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Ultrahigh energy cosmic ray (UHECR) protons interacting with the cosmic microwave background (CMB)
produce UHE electrons and gamma-rays that in turn initiate electromagnetic cascades on CMB and
infrared photons. As a result, a background of diffuse isotropic gamma-radiation is accumulated in the
energy range E � 100 GeV. The Fermi-LAT Collaboration has recently reported a measurement of the
extragalactic diffuse background finding it less intense and softer than previously measured by EGRET. We
show that this new result constrains UHECR models and the flux of cosmogenic neutrinos. In particular,
it excludes models with cosmogenic neutrino fluxes detectable by existing neutrino experiments, while
next-generation detectors as e.g. JEM-EUSO can observe neutrinos only for extreme parameters.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

The origin of ultrahigh energy cosmic rays (UHECRs) is not
yet established despite more than 50 years of research. Natural
candidates as UHECR primaries are extragalactic protons from as-
trophysical sources. In this case, interactions of UHE protons with
the cosmic microwave background (CMB) leave their imprint on
the UHECR energy spectrum in the form of the Greisen–Zatsepin–
Kuzmin (GZK) cutoff and a pair-production dip [1].

The GZK cutoff is a steepening of the proton spectrum at the
energy EGZK ≈ (4–5) × 1019 eV, caused by photo-pion production
on the CMB. Such a steepening has been observed by the HiRes [2]
and the Auger Collaboration [3], but its real cause is still unclear.

An immediate consequence of the dominance of extragalactic
protons in the CR flux and their interaction with CMB photons
is the existence of ultrahigh energy (“cosmogenic”) neutrinos pro-
duced by charged pion decays, as suggested first in Ref. [4].

Another signature for extragalactic protons is a pair-production
dip [5,6] in the CR flux around 5×1018 eV, which is clearly seen in
the experimental data. Photons and positrons from pion decay and
p + γCMB → p + e+ + e− pair-production initiate electromagnetic
cascades on photons from the CMB and the extragalactic back-
ground light (EBL), dumping all the energy injected into cascade
particles below the pair-production threshold at ∼ 100 GeV.

Clearly, the production of neutrinos by UHE protons is thus
intimately tied to the one of photons and electrons, and both de-
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pend in turn on the flux of primary cosmic rays. While UHE pho-
tons and electrons start electromagnetic cascades by scattering on
photons from the EBL, neutrinos reach us suffering no collisions.
Therefore, the measurement of the diffuse extragalactic gamma-
ray background (EGRB) can be used to impose a strict upper limit
on the possible diffuse high energy neutrino flux, as suggested first
in Ref. [7].

We derive in this work an upper limit on the flux of cosmo-
genic neutrinos assuming that the primary UHECR particles are
protons. In case that all primaries or part of them are nuclei, the
cosmogenic neutrino flux is lower than for a pure proton compo-
sition [8]. Thus our assumption of a pure proton composition is
justified, since we aim at deriving an upper limit on the cosmo-
genic neutrino flux. Note that the HiRes data [2] agree with a pure
proton composition at E � 1 × 1018 eV, while the mass composi-
tion deduced from the Auger data indicates the presence of heavier
nuclei in the primary UHECR flux [3]. In the latter case, the maxi-
mally allowed cosmogenic neutrino flux would be below the upper
limit derived for a pure proton primary flux in this Letter.

In the present work, we use a recently reported measure-
ment [9] of the EGRB by Fermi-LAT to constrain UHECR models.
We show that the observed fast decrease of the EGRB with en-
ergy, J(E) ∝ E−2.41, already constrains such models. In particular,
versions of the dip model with strong redshift evolution contradict
the Fermi data, while this model without or with weak redshift
evolution remains viable. Moreover, the Fermi data allows us to
derive a strong upper limit on the diffuse UHE neutrino flux. As
a result, we conclude that the detection of cosmogenic neutrinos
requires to increase the sensitivity of UHE neutrino experiments
compared to current levels. As it is demonstrated below, the maxi-
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mal energy density of cascade radiation ωmax
cas ≈ 5.8×10−7 eV/cm3

allowed by the Fermi-LAT data can be used to select viable UHECR
models without explicitly calculating electromagnetic cascade pro-
cesses.

2. Analytical calculations

The two basic processes driving an electromagnetic cascade are
pair production (PP) γ γb → e+e− and inverse Compton (IC) scat-
tering e±γb → e±γ on background photons γb. The cascade de-
velops very fast with a minimal interaction length lint(E) ∼ 10 kpc
until it reaches the pair creation threshold. From that point on,
electrons emit photons in the Thomson regime while photons stop
interacting. Their spectrum can be estimated analytically [7,10] in
terms of the production rate of the cascade photons Q cas

γ (E) per
unit volume as

Q cas
γ (E) =

{
K (E/εX )−3/2 for E � εX ,

K (E/εX )−2 for εX � E � εa,
(1)

with a steepening at E > εa . Here, εa is the minimal absorp-
tion energy of a cascade photon scattering on the EBL, and εX

is the energy of a photon emitted by an electron/positron (e X +
γ → e′ + γX ), which is in turn produced by a photon γa (via
γa + γEBL → e+

X + e−
X ) with the minimal absorption energy εa . The

energy spectrum (1) of the cascade radiation typically extends up
to ∼ 100 GeV. The constant K in Eq. (1) defines the normaliza-
tion of the production rate via K = Q cas

γ (εX ). The two energies εa

and εX are related to each other as εX = 1/3(εa/me)
2εcmb [7,10],

where εcmb = 6.35 × 10−4 eV is the mean energy of CMB photons.
We can account for the absorption of cascade photons on the

EBL, integrating their production rate Q cas
γ (E) over the volume of

the universe,

J cas
abs(E) = c

4π

∫
dV

Q cas
γ (E)

4πr2c
exp

(
− r

lint(E)

)
. (2)

Integrating the rate from r = 0 up to cH−1
0 we obtain the re-

lation between the absorbed flux J cas
abs(E) and the unabsorbed flux

J cas
γ (E),

J cas
abs(E) = J cas

γ (E)
lint(E)

cH−1
0

[
1 − exp

(
− cH−1

0

lint(E)

)]
. (3)

Here, H0 denotes the present value of the Hubble parameter.
The cascade energy density ωcas at the present epoch is calcu-

lated as

ωcas = 4π

c

∫
dE E J cas

abs(E). (4)

In Fig. 1, we show the measurement of the EGRB by Fermi-LAT [9]
(black circles with error bars) together with the maximally allowed
photon flux (solid red line) derived analytically. More precisely, we
have determined the maximally allowed photon flux requiring that
the curve just touches the lower end of the error bars of the Fermi-
LAT data. The corresponding bound on the cascade energy density
is ωmax

cas = 5.8 × 10−7 eV/cm3.
The bound on ωmax

cas derived by us can be used to select in a
simple way viable UHECR models.

We limit our consideration to pure proton-composition models,
which are described by the generation index αg , the maximum
acceleration energy Emax and the cosmological evolution of the
sources parametrized by (1 + z)m with fixed m and maximal red-
shift zmax. The quantity of interest, the space density of protons
np(E, z) at each cosmological epoch, is calculated as in Ref. [6] in
the continuous energy-loss approximation. To evaluate the role of
Fig. 1. Fermi-LAT EGRB spectrum (black circles with error bars) in comparison with
maximally allowed fluxes given by analytical (solid red line) and MC calculations
(red stars for αg = 2.6, and blue stars αg = 2.0). All three curves are normalized by
the highest energy point of the Fermi spectrum. The MC EGRB fluxes are calculated
for the following values of the parameters: Emax = 1021 eV, zmax = 2, m = 0 and
αg = 2.6 or 2.0. Also shown two MC spectra with the same parameters as above,
but normalized to the HiRes proton spectrum (red boxes for αg = 2.6 and blue
boxes for αg = 2.0). The plot illustrates the universality of the cascade spectrum and
reasonably good agreement between MC and analytical results. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

fluctuations in p + γ → π + all scattering, the density of protons
in Ref. [6] was computed also solving the kinetic equation (16). It
was found that for Emax = 1 × 1021 eV both methods give practi-
cally identical results, while for Emax = 1 × 1023 eV the difference
does not exceed 15%. In the calculations of this work, the UHE pro-
ton fluxes at z = 0 are normalized to fit the HiRes spectra [2].

The UHE diffuse neutrino flux at highest energies depends
mainly on αg and Emax. The generation index is limited as 2.0 �
αg � 2.7, by the following reason: Let us choose first the minimum
possible index αg = 2.0. In this case, the calculated extragalactic
UHECR flux is very flat and can explain the observed spectrum
only above E ∼ (0.5–1) × 1019 eV, i.e. above the ankle. Increasing
αg decreases the predicted transition energy between galactic and
extragalactic UHECRs, until for αg ≈ 2.6–2.7 this energy becomes
lower than 1 × 1018 eV, where, as observations show, heavy nuclei
dominate.

UHECR models allowed by Fermi-LAT data, i.e. leading to a cas-
cade energy density ωcas below ωmax

cas = 5.8 × 10−7 eV/cm3, are
characterized by a low value of Emax or weak source evolution. For
each given model, we calculate ωcas as

ωcas =
∫

dt dE

1 + z
Eβ0,em

[
(1 + z)E

]
np(E, z), (5)

where np is the (physical) density of protons at redshift z, β0(E) =
(1/E)(dE/dt) is the relative rate of energy loss of a proton with
energy E at z = 0, and β0,em denotes the relative rate of energy
injected by protons into electromagnetic cascades due to pair pro-
duction and pion production (pγ → π± → e± and pγ → π0 → γ )
at z = 0. In Table 1, we report the numerical values obtained for
ωcas for different values of the maximal energy of acceleration
Emax, exponents αg of the generation spectrum and the maximal
redshift zmax. The UHE proton fluxes at z = 0 are normalized to
the HiRes data [2]. In Table 1 we show also the ratio of the contri-
bution from pair production to the one from pion production. The
cases with different αg in Table 1 correspond to different transi-
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Table 1
The energy density ωcas of the cascade radiation produced by UHE protons normal-
ized to HiRes data.

m Emax αg zmax ωcas [eV/cm3] ωe+e−
cas /ωπ

cas

No evolution, allowed models

0 1021 2.0 2 4.0 · 10−8 2.41
0 1021 2.7 2 1.2 · 10−7 24.5
0 1022 2.0 2 5.1 · 10−8 1.2
0 1022 2.7 2 1.2 · 10−7 20.8
0 1022 2.0 3 5.5 · 10−8 1.2
0 1022 2.7 3 1.4 · 10−7 22.0

With evolution, allowed models

2.5 1022 2.0 4 2.7 · 10−7 1.46
3 1021 2.5 2 4.3 · 10−7 14.7
3 1022 2.4 3 5.8 · 10−7 8.4

Models excluded by ωcas

3.5 1023 2.3 3 7.4 · 10−7 4.9
4 1021 2.5 2 8.6 · 10−7 15.3
4 1022 2.0 3 7.6 · 10−7 1.5

tion energies from galactic to extragalactic cosmic rays, increasing
from E ∼ 1 × 1018 eV for αg = 2.6 to E ∼ 5 × 1018 eV for αg = 2.0.
Table 1 gives examples of UHECR models that are allowed and that
are forbidden by the Fermi-LAT data.

The upper part of Table 1 (no-evolution case) presents the al-
lowed models with ωcas < 5.8 × 10−7 eV/cm3. In the two lower
parts the cosmological evolution of UHECR sources is included, as-
suming that the product of the comoving source density ns and
the source luminosity Ls evolves as ns(z)Ls(z) = n0L0(1 + z)m . The
middle part contains both allowed and marginally allowed evo-
lutionary models. The large neutrino fluxes at highest energies,
favorable for detection by the JEM-EUSO instrument and by radio
methods, are expected in the models with flat spectra (αg = 2.0)
and large Emax. Examples of such models allowed by ωcas are also
given in Table 1, most notably the one in the first row of the mid-
dle part. On the other hand, large neutrino fluxes at energies up
to 1 × 1017 eV, which are favorable for IceCube detection, do not
require large Emax but strong evolution. One can find such mod-
els in Table 1, too, among the allowed models. In the lower part of
Table 1 three examples for evolutionary models forbidden by the
Fermi-LAT data are shown.

Note that apart from the cascade radiation, one should expect
various additional contributions to the measured Fermi flux and
these contributions lower ωmax

cas further. Among them are photons
from unresolved [11] or dead [12] active galactic nuclei (AGN) and
from other galaxies. Dark matter annihilations and/or decays in
the extended DM galactic halo or beyond can give another con-
tribution to the Fermi flux. Subtracting these processes would
strengthen the upper limit on the neutrino flux derived below,
and thus our result is conservative. On the other hand, extragalac-
tic magnetic fields with strength above 1 nG play the opposite
role: High-energy cascade electrons loose energy radiating pre-
dominantly synchrotron photons, which are not detected by Fermi-
LAT and thus the energies of these electrons do not contribute to
ωcas. We show below that in the case of magnetic field strengths
less than 1 nG this correction on the limit for UHE neutrino flux is
small.

3. Monte Carlo simulation

In addition to the analytical treatment, we obtain the EGRB
spectrum based on a Monte Carlo simulation of the cascade de-
velopment. We generate CR sources from a homogeneous source
distribution up to a maximal redshift zmax. Assuming the pro-
ton injection spectrum in the form dN/dE ∝ E−αg ϑ(E − Emax), we
propagate the UHE protons accelerated in the sources through the
extragalactic space, using the Monte Carlo code described in [13],
until their energy is below the threshold for e+e− pair production,
Emin ≈ 1018 eV, or until they reach the Earth. For the simulation
of pion production we use SOPHIA [14], while e+e− pairs are in-
jected according to the continuous energy losses and their mean
energy calculated in Refs. [6,15].

We follow the evolution of electromagnetic cascades using the
Monte Carlo code introduced in Ref. [16] and the best-fit model of
[17] for the EBL energy density. The MC procedure provides a one-
dimensional description of the cascade development, taking into
account the pair production and IC processes as well as adiabatic
energy losses. Extragalactic magnetic fields with average strengths
close to the upper limit B ∼ 1 nG have a small influence (of or-
der 20%) on the resulting EGRB. We will discuss further this result
below.

In Fig. 1, the cascade fluxes are shown for two UHECR models.
The curve marked as αg = 2.6 (red boxes) gives the cascade flux
for the non-evolutionary (m = 0) dip model [6] with Emax = 1 ×
1021 eV and zmax = 2 normalized to HiRes data. The other curve
marked as αg = 2.0 is shown for the ankle model with a transition
from galactic to extragalactic cosmic rays at 5 × 1018 eV for the
same values of Emax and zmax. From Fig. 1, one can see that both
models are allowed by the cascade limit.

The MC simulation allows us to test the universality of the cas-
cade spectrum. If a cascade is initiated by a photon or an electron
of very high energy, the energy spectrum of the resulting cascade
photons depends only weakly on the energy of the primary par-
ticle for a sufficiently large number of cascade steps. This univer-
sality is obviously broken for the primaries injected close enough
to an observer, if the distance is of the order of the absorption
length (see Eq. (2)). In Fig. 1 we plot the MC cascade spectra with
αg = 2.6 and αg = 2.0 normalizing them by the highest energy
point of the Fermi spectrum (red and blue stars in Fig. 1). The
comparison of the three theoretical spectra at energies below the
minimal absorption energy εa shows that the cascade spectrum
is indeed quite universal. The shape of the cascade photon spec-
tra from the Monte Carlo simulation agrees reasonably well with
the one analytically calculated, with a somewhat harder photon
flux obtained with the Monte Carlo method in the plateau region,
J (E) ∝ E−1.95. As a result, the maximal cascade energy density
ωmax

cas obtained using the Monte Carlo simulation is 30% smaller
than in the analytic calculations.

In Fig. 2, we show the obtained UHECR, neutrino and photon
fluxes together with data from HiRes and Fermi-LAT for the two
cases αg = 2.0 (blue) and 2.6 (red). We use again Emax = 1021 eV,
zmax = 2 and normalize the UHECR results to the HiRes observa-
tions. While the dip model fits the HiRes data with χ2 = 19.5 for
d.o.f. = 19, the ankle model cannot explain the HiRes data below
1 × 1019 eV without an additional component. Clearly, the dip sce-
nario without evolution and with modest values of Emax and zmax
is well compatible with the Fermi data (see Fig. 1). The ankle sce-
nario with αg = 2.0 has a lower flux of cascade gamma-radiation
and is viable too.

4. The cascade bound on UHE neutrinos

This is the most general bound on the UHE neutrino flux, based
only on the production of electromagnetic cascades, which in-
evitably accompany the production of pions responsible for the
neutrino flux [7,10]. It is based on the approximate equality of the
total energy release to neutrino radiation (through pγ → π± → ν)
and to the cascade radiation (through pγ → π± → e± and pγ →
π0 → γ ) in pion production process. The upper limit on the in-
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Fig. 2. Fermi-LAT data (black circles) for the EGRB and UHECR data from HiRes (dots)
together with UHE neutrino (stars) and photon (boxes) fluxes for Emax = 1021 eV,
zmax = 2, m = 0 and αg = 2.0 (blue, open) and αg = 2.6 (red, filled symbols). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

tegral flux Jν (> E) of neutrinos of all flavors is given by the
following chain of inequalities,

ωmax
cas > ωπ

cas >
4π

c

∞∫
E

E ′ Jν
(

E ′)dE ′ > 4π

c
E Jν (> E),

where ωmax
cas and ωπ

cas are the energy density of the cascade radi-
ation allowed by the Fermi data and that produced only by pions,
respectively. For the sake of comparison with experimental upper
bounds, where an E−2 neutrino spectrum is usually assumed, we
give the upper limit for the differential cosmogenic neutrino flux
of three neutrino flavors with an E−2 spectrum and as function of
the ratio of energy densities of pair- and pion-produced cascades
ωe+e−

cas /ωπ
cas,

E2 Jν(E) � c

4π

ωmax
cas

ln(Emax/Emin)

1

1 + ωe+e−
cas /ωπ

cas
. (6)

This limit is plotted in Fig. 3 as a red line labeled ‘E−2 cascade’ to-
gether with existing upper limits from various experiments and the
expected sensitivity of IceCube and JEM-EUSO [18,19]. Eq. (6) gives
the general upper limit on the neutrino flux using the E−2 as-
sumption. However, each particular model for cosmogenic neutri-
nos can be checked for consistency with the Fermi bound straight-
forwardly, as described in Section 2. Namely, ωcas can be calculated
from Eq. (5) and compared with ωmax

cas = 5.8 × 10−7 eV/cm3.
We discuss now the impact of magnetic fields on the cascade

limit. In the presence of magnetic fields, the energy of electrons
is partly dissipated in the form of synchrotron radiation. The criti-
cal energy Ecr

e of electrons above which synchrotron energy losses
dominate is determined by the relation (dE/dt)syn = (dE/dt)IC,
where the indices ‘syn’ and ‘IC’ are related to synchrotron and IC
losses, respectively.

In the case of a single electron with energy E0 > Ecr
e , the

usual electromagnetic cascade is suppressed until the electron en-
ergy drops below Ecr

e . In this case, the total cascade energy is
reduced by the factor Ecr

e /E0 compared to the case without mag-
netic field. However, the cascade is initiated by many electrons
with production spectrum ∝ E−2

e , as required for an E−2
ν upper

limit. Then the cascade energy density ωcas(Ee)dEe is proportional
to Eν Jν(Eν)dEν , and the ratio of the cascade energy density in
Fig. 3. Upper limits on the all-flavor UHE neutrino flux and expected sensitivities
[18] together with the cascade limit (“E−2 cascade”). Also shown are realistic fluxes
of cosmogenic neutrinos marked by their spectral index αg = 2.6 (dip model) and
αg = 2.0 (ankle model) together with neutrino fluxes optimized for detection by
IceCube and JEM-EUSO (as described in Section 4), which marked in the figure by
their respective Emax values in eV (1020 and 1022). (For interpretation of the refer-
ences to color in this figure, the reader is referred to the web version of this Letter.)

Fig. 4. Photon fluxes from the Monte Carlo simulation for different magnetic field
strengths B = 0.01 and 1 nG with Emax = 1021 eV, zmax = 2, m = 0 and αg = 2.0.

presence of a magnetic field ωB
cas and in its absence ωcas is given

by

ωB
cas

ωcas
= ln(Ecr

e /Emin
e )

ln(Emax
e /Emin

e )
. (7)

For the case of a strong magnetic field B ∼ 1 nG one obtains Ecr
e ∼

2 × 1018 eV. Taking Emax ∼ 1 × 1021 eV and Emin ∼ 1 × 109 eV, we
find ωB

cas/ωcas = 0.78, i.e. only 22% of the cascade energy is lost
due to synchrotron radiation.

The case considered above corresponds to the E−2 upper limit
shown in Fig. 3. For cosmogenic neutrinos produced by protons in-
teracting with CMB the fraction of energy lost from the cascade
is less because of the steeper generation spectrum Q p(E) ∝ E−βg

with βg ∼ 2.3–2.7. As a result the cascade energy is produced
mainly by low-energy electrons, for which IC dominates. The ra-
tio (7) is given now by

ωB
cas

ωcas
= 1 − (Ecr

e /Emin)−(βg−2)

1 − (Emax/Emin)−(βg−2)
, (8)

and is for all practical cases very close to 1. Our photon fluxes from
MC simulations with B = 0.01 and 1 nG displayed in Fig. 4 show
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Fig. 5. Range of allowed evolution parameters, m and zmax, for extended reference models with fixed Emax = 1 × 1021 eV (left panel) and Emax = 1 × 1022 eV (right panel).
The cascade energy density ωcas is shown as function of m by the solid lines for the ankle model (αg = 2.0), and dashed lines for the dip model (αg = 2.6). The numbers on
the lines show zmax. The allowed parameters correspond to part of the curves below ωmax

cas = 5.8 × 10−7 eV/cm3 shown by the red horizontal line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this Letter.)
indeed only minor differences, compatible with the analytical esti-
mate given above.

5. Cosmogenic UHE neutrino fluxes

We discuss now the cosmogenic neutrino fluxes compatible
with the two conditions that the parent proton fluxes provide a
good fit to the HiRes data and that the resulting EGRB respects the
cascade bound. The latter is imposed by requiring that ωcas calcu-
lated with the help of Eq. (5) is smaller than ωmax

cas deduced from
the Fermi data.

We begin with our reference models, given by the dip (αg =
2.6) and ankle (αg = 2.0) model normalized to the HiRes data, and
using Emax = 1.0 × 1021 eV, zmax = 2 and non-evolution. These are
conservative models which give in case of αg = 2.6–2.7 the lowest
neutrino fluxes for the proton-dominated mass composition. These
fluxes labeled in Fig. 3 by the generation indices 2.0 and 2.6 are
shown in the central part of the figure. They are undetectable by
Auger and the planned detector JEM-EUSO.

Next we extend our reference models, allowing larger Emax and
cosmological evolution. This results in higher neutrino fluxes, lim-
ited however still by ωcas. The bounds on the parameters of these
models are shown in Fig. 5. The two panels of this figure show
for Emax = 1 × 1021 eV (left panel) and Emax = 1 × 1022 eV (right
panel), how the two parameters describing source evolution, m and
zmax, are limited by ωmax = 5.8 × 10−7 eV/cm3. Generally, strong
evolution (m, zmax) with m � 3 and zmax � 4 is excluded, in accor-
dance with the cases presented in Table 1. The evolution in the dip
model (αg = 2.6) is restricted stronger, because of the increased
contribution from e+e− pair-production.

The cosmogenic neutrino flux can become detectable only in
the case of source evolution and large Emax. Two extreme models
of such neutrino fluxes are shown in the lower-right and lower-left
corners of Fig. 3. Both models respect the bound from the observed
UHECR flux and from ωmax

cas derived from the Fermi-LAT data, but
use extreme values for the model parameters. Choosing the param-
eters for the model in the lower-right corner (the curve marked
1022) we try to reach the sensitivity of JEM-EUSO. Since a soft
spectrum increases ωcas, we choose the hard spectrum with αg =
2.0, while Emax should be as large as possible. By other words
we search for the extension of the ankle reference model with al-
lowed evolution and large Emax. We choose Emax = 1 × 1022 eV,
with zmax = 2 and evolution parameter m = 3. Normalized to the
HiRes data, this model has ωcas = 3.3 × 10−7 eV/cm3, i.e. is some-
what below the cascade limit (see also Fig. 5). For such values, the
neutrino flux is marginally detectable by JEM-EUSO.

In the lower-left corner (the curve marked 1020) we aim to cos-
mogenic neutrino detection by IceCube. Here we should increase
the low-energy tail of the neutrino flux and suppress the pair-
produced cascade radiation. To that end, we use αg = 2.0 with
strong evolution to enhance the flux of low-energy neutrinos. The
maximum acceleration energy can be low, e.g. Emax = 1 × 1020 eV.
Moreover, we choose evolution with m = 3.0 and zmax = 6.0,
which results in ωcas = 5.5 × 10−7 eV/cm3 ≈ ωmax

cas . As our cal-
culations show, the flux is only marginally detectable by IceCube
even for these extreme parameters.

The two models above demonstrate that even for extreme as-
sumptions cosmogenic neutrinos remain undetectable by existing
detectors such as Auger, and could be only marginally observed by
IceCube and by future detectors JEM-EUSO and Auger-North (with
sensitivity to neutrinos 5–6 times higher than Auger-South).

The observation of radio emission from neutrino-induced air
showers provides an effective method for the detection of low
fluxes of cosmogenic neutrinos from the highest energy part of
their spectrum. The upper limit on UHE cosmogenic neutrino flux
from the most restrictive experiment of this type, ANITA, is shown
in Fig. 3 (Gorham et al. [18]). Recently, several particles with en-
ergies above 1 × 1019 eV have been detected there [20]. The high
energy threshold is a disadvantage of this method. In the recently
proposed ARIANNA detector [21], the threshold might be lowered
to about 1017 eV while monitoring 900 km2 of Antarctic ice.

A very sensitive instrument for UHE neutrino detection has
been proposed in the project LORD (Lunar Orbital Radio Detec-
tor) [22], where a detector on a lunar satellite can observe the
neutrino-produced radio-signal from lunar regolith. The sensitiv-
ity of this instrument, as estimated by the authors of the project,
should be sufficient for the measurement of the cosmogenic neu-
trino fluxes shown in Fig. 3 by curves 1021.

Before concluding, we would like to compare the results of this
investigation to the ones of Ahlers et al. [23] that appeared after
ours in the arXiv. While the main goal of our work was to de-
rive an upper limit on the cosmogenic neutrino flux, the authors of
Ref. [23] aimed at exploring the allowed parameter space of UHECR
models, notably of those predicting maximal neutrino fluxes. These
authors used as their criterion for the rejection of UHECR mod-
els ωmax

cas = 5.8 × 10−7 eV/cm3 from our calculations, and thus the
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derived maximally allowed cosmogenic neutrino fluxes should co-
incide. The largest cosmogenic neutrino fluxes presented in Fig. 4
of Ref. [23] are very similar to our fluxes obtained in the extreme
models with strong cosmological evolution (e.g. the curve 1022 in
Fig. 3), both exceeding our reference cases (αg = 2.6 and αg = 2.0
without evolution) by an order of magnitude at E ∼ 1018–1019 eV.
It is noteworthy that a much stronger cosmological evolution was
considered in the calculations of Ref. [23]. Among other differ-
ences, the authors of Ref. [23] assumed that the IceCube sensitivity
extends up to 1019 eV, while we used Emax = 1017 eV following
Ref. [19].

6. Summary

We have used a recent measurement of the EGRB by Fermi-
LAT to constrain models for UHECR and cosmogenic UHE neutrinos
and to demonstrate that the latter are not detectable with the
present experimental sensitivity. Both the dip and ankle models
without or with weak evolution are consistent with the Fermi-
LAT measurement of the EGRB. The cosmogenic neutrino flux is
strongly limited by the new upper cascade bound and undetectable
for a conservative choice of parameters by Auger-North and JEM-
EUSO. Only for an extreme set of parameters, Emax � 1 × 1022 eV
and ωcas ∼ ωmax

cas , the cosmogenic flux is marginally detectable by
JEM-EUSO. To achieve the observation of cosmogenic neutrinos for
less extreme parameters, the detection threshold of JEM-EUSO (in
the tilted mode) must be lowered down to 1 × 1019 eV and the
sensitivity of Auger-North should be increased by factor ∼ 20 in
comparison with Auger-South. The further development of radio-
detection methods gives another hope for detection of small fluxes
of cosmogenic neutrinos.

The results of our Letter emphasize the necessity to develop
more sensitive methods for the detection of cosmogenic neutri-
nos.
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