Total arterial revascularization: A superior method of cardiac revascularization

Nikolaos A. Papakonstantinou, MD*, Nikolaos G. Baikoussis, MD, PhD

Cardiothoracic Surgery Department, General Hospital of Athens “Evangelismos”, Athens, Greece

Received 14 February 2015; accepted 14 October 2015
Available online 24 June 2016

Abstract

For over 40 years, the left internal thoracic artery has been used as the gold standard for myocardial revascularization and anastomosis over the left anterior descending artery due to its excellent patency rates. However, the right internal thoracic artery behaves in the same manner as the left, also having excellent long-term patency. Hence, no patient should be deprived of the benefits of total arterial revascularization allowed by the bilateral use of both internal thoracic arteries.

© 2016 Hellenic Cardiological Society. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Half a million patients per year worldwide are estimated to undergo coronary artery bypass grafting (CABG)1. CABG remains a superior option for revascularization compared to percutaneous coronary intervention (PCI) in cases of severe coronary artery disease (CAD)2,3 owing to its major advantage of no need for repeat intervention.3 Accordingly, an appropriate graft selection is a sine qua non to minimize mortality and reintervention. Currently, the left internal thoracic artery to the left anterior descending coronary artery (LITA or LIMA-LAD) graft is unanimously considered the gold standard of conduits.4 Conduit selection for the grafting of the other coronary arteries varies. Provided that half of the saphenous vein (SV) grafts are patent without significant stenoses at 10 years,5 some surgeons have fueled an interest in total arterial revascularization using one or both internal thoracic arteries (BITA or BIMA) and other arterial conduits such as the radial artery (RA) or the right gastroepiploic artery (GEA). Given the numerous advantages of BITA grafting and arterial conduits in terms of survival and extended patency rates, patients referred for surgery should not be denied the benefits of total arterial revascularization.6

2. Indications-contraindications

Every eligible patient should receive total arterial revascularization, the cornerstone of which is BITA grafting. Patients with a body mass index (BMI) of over 35, diabetes...
or severe airway disease or who are undergoing radiotherapy or immunosuppression are only relatively contraindicated for BITA use.7 If more conduits are required, the RA can be prepared at the same time as the LITA, and its harvesting is associated with favorable early outcomes.4 Prior to harvesting, a modified Allen test is performed. If a hyperemic response to the previous ischemic hand is noticed within 5 s, the collateral ulnar circulation is adequate. Restoration of the blood circulation to the ischemic hand later than 10 s after the ulnar release excludes the RA from being used.8 Duplex examination and pulse oximetry can also be used to preoperatively evaluate the RA and ulnar artery. Moreover, the RA should be avoided when cardiac catheterization has been recently preceded by injuring the vessel and when the RA might be used for future fistulae in patients who are receiving or who are likely to receive dialysis.7 RAs less than 2 mm in diameter are also avoided due to the possibility of vasospasm.9 Finally, the extent of stenosis of the target coronary vessel may also constitute a contraindication for arterial conduit use due to competitive flow. Hence, stenoses of less than 70% in the left coronary bed and less than 90% in a dominant right coronary artery should prevent the use of an arterial graft.7

3. Graft patencies

High occlusion rates of vein grafts due to atherosclerosis of 12%, 25% and 50% within 1 year, 5 years and 12 years after CABG, respectively10,11 result in an increased need for repeat revascularization. Therefore, three percent of patients who have received vein grafts undergo a repeat revascularization procedure within 5 years, 10% within 10 years and 25% within 20 years.12 Veins appear to be 2.6 times more prone to dysfunction than arteries.13 Consequently, grafts with superior patency rates are sought either to prolong intervals to repeat revascularization or to prevent the need for repeat operations.1

As many as 80% of ITA conduits have been shown to be free from failure in the third decade after CABG,7 RITA patency is 96% at 5 years and 81% after 10 years, levels that are comparable to LITA patency of 98% and 95%, respectively.14 Tatoulis et al. reported similar patency between the late mortality risk was almost twice as high in patients with a small body surface area and for those of advanced age, in whom BITA was inferior to LITA in terms of survival. Survival in the BITA group was 89%, 81%, 67% and 50% vs. 87%, 78%, 58% and 37% in the LITA group at 7, 10, 15 and 20 years, respectively (p<0.0001). Similar results were observed by Stevens and colleagues,30 who reported survival benefit for BIMA on the order of 5% at 10 years (88% for the single-graft group versus 93% for the BIMA group; p<0.001). Grau et al.37 compared 1459 BIMA and 4854 LIMA patients. Although the in-hospital and 30-day mortality rates were not significantly different between the two groups (0.8 vs. 1.1%, respectively; p = 0.47), BIMA grafting was superior to LIMA with regards to long-term survival. This survival benefit was once again demonstrated to be more in favor of the BIMA group throughout the 17-year follow-up period (96 versus 91% at 5 years, 89 versus 79% at 10 years and 79% versus 61% at 15 years). Interestingly, the late mortality risk was almost twice as high in patients undergoing on-pump LIMA grafting compared to those with off-pump BIMA grafting.37 Taggart et al.34 performed a meta-analysis of seven observational studies comparing 11,269 LIMA patients to 4,693 BIMA patients in 2001. A significant average survival benefit of 8 years was observed throughout the follow-up for the BIMA group. Similar results showing a statistically significant survival advantage with BIMA throughout a 7.6-year follow-up period even in diabetic patients was reported by another larger meta-analysis including 27 studies that compared 19,277 BIMA to 59,786 LIMA patients. Long-term mortality was also significantly reduced among patients receiving BIMA grafting.38 Moreover, statistically significantly lower mortality and the need for percutaneous coronary intervention and decreased myocardial infarctions after BITA use at 20 postoperative years were reported by Rankin et al.39 More postoperative deaths were also reported for the LITA group according to a retrospective study by Konstanty-Kalandyk40 including 147 patients with coronary artery disease and diabetes (3.67 for
the LITA vs. 2.63% for the BITA). Diabetic patients who underwent BITA harvesting had an increased 10-year survival rate\(^4\) and a lower perioperative mortality rate compared to the LITA group.\(^42\) Stevens et al.\(^43\) reported lower mortality and total hospital mortality rates (0 vs. 0.5%, 0.9 vs 2.6%) when comparing BITA to LITA in diabetic patients. Thirty-day mortality was also lower in the BITA than in the LITA group for diabetic patients (3.1 vs. 4.7%), according to Gansera et al.\(^44\)

As far as morbidity is concerned, the BITA procedures also appear to be superior to the LITA ones. Although no benefit is observed during the first 4 years after the operation, a clear benefit is gained from the use of BITA after 15 years, as a 9% decrease is reported for angina recurrence.\(^45\) BITA is also associated with an additional 7 years of freedom from reoperation as a result of better graft patency rates, as reported by Endo and colleagues.\(^32\) The same authors also observed an advantage of BITA use in terms of 10-year freedom from adverse events only when the ejection fraction was >40%.\(^41\) According to Berreklouw and colleagues,\(^4\) 49.4% of LIMA patients either died or experienced angina recurrence, new myocardial infarction and underwent CABG again at 13 years compared to 33.3% of the BIMA patients (p = 0.0004). Similarly, BIMA use was also an independent predictor of greater freedom from recurrent angina, late myocardial infarction and adverse cardiac events in a study by Pick and colleagues.\(^49\) Grau et al. reported no significant differences with regard to perioperative complications and postoperative length of stay between BITA and LITA use, although more BIMA patients required blood transfusions.\(^47\) Momin et al.\(^47\) further reported that sternal wound infection risk was not increased when BITA was used in insulin-dependent diabetic patients, similar to the results of Svensson et al.,\(^48\) who concluded that the use of the right internal thoracic artery is not related to a higher incidence of deep sternal wound infection in diabetic or non-diabetic patients. However, reoperation for bleeding is significantly more likely to occur in BIMA than in LIMA patients (2.9% vs. 0.6%), and sternal revision is also significantly more likely for BIMA patients (1.4% vs. 0.6%), according to Gansera et al.\(^44\)

5. Objections to the use of BITA. Does skeletonization solve the problem?

Most patients with three-vessel CAD can successfully receive total arterial revascularization.\(^49\) However, its use is not widespread. The most cited disadvantages in the use of BITA are deep sternal wound infection (DSWI) and a higher risk of death. DSWI is perceived to be the result of sternal hypoperfusion due to the bilateral use of IMAs.\(^37\) Diabetes has been recognized as an additional independent risk factor for sternal wound infection.\(^50\) Resternotomy for bleeding is another strong risk factor for DSWI, as is peripheral arteriopathy.\(^6\) Savage et al.\(^42\) observed that diabetic patients are more prone to DSWI when BITA is used and when they are insulin dependent and obese (BMI > 35) and have peripheral arteriopathy. Similarly, Konstanty-Kalandyk et al.\(^40\) reported that older and more obese diabetic patients were at increased risk of DSWI. According to Zhang et al.,\(^51\) diabetic patients were 3.47 times more prone to DSWI for every 10 years of age and 6.80 times more prone to DSWI with BMIs of greater than 30. However, the bilateral use of IMAs in diabetic patients did not increase the risk of DSWI compared to unilateral use. According to De Paulis et al.,\(^6\) 28% of the diabetic patients with chronic obstructive pulmonary disease, peripheral arteriopathy and a BMI > 30 experienced DSWI, whereas only 2.3% of those without the aforementioned risk factors had DSWI. De Paulis et al.\(^6\) reported that sternal infection was clearly more common in BIMA patients than in LIMA patients (1.1% vs. 4.2%; P = 0.004). However, when skeletonized ITA grafts were used, BITA use was no longer an independent predictor of DSWI.\(^6\)

Skeletonization of the ITA, which was first used by Keeley in 1987,\(^32\) refers the untouched mobilization of the artery and its accompanying veins and surrounding tissues.\(^53\) In this way, the artery branches are ligated close to the artery so that collateral circulation to the sternum is maintained.\(^54\) Thus, bilateral skeletonized IMAs minimize sternal infection risk at levels comparable to those for LIMA patients, particularly in diabetic patients.\(^55,56\) Although some cardiac surgeons suspect that skeletonization damages the endothelium, a review of the literature by Athanasiou et al.\(^57\) revealed neither damage of the ITA nor a worsening of its patency when skeletonized ITAs were compared to pedicled ITAs. Ali et al., upon examining 17 papers, reported excellent patency rates for both pedicled and skeletonized arteries that exceeded 95% at three postoperative years.\(^58\) Therefore, we can conclude that patients can gain the full benefits from BITA grafting and maintain sternal, collateral circulation if skeletonized pedicles are used.\(^5\)

6. Conclusions

Most patients with multivessel CAD can successfully receive total arterial revascularization. Total arterial revascularization is associated with higher graft patency rates, excellent long-term survival rates, fewer harvest site complications, lower CAD progression and reduced adverse cardiac events resulting in reoperation.\(^7,53\) Patients referred to surgery should in no way be denied the advantages of total arterial revascularization. BIMA grafting can be safely performed,\(^1\) and skeletonization of both ITAs minimizes sternal infection complications, thus increasing the number of candidates for BITA grafting by including many diabetic patients.\(^7\) However, patients with many risk factors for wound complications should not receive BITA grafting. Furthermore, postoperative bleeding requiring resternotomy in BITA patients should also be avoided, as reexploration is a potent risk factor for sternal infection.\(^6\) Consequently, total arterial revascularization with the use of bilateral ITAs should be the method of choice for revascularization procedures, as it has numerous benefits that cannot be ignored.\(^5,6,38\)

7. Acknowledgments/Disclosures

No grants or funding were received. The authors had full control of the design of the study, methods used, outcome parameters and results, analysis of data and production of the written report. No conflicts of interest were declared.
References


