �̂
JS

.Applying the truncation

rule to �̂
S
, from Theorem 2.1, we see that the Stein type estimator �̂

S
is minimax and improved

on by the truncated estimator

�̂
STR = �̂([D∗]TR) = Q min

{
D∗, (n + m)−1(Ip + �)

}
Qt.

Letting �H = (�H
1 , . . . ,�H

p ) for �H
i = n−1(1+�i�(�)/tr �), we have the Haff type estimator

given by

�̂
H
(�) = Q�HQt = 1

n

(
S + �(�)

tr S−1XXt XXt
)

.

From Proposition 2.1, we can write the risk difference R(�, �̂
H
(�)) − R(�, �̂

0
) as

E

[
�(�)

n

{
n − p − 1 + 2

∑p
i=1 �2

i

(
∑p

j=1 �j )2

}
−

p∑
i=1

log

(
1 + �(�)

�i∑p
j=1 �j

)]

−E

[
2

n
∑p

j=1 �j

p∑
i=1

�2
i

��(�)

��i

]
. (2.11)

Since log(1 + x)�x − x2/2 for x > 0, it is seen that the risk difference (2.11) is bounded above
by

E

[
�(�)

{
−p − 1

n
+ �(�)

2

}
− 2

n
∑p

i=1 �i

∑p

i=1
�2
i

��(�)

��i

]
,

which is smaller than or equal to zero under the conditions: (a) 0��(�)�2(p − 1)/n and (b)

�(�) is nondecreasing in �i for i = 1, . . . , p. This means that �̂
H
(�) dominates the unbiased

estimator �̂
0

under the two conditions. Applying the truncation rule to �̂
H
(�) yields the estimator

�̂
HTR

(�) = Q[�H ]TRQt which improves on �̂
H
(�), where

[�H]TR = min
{
n−1 (Ip + [�(�)/tr �]�) , (n + m)−1(Ip + �)

}
.

[2] Case of m < p: Let F = XtS−1X and write F = R�Rt for an m × m orthogonal matrix
and a diagonal matrix � = diag (�1, . . . , �m), �1 � · · · ��m. Let us consider estimators of the
form

�̂(a, �) = aS + XR�(�)RtXt, (2.12)

where a is a positive constant and �(�) = � = diag (�1(�), . . . , �m(�)) for absolutely con-
tinuous functions �i (�)’s. To improve on the estimator �̂(a, �), we consider the truncation rule
defined by

�̂(a, [�]TR) = aS + XR[�(�)]TRRtXt, (2.13)

where [�(�)]TR = [�]TR = diag (�TR
1 (�), . . . ,�TR

m (�)) and �TR
i (�) is given by

�TR
i (�) = min

{
�i , (n + m)−1 +

[
(n + m)−1 − a

]
�−1
i

}
. (2.14)

Then we get the following general dominance result which will be proved in the Appendix.
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Theorem 2.2. Assume that m < p. Then the truncated estimator �̂(a, [�]TR) given by (2.13)
dominates the scale equivariant estimator �̂(a, �) given by (2.12) relative to the Stein loss
LS(�̂, �) if P�

[[�(�)]TR �= �(�)
]

> 0 at some �.

Before applying Theorem 2.2, we want to find superior estimators within the class �̂(a, �)

given by (2.12). However, it does not seem possible to find a minimax estimator within the class.

We thus derive a couple of estimators improving on the unbiased one �̂
0
. For this purpose, we

obtain an expression of the risk of the estimator �̂(a, �).

Proposition 2.2. For the risk function R(�, �̂(a, �)) of the scale-equivariant estimator �̂(a, �)

given by (2.12), the term h(�, a, �) ≡ R(�, �̂(a, �))+E[log |S�−1]−{pna−(p−m) log a−p}
is expressed by

m∑
i=1

E

⎡⎣(n − p − 1 + 2i)�i�i − log(a + �i�i )

−2
∑
j>i

(�i�i − �j�j )�i

�i − �j

− 2 �i

�(�i�i )

��i

⎤⎦ .

Let � = C�−1 for C = diag (c1, . . . , cm). Then the term h(�, a, C�−1) of the resulting
estimator

�̂(a, C�−1) = aS + XRC�−1RtXt

has the form
∑m

i=1{(n − p − 1 + 2i)ci − log(a + ci) − 2E[∑j>i (ci − cj )�i/(�i − �j )]}. If ci’s

have the ordered relation that c1 � · · · �cm, it is seen that R(�, �̂(a, C�−1)) + E[log |S�−1] is
smaller than or equal to

pna − (p − m) log a − p +
m∑

i=1

{(n − p − 1 + 2i)ci − log(a + ci)} , (2.15)

which can be minimized by (p − m) log(n + m) +∑m
i=1 log(n − p − 1 + 2i) at

a = 1

n + m
≡ a0 and ci = m + p + 1 − 2i

(n + m)(n − p − 1 + 2i)
≡ c0i . (2.16)

Note that c0i’s satisfy the ordering c01 � · · · �c0m. When c1 = · · · = cm = b, it can be verified
that the best constants a and b are given by a = a0 and b = p/{(n+m)(n+m−p)} ≡ b0. Since∑m

i=1 log(n − p − 1 + 2i)�m log(n + m − p), it is seen that the estimator

�̂(a0, C0�
−1) = a0S + XRC0�

−1RtXt

for C0 = diag (c01, . . . , c0m) dominates the estimator �̂(a0, b0�−1). Applying the truncation rule
in Theorem 2.2, we get the truncated estimator

�̂(a0, [C0�
−1]TR) = a0S + XR min

{
C0�

−1, Im

}
RtXt, (2.17)

dominating �̂(a0, C0�−1).



T. Kubokawa, M.-T. Tsai / Journal of Multivariate Analysis 97 (2006) 2242–2261 2249

Table 1
Risks of the estimators in the case of m�p (UB and JS have the risks 1.183 and 1.079, respectively.)

� UTR S STR DTR H HTR

0 0.951 0.806 0.725 0.730 1.002 0.730
p = 4 1 1.001 0.959 0.904 0.912 1.094 0.907
m = 20 2 1.025 0.981 0.937 0.946 1.127 0.967

3 1.048 1.018 0.983 0.991 1.131 0.995
4 1.055 1.039 1.005 1.012 1.132 1.003

0 1.016 0.864 0.815 0.828 1.011 0.814
p = 4 1 1.043 0.964 0.930 0.942 1.060 0.912
m = 10 2 1.054 0.996 0.967 0.980 1.115 0.985

3 1.072 1.021 0.999 1.010 1.125 1.014
4 1.079 1.042 1.022 1.032 1.128 1.023

0 1.100 0.970 0.947 0.958 1.037 0.937
p = 4 1 1.105 0.991 0.976 0.977 1.049 0.962
m = 4 2 1.109 1.036 1.025 1.028 1.100 1.025

3 1.113 1.045 1.036 1.039 1.119 1.048
4 1.118 1.054 1.048 1.051 1.125 1.059

2.3. Simulation studies

We here investigate the risk behaviors of several proposed estimators through Monte Carlo
simulation.The reported risks are the averages of the loss functions based on 1,000,000 replications
of S and X defined by (2.3) for n = 10, p = 4 and m = 1, 3, 4, 10 and 20. We set � = Ip and
�ij = � × {(i − 1)/3 + (j − 1)/5} for � = 0, 1, 2, 3 and 4 where �ij is the (i, j)th element of �.

In the case of m�p, the estimators treated here are �̂
0 = n−1S, the Stein type minimax

estimator �̂
S = QD∗Qt , the Haff type estimator �̂

H
with �(�) = (p − 1)/n and their trun-

cated procedures �̂
UTR

, �̂
STR

and �̂
HTR

, which are denoted by UB, S, H, UTR, STR and HTR,
respectively, for the sake of simplicity. Another estimator we want to inspect is of the form

�̂
DTR = Q min

{
D∗, D∗∗(I + �)

}
Qt,

called DTR, which uses D∗∗ = diag ((n+m−p+2i−1)−1, i = 1, . . . , p) instead of (n+m)−1.
Table 1 reports the values of the risks of the estimators UB, JS, UTR, S, STR, DTR, H and HTR
for the three cases m = 4, 10 and 20, where JS means the James–Stein minimax estimator.

Table 1 reveals that the estimators S, STR, DTR and HTR are much better than JS and UTR, and
that they get more improvements for m = 20 than for m = 4 and 10. Although DTR employs the
two diagonal matrices D∗ and D∗∗, it does not provide more improvement than we expected. The
risk differences of S and STR are smaller than those of UB and UTR, and we have a question about
whether STR actually gives estimates closer to the true parameter � than S. To examine this issue,
we shall compute the probabilities that STR (resp. S) is closer to the true parameter than S (resp.
STR) and the probability that STR is identical to S, where a distance between an estimate � and
the parameter � is measured by the Stein loss function L(�) = LS(�, �) defined by (1.2). We thus
investigate the probabilities P [L(STR) < L(S)], P [L(STR) > L(S)] and P [L(STR) = L(S)].
Similar kinds of probabilities for the estimators UTR and UB are also examined. The probabilities
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are computed through the above simulation experiments for m = 4, 20 and � = 0, 1, 2, 3 and 4
and reported in the following table in percentage terms:

m = 4 m = 20
0 1 2 3 4 0 1 2 3 4

P [L(STR) < L(S)] 54.1 51.8 49.3 47.0 44.1 67.2 58.7 52.3 46.4 44.9
P [L(STR) > L(S)] 43.7 42.8 42.8 41.6 41.5 27.0 23.0 19.3 18.9 18.9
P [L(STR) = L(S)] 2.2 5.3 8.0 11.4 14.4 5.9 18.2 28.4 34.7 36.2

P [L(UTR) < L(UB)] 65.7 65.4 64.9 64.6 63.6 83.5 81.1 79.5 75.7 74.4
P [L(UTR) > L(UB)] 34.2 34.5 35.0 35.3 36.2 16.3 17.2 16.9 18.7 19.4
P [L(UTR) = L(UB)] 0.0 0.0 0.0 0.1 0.2 0.0 1.6 3.6 5.6 6.2

In all the cases investigated, it is observed that P [L(STR) < L(S)] > P [L(STR) > L(S)] and
P [L(UTR) < L(UB)] > P [L(UTR) > L(UB)], which means that the truncated estimators STR
and UTR are closer than the untruncated ones S and UB, respectively. Although the difference
between the probabilities P [L(STR) < L(S)] and P [L(STR) > L(S)] is small for m = 4,
it is significant for m = 20. As expected, the probability P [L(STR) = L(S)] is higher than
P [L(UTR) = L(UB)], and these probabilities get higher as � is larger. The chance to take that
L(STR) < L(S) is lower than P [L(UTR) < L(UB)]. It is also revealed that P [L(STR) <

L(S)] > P [L(STR) = L(S)], namely, STR actually gives estimates closer to the true parameter
� than S in the cases investigated here.

In the case of m < p, we handle the estimators �̂(a0, b0�−1), �̂(a0, C0�−1) and their truncated
procedures �̂(a0, [b0�−1]TR) and �̂(a0, [C0�−1]TR) given by (2.17), which are denoted by B*,
S*, BTR* and STR*, respectively. We also treat another estimator of the form

�̂
DTR∗ = n

n + m
TDTt + XR min

{
C0�

−1, Im

}
RtXt,

called DTR*, which employs the James–Stein estimator instead of n−1S where T and D are
defined above (2.4). Table 2 reports the values of the risks of the estimators UB, JS, B*, BTR*,
S*, STR* and DTR* for m = 1 and 3.

Table 2
Risks of the estimators in the case of m < p (The risk of UB is 1.183.)

� JS B∗ BTR* S∗ STR* DTR*

0 1.080 1.130 1.069 1.008 0.987 0.962
p = 4 1 1.080 1.130 1.074 1.018 1.002 1.015
m = 3 2 1.080 1.130 1.081 1.055 1.044 1.077

3 1.080 1.130 1.083 1.062 1.053 1.087
4 1.080 1.130 1.089 1.066 1.000 1.092

0 1.079 1.112 1.096 1.112 1.096 1.015
p = 4 1 1.079 1.112 1.098 1.112 1.098 1.031
m = 1 2 1.079 1.112 1.111 1.112 1.111 1.082

3 1.079 1.112 1.112 1.112 1.112 1.095
4 1.079 1.112 1.112 1.112 1.112 1.098



T. Kubokawa, M.-T. Tsai / Journal of Multivariate Analysis 97 (2006) 2242–2261 2251

From Table 2, it is revealed that S*, STR* and DTR* are better than the other competitors for
m = 3, but for m = 1, S* and STR* are worse than JS. This demonstrates that the risk behaviors
of S* and STR* are superior for large m close to p, but inferior for small m. Compared to S*
and STR*, the estimator DTR* has the nice risk performances for m = 1 and 3, although the
dominance property could not be shown analytically.

3. Estimation in mixed effects models

3.1. Canonical form

We begin with deriving a canonical form for the multivariate mixed effects linear model (1.1),
where � is assumed to be a random variable having the distribution Np,k(0, �A, C) for a p × p

positive definite unknown matrix �A and a k × k positive definite known matrix C. From (2.1),
it follows that the exponent in the joint density of y and � is proportional to tr �−1(y − �B −
�A)(y − �B − �A)t + tr �−1

A �C�t = tr �−1S1 + tr �−1(̂�1 − �)B1Bt
1(̂�1 − �)t + J∗, where J∗ =

tr �−1(y2 − �B2 − �A∗)(y2 − �B2 − �A∗)t + tr �−1
A �C�t . Let �∗ = �C1/2 for a symmetric half

matrix C1/2 of C, namely C = (C1/2)2. Consider the spectral decomposition C−1/2A∗A∗tC−1/2 =∑�
i=1 �iEi , where �1, . . . , �� are positive eigenvalues of C−1/2A∗A∗tC−1/2, and E1, . . . , E� are

idempotent matrices such that
∑�

i=1 rank (Ei ) = k and
∑�

i=1 Ei = Ik . Then,

J∗ =
�∑

i=1

tr (� + �i�A)−1(y2 − �B2)Ei (y2 − �B2)
t

+
�∑

i=1

tr (�i�
−1 + �−1

A )[�∗ − (�i�
−1 + �−1

A )−1√�i�
−1(y2 − �B2)]

×Ei[�∗ − (�i�
−1 + �−1

A )−1√�i�
−1(y2 − �B2)]t. (3.1)

Hence, y2 in (2.1) is decomposed as follows: y2E1, . . . , y2E� are mutually independently dis-
tributed as y2Ei ∼ Np,k(�B2Ei , � + �i�A, Ei ) for i = 1, . . . , �. Let �̂2 be the least squares
estimator of � in terms of minimizing the quadratic form (y2 − �B2)(y2 − �B2)

t , and �̂2 is given
by �̂2 = y2Bt

2(B2Bt
2)

−. Then the first term in the r.h.s. of the Eq. (3.1) can be rewritten as

�∑
i=1

tr (� + �i�A)−1(y2 − �̂2B2)Ei (y2 − �̂2B2)
t

+
�∑

i=1

tr (� + �i�A)−1(̂�2 − �)B2EiBt
2(̂�2 − �)t

+2
�∑

i=1

tr (� + �i�A)−1(y2 − �̂2B2)EiBt
2(̂�2 − �)t. (3.2)

Let Ti = (y2 − �̂2B2)Ei (y2 − �̂2B2)
t and mi = rank [(Ik − Bt

2(B2Bt
2)

−B2)Ei] for i = 1, . . . , �.
Note that

∑�
i=1 mi = k − q2 for q2 = rank (B2Bt

2). It is also noted that there exists a p × mi

matrix Zi such that Ti = ZiZt
i and

Zi ∼ Np,mi
(0, � + �i�A, Imi

).
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From (3.2), it is seen that Z1, . . . , Z� are mutually independent. Let us define S2 and n2 by

S2 =
�∑

i=1

Ti = (y2 − �̂2B2)(y2 − �̂2B2)
t and n2 =

�∑
i=1

mi = k − q2. (3.3)

Then, S2 is expressed by S2 = ∑�
i=1 ZiZt

i = ZZt for the p × n2 matrix Z = (Z1, . . . , Z�). In
general, it is noted that S2 is not independent of �̂2. In the balanced case that �1 = · · · = �� = �,
however, S2 and �̂2 are mutually independent and

S2 ∼ Wp(n2, ��A + �), (3.4)

�̂2B2 ∼ Np,k(�B2, � + ��A, Bt
2(B2Bt

2)
−B2).

Using the statistics S and S2, we want to construct improved estimators of the multivariate ‘within’
and ‘between’ components of variance � and �A.

3.2. Dominance results

[1] Estimation of �: We first consider the estimation of the ‘within’ component of variance
� in the mixed linear model relative to the Stein loss (1.2). When � is estimated based on the
statistics S and S2, the two cases are treated, namely, n2 �p and n2 < p for n2 given in (3.3).
When n2 �p, S2 has full rank, and the same arguments as in the case of m�p in Section 2 are
used to develop the corresponding improved estimators. Let Q be a p × p matrix such that

S = QQt and S2 = Q�Qt, (3.5)

where � = diag (�1, . . . , �p), �1 � · · · ��p, and we consider the estimator �̂(�) = Q�(�)Qt

and the truncated one

�̂([�]TR) = Q[�(�)]TRQtQ min
{
�(�), (n + n2)

−1(Ip + �)
}

Qt, (3.6)

for �(�) and [�(�)]TR given by (2.6) and (2.8) where W and m in (2.5) and (2.7) are replaced
by S2 and n2 in (3.3). Then the dominance property of �̂([�]TR) over �̂(�) can be verified from
Theorem 2.1. In fact, note that for i = 1, . . . , �, Zi can be expressed as using the mixture model

Zi |�i ∼ Np,mi
(�i , �, Imi

) and �i ∼ Np,mi
(0, �i�A, Imi

),

where �i is a p × mi matrix. Let � = (�1, . . . , ��), and given �, Z is conditionally distributed as
Z|� ∼ Np,n2(�, �, In2). This conditional model given � corresponds to the fixed effects model
(2.3), and the dominance result follows from Theorem 2.1.

Corollary 3.1. Assume that n2 �p. Then the general scale-equivariant estimator �̂(�) is im-
proved on by the truncated one �̂([�]TR) relative to the Stein loss function LS(�̂, �) if P[[�(�)]TR �= �(�)

]
> 0 at some � for � = (�, �A, �).

Srivastava and Kubokawa (1999) derived similar dominance results in the special case that
�1 = · · · = �� = � and Q = S1/2

2 P�−1/2 for an orthogonal matrix P such that S−1/2
2 SS−1/2

2 =
P�−1Pt . It shows that the results of Srivastava and Kubokawa [18] can be extended, not only to
the general mixed effects models, but also to the general class of scale-equivariant estimators.
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All the dominance results which follow from Theorem 2.1 still hold in the mixed effects model
by replacing W and m with S2 and n2. For example, applying Corollary 3.1 to the unbiased

estimator �̂
0 = n−1S and the Stein type minimax estimator �̂

S = QD∗Qt gives the REML
(restricted maximum likelihood) estimator and the truncated Stein type estimators, respectively,
given by

�̂
REML = Q min

{
n−1Ip, (n + n2)

−1(Ip + �)
}

Qt,

�̂
STR = Q min

{
D∗, (n + n2)

−1(Ip + �)
}

Qt, (3.7)

where D∗ is defined by (2.10) for m = n2.
The method and the results of Srivastava and Kubokawa [18] requests that n2, the rank of S2,

is greater than or equal to the dimension p. To handle the case of n2 < p, we here suggest the
following two approaches. One approach to resolving the problem is to use the results given in
the case of m < p in Section 2. Let F = ZtS−1Z and write F = R�Rt for an n2 × n2 orthogonal
matrix and a diagonal matrix � = diag (�1, . . . , �n2), �1 � · · · ��n2 . Let us consider estimators
of the form

�̂(a, �) = aS + ZR�(�)RtZt,

�̂(a, [�]TR) = aS + ZR[�(�)]TRRtZt,

where a is a positive constant, and �(�) and [�(�)]TR are given around (2.12), (2.13) and (2.14)
by replacing X and m with Z and n2. Using the conditional argument given �, we can get the
following dominance result from Theorem 2.2.

Corollary 3.2. Assume that n2 < p. Then the scale-equivariant estimator �̂(a, �) is dom-
inated by the truncated one �̂(a, [�]TR) relative to the Stein loss function LS(�̂, �) if P�[[�(�)]TR �= �(�)

]
> 0 at some �.

Using the arguments below Theorem 2.2 with replacing m by n2, we can apply Corollary 3.2
to �̂(a0, b0�−1) for a0 = 1/(n + n2) and b0 = p/{(n + n2)(n + n2 − p)} and �̂(a0, C0�−1) for
C0 = diag (c01, . . . , c0n2) given by (2.16), and obtain their truncated estimators

�̂(a0, [b0�
−1]TR) = a0S + ZR min

{
b0�

−1, In2

}
RtZt,

�̂(a0, [C0�
−1]TR) = a0S + ZR min

{
C0�

−1, In2

}
RtZt.

Another approach to handling the case of n2 < p is to combine the quadratic statistics. As seen

in (3.1) and (3.2), the quadratic statistic y2yt
2 is decomposed into S2 and �̂2B2Bt

2�̂
t
2, namely,

y2yt
2 = S2 + �̂2B2Bt

2�̂
t
2,

which has the rank k. When k�p, we can apply Theorem 2.1 to provide the result in Corollary

3.1 by replacing S2 and n2 with y2yt
2 and k. If k < p, then combining y2yt

2 and �̂1B1Bt
1�̂

t
1 in (2.2)

yields

XXt = y2yt
2 + �̂1B1Bt

1�̂
t
1,

with the rank m = k + q1. When m�p, Theorem 2.1 can be used to get improved procedures.
Otherwise, we can use the results given in the case m < p in Section 2.
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[2] Estimation of �A: We next consider the estimation of the multivariate ‘between’ compo-
nent of variance �A in the context of the simultaneous estimation of the ‘within’ and ‘between’
components (�, �A). Especially, we here treat the balanced case that �1 = · · · = �� = �, since it
is intractable to deal with the general cases of �i’s. Then from (3.4), S2 is distributed as

S2 ∼ Wp(�2, n2) for �2 = � + ��A,

and it is assumed that n2 �p.An unbiased estimator of �A is given by �̂
0
A = �−1

{
n−1

2 S2 − n−1S
}

,

which has a drawback of taking negative values with a positive probability. This is why we cannot
employ the Stein loss LS(�̂A, �A) for the function LS(·, ·) given by (1.2). Instead of the Stein
loss, Srivastava and Kubokawa [18] proposed the use of the Kullback–Leibler loss function

LKL(�̂, �̂A; �, �A) = nLS(�̂, �) + n2LS(�̂ + ��̂A, � + ��A)

= nLS(�̂, �) + n2LS(�̂2, �2) (3.8)

for �̂2 = �̂ + ��̂A, and considered the simultaneous estimation of (�, �A). Since the estimation
of � in terms of the risk R1(�; �̂1) = E[LS(�̂, �)] has been treated previously, we address the
problem of estimating �2 in terms of the risk R2(�; �̂2) = E[LS(�̂2, �2)].

The general class of scale-equivariant estimators of �2 are given by �̂2(�) = Q�(�)Qt where
Q and � are defined by (3.5), and �(�) = diag (�1(�), . . . , �p(�)). The use of the information

that ��� + ��A = �2 leads to the improvement on �̂2(�) by the truncated estimator

�̂2([�]TR) = Q[�(�)]TRQt, (3.9)

for [�(�)]TR = max
{
�(�), (n + n2)

−1(Ip + �)
}
, where the notation max{A, B} denotes that

max{A, B} = diag
(
max{a1, b1}, . . . , max{ap, bp}) for two diagonal matrices A = diag (a1, . . . ,

ap) and B = diag (b1, . . . , bp). The following proposition can be proved by the same arguments
as in the proof of Theorem 2.1 based on the Stein–Haff identity.

Proposition 3.1. Assume that n2 �p and �1 = · · · = ��. Then the scale-equivariant estimator
�̂2(�) is dominated by the truncated one �̂2([�]TR) relative to the Stein loss function LS(�̂2, �2)

if P� [[�(�)]TR �= �(�)] > 0 at some �.

From (3.6) and (3.9), we obtain the truncated estimator �̂
TR
A of �A, given by

�̂A([�]TR, [�]TR) = 1

�
Q
[
[�]TR − [�]TR

]
Qt,

which is always nonnegative definite. Combining Corollary 3.1 and Proposition 3.1 gives the
following dominance result.

Corollary 3.3. Assume that n2 �p. In the framework of the simultaneous estimation of (�, �A),
a scale-equivariant estimator (�̂(�), �̂A(�, �)) for �̂A(�, �) = �−1Q{�−�}Qt is improved
on by the truncated one (�̂([�]TR), �̂A([�]TR, [�]TR)) relative to the Kullback–Leibler loss
LKL(�̂, �̂A; �, �A) if the two estimators are different with a positive probability.

Applying Proposition 3.1 to the unbiased estimator �̂
0
2 = n−1

2 S2 = Q(n−1
2 �)Qt yields the

improved truncated one �̂2([n−1
2 �]TR) = Q max{n−1

2 �, (n + n2)
−1(Ip + �)}Qt , which leads to
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the REML estimator of the ‘between’ component of variance �A, given by

�̂
REML
A = 1

�

{
�̂

TR
2 − �̂

REML
}

= 1

�
max

{
n−1

2 S2 − n−1S, 0
}

.

We thus see that the REML estimator (�̂
REML

, �̂
REML
A ) dominates the unbiased one (�̂

0
, �̂

0
A).

It can be shown that a Stein type minimax estimator of �2 is given by �̂
S
2 = QD�Qt , where

D = diag (d1, . . . , dp) for di = 1/(n2 + p + 1 − 2i). Applying Proposition 3.1 produces the
improved truncated one �STR

2 = Q max{D�, (n + n2)
−1(Ip + �)}Qt , leading to the estimator of

�A:

�̂
STR
A = 1

�

{
�̂

STR
2 − �̂

STR
}

= 1

�
Q max

{
D� − D∗, 0

}
Qt. (3.10)

It can be observed that (�̂
STR

, �̂
STR
A ) dominates the set of the James–Stein estimators as well as

(�̂
0
, �̂

0
A).

Although we would get similar dominance results for �A in the general cases of �1, . . . , ��, it
is intractable to treat the cases due to technical difficulty.

4. Concluding remarks

In this paper, we have developed the truncation rules which provide truncated estimators domi-
nating the general scale equivariant estimators. Although applying the truncation rules to ordinary
types of estimators yields the improved estimators having good risk behaviors, such truncated
estimators have theoretical drawbacks of inadmissibility. Alternative methods are the Bayesian
rules, and the most interesting issue is to find prior distributions such that the resulting Bayes
estimators dominate the James–Stein minimax estimator. Yang and Berger [22] and Berger et al.
[2] derived the reference priors and proposed the use of the Bayes estimators against the refer-
ence priors. Although the Bayes estimator of Yang and Berger [22] is not in the class of scale
equivariant estimators, some types of reference priors in Berger et al. [2] will enjoy the scale
equivariant property. It would be of great interest to investigate dominance properties of their
Bayes estimators, which will be studied in a future.

Appendix A.

We here provide the proofs of the theorems and the propositions based on the Stein–Haff
identity due to Stein [21] and Haff [4], which is described below. For the Kronecker delta �ij and
S = (sij ), let us define the differential operator dS

ij by dS
ij = 2−1

(
1 + �ij

)
�/�sij , and denote

DS = ( dS
ij ). Let G(S) = (gij (S)) be a p × p matrix of absolutely continuous functions of S, and

define DSG(S) = ([DSG(S)]ij ) by [DSG(S)]ij =∑p
c=1 dS

icgcj (S). Then the Stein–Haff identity
is given by

E
[
tr G(S)�−1

]
= E

[
(n − p − 1)tr G(S)S−1 + 2tr [DSG(S)]

]
. (A.1)
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The notations dW
ij and DW are similarly defined for the statistic W. For Q and � defined by (2.5),

the following calculus is very helpful.

tr DSQ�(�)Qt =
p∑

i=1

⎧⎨⎩p�i − �i

��i

��i

−
∑
j>i

�i�i − �j�j

�i − �j

⎫⎬⎭ , (A.2)

tr DW Q�(�)Qt =
p∑

i=1

⎧⎨⎩��i

��i

+
∑
j>i

�i − �j

�i − �j

⎫⎬⎭ , (A.3)

tr DW [UT] = tr [DW U]T + tr Ut[DW Tt], (A.4)

where U and T are p × p matrices of functions of S. Eqs. (A.2) and (A.3) are from Loh [13] and
Konno [9], and the Eq. (A.4) is from Haff [4].

Proof of Theorem 2.1. Since the estimators �̂(�) and �̂([�]TR) are scale-equivariant, we can
assume that � = Ip without any loss of generality. The risk difference � ≡ R(�, �̂(�)) −
R(�, �̂([�]TR)) is written as

� = E
[
tr Q{� − [�]TR}Qt

]
+ E

[
tr {Ip − �{[�]TR}−1

]
+E

[
tr �{[�]TR}−1 − log |�{[�]TR}−1| − p

]
= I1 + I2 + I3. (A.5)

From the nonnegativeness of the loss function, it follows that I3 �0. We shall show that I1+I2 �0.
To evaluate the first term I1, we need to write the expectation E[tr Q�(�)Qt] in the integral

form as

E[tr Q�(�)Qt]
= c0(�)

∫ ∫
[tr Q�(�)Qt]|S|(n−p−1)/2 exp

{−tr (S + XXt − 2X�t)/2
}

dX dS

= c0(�)

∫ ∫
[tr Q�(�)Qt]|S|(n−p−1)/2 exp

{−tr (S + XXt)/2
}

×
∫

O(m)

exp
{
tr XO�t/2

}
d	(m)(O) dX dS, (A.6)

where d	(m)(O) denotes an invariant probability measure on the group O(m) of m×m orthogonal
matrices, and c0(�) is the normalizing function. The second equality in (A.6) can be seen from
the fact that XXt is invariant under the transformation X → XO for any m×m orthogonal matrix
O. A basic property of zonal polynomials gives that∫

O(m)

exp
{
tr XO�t/2

}
d	(m)(O) =

∑



�(m)

 C


(
��tXXt) ,

where �(m)

 is given in James [7] and C
(Z) denotes the normalized zonal polynomials of a pos-

itive definite matrix Z of order p corresponding to partitions 
 = {
1, . . . , 
p} so that (tr Z)k =∑
{
:
1+···+
p=k} C
(Z) for all k = 0, 1, 2, . . .. Making the transformations S → OSOt and

W → OWOt for a p × p orthogonal matrix O, we see that the last expression in (A.6) is
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rewritten by

c0(�)

∫ ∫
[tr Q�(�)Qt]|S|(n−p−1)/2 exp

{−tr (S + XXt)/2
}

×
∑



�(m)



∫
O(p)

C
(��tOXXtOt) d	(p)(O) dS dX. (A.7)

By using the property of zonal polynomials given by∫
O(p)

C
(��tOXXtOt) d	(p)(O) = C
(��t)C
(XXt)/C
(Ip),

the quantity in (A.7) is expressed by

c1(�)

∫ ∫
[tr Q�(�)Qt]

∑



�(m)



C
(��t)C
(W)

C
(Ip)

×|S|(n−p−1)/2|W|(m−p−1)/2 exp {−tr (S + W)/2} dS dW, (A.8)

where c1(�) is the normalizing function. When S and W are mutually independently distributed
as S ∼ Wp(n, I) and W ∼ Wp(m, I), the joint density of (S,W) is given by

f∗(S,W) = c∗|S|(n−p−1)/2|W|(m−p−1)/2 exp {−tr (S + W)/2}
for the normalizing constant c∗. Let the notation E∗[·] denote an expectation with respect to the
density f∗(S,W), and we have the expression that

E[tr Q�(�)Qt] = E∗[tr Q�(�)Qt · c(W)],
where

c(W) = c1(�)

c∗

∑



�(m)



C
(��t)C
(W)

C
(Ip)
.

Letting G = diag (g1, . . . , gp) = {� − [�]TR}(I + �)−1 and using the notation E∗[·], we can
rewrite I1 as

I1 = E∗[tr QGQtc(W)] + E∗[tr QG�Qtc(W)] = I11 + I12.

The Stein–Haff identity (A.1) with respect to S and Eq. (A.2) are useful for evaluating I11 as

I11 = E∗
[
(n − p − 1)tr QGQtc(W)S−1 + 2 tr DS[QGQtc(W)]

]
=

p∑
i=1

E∗

⎡⎣(n − p − 1)gic(W) + 2

⎧⎨⎩pgi − �i

�gi

��i

−
∑
j>i

�igi − �j gj

�i − �j

⎫⎬⎭ c(W)

⎤⎦ .

(A.9)

On the other hand, applying the Stein–Haff identity with respect to W with the density f∗(S,W)

gives that

I12 = E∗[(m − p − 1) tr QG�Qtc(W)W + 2 tr DW [QG�Qtc(W)]].
From (A.4), it is seen that

tr DW [QG�Qtc(W)] = {tr DW [QG�Qt]}c(W) + tr QG�QtDW [c(W)Ip],
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so that from (A.3), I12 is evaluated as

I12 =
p∑

i=1

E∗
⎡⎣(m − p − 1)gic(W) + 2

⎧⎨⎩�(�igi)

��i

+
∑
j>i

�igi − �j gj

�i − �j

⎫⎬⎭ c(W)

⎤⎦
+2E∗ [tr QG�QtDW [c(W)Ip]] . (A.10)

Combining (A.9) and (A.10), we observe that if we can prove the inequality

tr QG�QtDW [c(W)Ip]�0, (A.11)

then I1 can be evaluated as

I1 �E∗[(n + m) tr Gc(W)] = E[(n + m) tr {� − [�]TR}(I + �)−1]. (A.12)

Combing (A.5) and (A.12), we get the following inequality for the quantity I1 + I2:

I1 + I2 �
p∑

i=1

E

[{
�i − min

(
�i ,

1 + �i

n + m

)}{
n + m

1 + �i

+ 1

min(�i , (1 + �i )/(n + m))

}]
,

which can be seen to be zero. Since I3 �0, we can conclude that � = I1 + I2 + I3 �0 for any �
if the inequality (A.11) is verified.

To complete the proof, we shall prove the inequality (A.11). Since the zonal polynomials C
(W)

are polynomials of the eigenvalues �1, . . . , �p (�1 � · · · ��p) ofW with nonnegative coefficients,
we can put c∗(L) = c(W) for L = diag (�1, . . . , �p), and note that

�
��i

c∗(L) ≡ c∗
i (L)(= c∗

i )�0.

Let H = (hij ) be a p × p orthogonal matrix such that W = HLHt . From the calculus given by
Konno [9], it can be seen that

dW
ij �s = hishjs . (A.13)

Using Eq. (A.13), we get that

dW
ij c∗(L) =

p∑
s=1

( dW
ij �s)

�
��s

c∗(L) =
p∑

s=1

c∗
s hishjs,

which implies that DW [c(W)Ip] = H diag (c∗
1, . . . , c∗

p)Ht . Hence, the l.h.s. of (A.11) is expressed
by

tr QG�QtDW [c(W)Ip] = tr QG�QtH diag (c∗
1, . . . , c∗

p)Ht

=
p∑

i=1

p∑
j=1

�2
ij gi�ic

∗
i ,

which is nonnegative, where (�ij ) = HtQ. Thus, the proof of Theorem 2.1 is complete. �

Proposition 2.1 can be easily proved by using the Stein–Haff identity (A.1) and Eq. (A.2)
although the details are omitted here.
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We next prove Theorem 2.2. Let ∇X be the differential operator ∇X = (�/�Xij ). We shall use
the Stein identity due to Stein [20], given by

E[tr (X − �)G(X)] = E[tr �∇XG(X)] (A.14)

for an m × p matrix G(X) of functions of X. For F = (fij ) = XS−1Xt , let DF = ( dF
ij ) where

dF
ij = 2−1(1 + �ij )�/�fij . The following calculus due to Konno [9] is also very helpful:

∇XU = 2S−1XDF U, (A.15)

tr ∇X(UXt) = p tr U + tr Xt∇XU, (A.16)

XtDS(XT) = −FDF (FT) + 2−1(m + 1)FT, (A.17)

for m × m matrices T and U which are functions of F.

Proof of Theorem 2.2. Since the estimators �̂(a, �) and �̂(a, [�]TR) are scale-equivariant, we
can assume that � = Ip without any loss of generality. The risk difference � ≡ R(�, �̂(a, �))−
R(�, �̂(a, [�]TR)) is written as

� = E
[
tr XR{� − [�]TR}RtXt

]
+ E

[
tr {Im − (aIm + ��)(aIm + �[�]TR)−1}

]
+E

[
tr B(�) − log |B(�)| − m

]
= I1 + I2 + I3, (A.18)

for B(�) = (aIm + ��)(aIm + �[�]TR)−1. From the nonnegativeness of the loss function, it
follows that I3 �0. We shall show that I1 + I2 �0.

To evaluate the first term I1, we can use the same arguments as given between (A.6) and (A.8)
in the proof of Theorem 2.1 and write I1 as

I1 = c0(�)

∫ ∫ [
tr XR{� − [�]TR}RtXt

]∑



�(p)



C
(�t�)C
(XtX)

C
(Im)

×|S|(n−p−1)/2 exp
{−tr (S + XtX)/2

}
dS dX.

When S and X are mutually independently distributed as S ∼ Wp(n, I) and X ∼ Np,m(0, Ip, Im),
the joint density of (S, X) is given by

f∗(S, X) = c∗|S|(n−p−1)/2 exp
{−tr (S + XtX)/2

}
for the normalizing constant c∗. Let the notation E∗[·] denote an expectation with respect to the
density f∗(S, X), and we have the expression that

I1 = E[tr XR{� − [�]TR}RtXt] = E∗[tr XR{� − [�]TR}RtXt · c(XtX)],
where

c(XtX) = c1(�)

c∗

∑



�(m)



C
(��t)C
(XtX)

C
(Ip)
.

Letting G = diag (g1, . . . , gp) = {� − [�]TR}(I + �)−1 and using the notation E∗[·], we can
rewrite I1 as

I1 = E∗[tr XRGRtXtc(XtX)] + E∗[tr XRG�RtXtc(XtX)] = I11 + I12.
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Using the Stein–Haff identity (A.1) and Eq. (A.17), we see that I11 can be rewritten by

I11 = E∗
[
(n − p − 1)tr XRGRtXtc(XtX)S−1 + 2 tr DS[XRGRtXt]c(XtX)

]
= E∗

[
(n + m − p)tr G�c(XtX) − 2 tr FDF [FRGRt]c(XtX)

]
. (A.19)

For I12, on the other hand, we use the Stein identity (A.14) for X ∼ Np,m(0, Ip, Im) in the
expectation E∗[·] and get that

I12 = E∗[ptr RG�Rtc(XtX)] + E∗[tr Xt∇X[RG�Rtc(XtX)]], (A.20)

where Eq. (A.16) is used at the last equality in (A.20). Using Eq. (A.15), we see that the term
tr Xt∇X[RG�Rtc(XtX)] is rewritten as

2 tr F(DF [RG�Rt])c(XtX) + tr Xt(∇X[c(XtX)Im])RG�Rt. (A.21)

Combining (A.19), (A.20) and (A.21) yields that

I1 = E∗
[
(n + m)tr G�c(XtX)

]+ E∗
[
tr Xt(∇X[c(XtX)Im])RG�Rt]

� E[(n + m)tr G�], (A.22)

if we can show the inequality tr Xt(∇X[c(XtX)Im])RG�Rt �0, which can be shown by using the
same arguments as in the proof of (A.11). Combining (A.18) and (A.22), we observe that

I1 + I2 �
m∑

i=1

E

[
(�i − �TR

i )

{
n + m

1 + �i

− 1

a + �i�
TR
i

}
�i

]
,

which is equal to zero as seen from the definition of �TR
i . Therefore the proof of Theorem 2.2 is

complete. �

Proof of Proposition 2.2. The risk function of the estimator �̂(a, �) is written by

R(�, �̂(a, �)) = E
[
tr (aS + XR�RtXt)�−1 − p log a

]
− p

−E
[
log |Ip + a−1S−1/2XR�RtXtS−1/2| + log |S�−1|

]
. (A.23)

It is easy to see that E[tr aS�−1] = pna and that |Ip + a−1S−1/2XR�RtXtS−1/2| = |Im +
a−1��|. Applying the Stein–Haff identity (A.1) and using Eq. (A.17), we observe that E[tr
XR�RtXt�−1] = E

[
(n + m − p) tr �� − 2 tr FDF [R��Rt]]. From Stein [4], it follows that

DF [R�Rt] = R�(1)Rt where �(1) = diag (�(1)
1 , . . . ,�(1)

m ) for �(1)
i = 2−1∑

j �=i (�i − �j )/(�i − �j ) + ��i/��i . Hence we get the expression in Proposition 2.2. �
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