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Abstract 

Among the equations between rate constants and the derivatives, the novel equations between rate constants and the 
moments of open and shut lifetime distribution for a given state set of Markov Chain are applied to identify the rate 
constants of ion channels. For gating scheme of ion channels of four-state-loop, it is derived by the underlying 
information that rate constants can be identified by their open lifetime and shut lifetime distributions at any two 
states. 

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011] 

Keywords:  Ion channel; four-state-loop; rate constants; open litetime; shut lifetime. 

1. Introduction 

The gating scheme of ion channels can be modeled kinetically as a time-homogeneous Markov chain 
[1-4]. The transition rates with the underlying Markov chain indicate the kinetic properties of ion channel.  
In experiment, the transition between the various states cannot be directly observable and only a few open 
states are observable. The issue that how to determine all transition rates or rates constants in terms of the 
partially observable information has been addressed directly by using the maximum likelihood estimate 
[5-6]. Although this approach is powerful, it leads to the non-identifiability and the subsequent problems. 

Therefore we develop a different approach by employing the intrinsic properties of the Markov 
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process. The study is to derive the necessary constrained equations between the transition rates and the 
PDFs (probability density functions) of open lifetime and shut lifetime of observable states. The rate 
constants are then obtained as roots to this system of equations. Then all calculations are simply reduced 
to the estimation of PDFs of open lifetime and shut lifetime of observable states. As a result, we have 
addressed the ion channels with such as line, star-graph, star-graph branch, loop and hierarchical scheme 
[7-12]. It is shown that the rate constants of ion channel of loop (at most five states) can be identified by 
the PDFS of open lifetime and shut lifetime of two adjacent states [12], in which the constrained equations 
between the rate constants and the derivatives of PDFs of open lifetime and shut lifetime of observable 
states are used to solve the constants. That two adjacent states are observable, however, is a strict 
condition in realistic channels. Therefore a natural question is arises as to whether it is possible to identify 
the constants by the observable information of arbitrary two states. In this letter, we will demonstrate that 
it is indeed possible for the loop ion channel with four states at most. 

Here a four-state-loop ion channel is addressed. The novel system of equations between the constants 
and the moments of PDFs of open and shut lifetime of observable states are used to obtain the constants. 
Then it is found that the rate constants can be determined by observation at arbitrary two states. 

This paper is set out as follows. Section 2 will introduce the general theorems that give the system of 
equations between the constants and the PDFs of open and shut lifetime of observable states. The solution 
and algorithm is derived in section 3. 

2.  General theorem 

For convenience, we always use <…> denoting a column vector, (…) a row vector, diag(…) a 
diagonal matrix, AT the transpose of A, and. ij  the ith row and jth column element from the matrix .
And let us always employ the standard convention that the infimum of an empty set is infinity. 

A A

2.1. Distribution of open lifetime and shut lifetime 

Let { t  be a reversible Markov chain with the state space S , which has the 
transition rate matrix Q such that )
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Rewrite the matrix Q in a partitioned matrix term with four sub-matrixes , , and .
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Thus we can obtain the theorem as follows [10-11]. 

Theorem 1 The shut lifetime  has a CS -mixed exponential density -
1
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It shows, based on the PDF of a single state i, we can obtain nii dq ,,π  and . Generally 
speaking, if we observe a subset O , we can obtain the corresponding i

)1( ≥ncn( )OS S∈iπ  and . In 
realistic ion channel, the required mixed exponential density can be fitted by the corresponding open 
lifetime and shut lifetime sequences at given state set (cf. see [12-13]). 

)1≥n(cn

2.2. The constrained equations  between the rate constants and  the lifetime distributions 

Let {  be a reversible Markov chain with the state space S , which has the 
transition rate matrix Q such that 
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On one hand, for the nth derivatives of the shut lifetime distribution of  at t=0, we have 
. On the other hand, Eq. 1 yields , we get. 

=qπ
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Theorem 2 The derivatives of the shut lifetime distribution of  at t=0 are related to the transition 

rates with a formula 
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where the derivative  is replaced with the quantity by multiplied a known constant. nd nc
n+Likewise, if we put 
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, we can give the constrained 
equations between the transition rates and the moments of lifetime distributions. 
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Theorem 3 The moments of the shut lifetime distribution of  at t=0 are related to the transition 
rates by the expression 
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where the moment is replaced with the quantity ne by multiplied a known constant. Most of uses of this 
constraint in the present study will be with n=1 to give the mean lifetime. 

3.  Solution and algorithm for four-state-loop type 

Here one sort of scheme to consider for single ion channel has 4 states (say state 0, 1, 2, 3), which 
indicate 4 different opening levels. In this case, all states can only transit to their adjacent states. 
Furthermore, the reaction step in such mechanism is reversible, and the mechanism obeys principle of 
microscopic reversibility or detailed balance. Thus it can be modeled as a reversible Markov chain with a 
state space , which has the transition rate matrix  such that  { 3,2,1,0=S
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Where )30(0,0 ≤≤>> iii μλ  and 32103210 μμμμλλλλ =   ( for reversibility, i.e. the principle of 
microscopic reversibility or detailed balance in channels).  
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the unique invariant probability measure of Q  and satisfy Eq. 1. As discussed in [12], we have given an 
approach to identify the rate constants as the following theorem. 

Theorem 4 For an ion channel with underlying Markov chain of four-state-loop, all transition rates can 
be determined by the PDFs of open lifetime and shut lifetime at any two adjacent states.

Due to the strict condition of observation at two adjacent states in realistic channels, we develop a 
novel approach by using the conclusions in theorem 2 and 3 to solve the current issue. A direct conclusion 
is that observation at any two states can be applied to identify the rate constants for current model. 

3.1. Observation at state 0 

Set . Let  and  be the open lifetime and shut lifetime of state 0, respectively. It is 
known by Theorem 1 that the open lifetime  has an exponential density with a
shut lifetime -mixed exponential density with the parameters ( . Set  

, . From Theorem 2, it follows Lemma 1 which 
depicts the relationship between ,  and .
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Lemma 1 The following equations hold. 
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3.2. Observation at state 2 

Here .Now the open lifetime  is an exponential density with a e
shut lifetime -mixed exponential density with the parameters ( . Set  

, .
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3.3. Observation at state set {0, 2} 

Here . It is obvious that the shut lifetime  has the 2-mixed exponential density with 
the parameters 

}2,0{=OS
( , ii

)2,0(τ
) 2,1=iαγ .From theorem 3, it is easy to derive the following lemma. 

Lemma 3 The following system of equations hold for n=1,2,3,4. 
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3.4. Main conclusion and algorithm 

Theorem 5  Let {  is a four-state-loop Markov chain with a state space . If 
the initial measure is the invariant measure

}0: ≥tX t { }3,2,1,0=S
}, Si ∈{ iπ , then every element of its transition rates matrix 

 and {)( ijqQ = }iπ  can be determined by the PDFs of open lifetime and shut lifetime at state 0 and 2. 
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Proof: Suppose that we have obtained the corresponding PDFs as defined in above section. First, 
according to observation at state 0 and 2, together with equation (4) and (6), we can obtain 

2020 ,,, qqππ . Second, by the system of equations (8), we can get 3131 ,,, qqππ .  Subsequently, by 
equation (5) and (7), we yield 3010 . Thus we get . Finally, we can 
obtain the rest of rate constants as follows. 
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It is mentioned that the course of proof indicates the corresponding algorithm. Together with 
conclusion in theorem 4, we provide a more general theorem. 

Theorem 6 For an ion channel with underlying Markov chain of four-state-loop, all transition rates can 
be determined by the PDFs of open lifetime and shut lifetime at any two states.
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