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Arginine-rich cell-penetrating peptides, including octaarginine (R8) and HIV-1 TAT peptides, have the ability
to translocate through cell membranes and transport exogenous bioactive molecules into cells. Hydrophobic
counteranions such as pyrenebutyrate (PyB) have been reported tomarkedly promote themembrane transloca-
tion of these peptides. In this study, using model membranes having liquid-ordered (Lo) and liquid-disordered
(Ld) phases, we explored the effects of PyB on the promotion of R8 translocation. Confocal microscopic observa-
tions of giant unilamellar vesicles (GUVs) showed that PyB significantly accelerated the accumulation of R8 on
membranes containing negatively charged lipids, leading to the internalization of R8 without collapse of the
GUV structures. PyB displayed an alternative activity, increasing the fluidity of the negatively charged mem-
branes, which diminished the distinct Lo/Ld phase separation on GUVs. This was supported by the decrease in
fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Additionally, PyB induced membrane curva-
ture, which has been suggested as a possible mechanism of membrane translocation for R8. Taken together,
our results indicate that PyB may have multiple effects that promote R8 translocation through cell membranes.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recently, methodologies involving use of cell-penetrating peptides
(CPPs) for intracellular delivery of membrane impermeable molecules
have been developed [1–4]. Thesemethodologies have gained consider-
able attention, especially for the intracellular delivery of bioactive mac-
romolecules, including peptides, proteins, poly-nucleic acids and their
derivatives. Among CPPs, those rich in arginine are among the most
widely employed classes of CPPs, of which oligoarginines [1,4] and the
HIV-1 Tat derived peptide (TAT peptide) [5,6] are representative ex-
amples. Chemical conjugation or fusion of CPPs with their payloads
olesterol; CLSM, confocal laser
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(or their stable non-covalent complex formation) results in efficient
intracellular delivery.

The internalization mechanisms of arginine-rich CPPs include (i)
direct translocation through plasma membranes and (ii) endocytosis
followed by endosomal escape into cytoplasm. Arginine-rich CPPs
may employ either or both mechanisms, depending on the adminis-
tration conditions and physicochemical properties of the CPPs and
payloads involved [7–9]. The formermechanism should bemore efficient
than the latter, and the contribution of the former process increaseswhen
the payload is of low molecular weight (typically, b5000–10,000).

To improve the efficacy of direct membrane translocation of arginine-
rich CPPs and their payloads, we have developed an approach that uses
hydrophobic counteranions including pyrenebutyrate (PyB) [10,11].
Treatment of cells with PyB in phosphate-buffered saline (PBS) followed
by the addition of octaarginine (R8) or TAT typically leads to translocation
of these CPPs into the cytosol within a few minutes, without observable
membrane perturbation or cytotoxicity. Not only small molecular weight
compounds, but also small proteins, including ubiquitin (8.6 kDa) [12]
and green fluorescent protein (GFP) (28 kDa) [10], have been introduced
into cells using this system. Although hydrophobic complex formation
of arginine-rich CPPs with PyB and eventual internalization through

https://core.ac.uk/display/82570905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbamem.2013.05.016&domain=pdf
http://dx.doi.org/10.1016/j.bbamem.2013.05.016
mailto:futaki@scl.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.bbamem.2013.05.016
http://www.sciencedirect.com/science/journal/00052736


2135S. Katayama et al. / Biochimica et Biophysica Acta 1828 (2013) 2134–2142
membranes, together with membrane potential, have been suggested as
potential mechanisms [10,13], the details remain unclear.

Electrostatic interactions of arginine-rich CPPs with negatively
charged molecules such as negatively charged lipids and proteoglycans
have been considered a major factor driving the cell-surface adsorption
of these peptides; this is supported by results from cell-based assays
[14,15] and model systems [16–18]. Both we and others have reported
that direct influx of oligoarginine peptides through the plasma mem-
brane into cells does not occur uniformly across the cell surface. Rather,
it occurs at specific sites on the membrane [9,19,20]. This has also been
observed for PyB-mediated membrane translocation of R8 [10]. The
preferential interaction of arginine-rich CPPs or other types of CPPs
with membrane domains of high fluidity has been reported [21,22];
this might be explained by the nonuniformity of membrane lipid com-
position or the presence of micro-domains within the membrane.
Therefore, we assessed the roles of PyB in promoting the internalization
of arginine-rich CPPs by using simplified membrane models of giant
unilamellar vesicles (GUVs) and large unilamellar vehicles (LUVs), fea-
turing coexisting liquid-disordered (Ld) and -ordered (Lo) lipid phases.
Understanding the roles of PyB in accelerated R8 uptakemay lead to the
development ofmore efficient and reliable delivery systems. The effects
of pyrenebutyrate on peptide-membrane electrostatic interactions,
lipid domain separation, membrane fluidity and curvature formation
were thus analyzed.

2. Materials and methods

2.1. Reagents

1-Pyrenebutyric acid and 1,6-diphenyl-1,3,5-hexatriene (DPH)
were purchased from Sigma-Aldrich Japan (Tokyo, Japan). Cholesterol
(Chol) and organic solvents were from Wako Pure Chemical Industries
(Osaka, Japan). 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC),
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), sphingomyelin
(porcine brain, SM), brain total lipid extract (BTLE) (porcine), and
Rhodamine-DOPE [18:1 Liss Rhod PE (=1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine-N-(Lissamine Rhodamine B sulfonyl) (ammo-
nium salt)) were purchased from Avanti Polar Lipids (Alabaster, AL,
USA). 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine (DiD)
was purchased from Invitrogen (Life Technologies Japan, Tokyo,
Japan). PyBwas dissolved in dimethyl sulfoxide (DMSO) as a stock solu-
tion to give the concentration of 3 mM (for GUV experiments) and
20 mM (for LUV experiments), respectively.

2.2. Peptides

All the peptides used in this study have C-terminal amide structures
and were chemically synthesized using Fmoc solid-phase peptide syn-
thesis as previously reported [23]. For the preparation of fluorescently
labeled peptides, a glycylcysteine sequence was placed to the
C-terminus of the octaarginine segment and modified with Alexa
Fluor 488 C5 maleimide sodium salt or BODIPY FL N-(2-aminomethyl)
maleimide (Life Technologies Japan, Tokyo, Japan) as already reported
[23]. The actual sequences of the synthesized peptides are as follows:
R8-Alexa, NH2-(Arg)8-Gly-Cys(Alexa488)-amide; hexanoyl-R8-Alexa,
CH3-(CH2)4-CO-(Arg)8-Gly-Cys(Alexa488)-amide; R8W, NH2-(Arg)8-
Trp-amide; R8, NH2-(Arg)8-amide; R8-BODIPY, NH2-(Arg)8-Gly-
Cys(BODIPY)-amide. The structures of the synthesized peptides were
confirmed by matrix-assisted laser desorption ionization time-of-
flight mass spectrometry. Peptides were dissolved in PBS(−)
(137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4,
pH 7.4) as stock solutions. Concentrations of fluorescent peptides
were determined by absorbance measured using a Beckman DU
640 spectrophotometer with a molar extinction coefficient (ε) of
5690 cm−1 M−1 for tryptophan [24], 71,000 cm−1 M−1 for Alexa
Fluor 488 [25], and 80,000 cm−1 M−1 for BODIPY FL [26], respectively.
2.3. Preparation of vesicles

2.3.1. GUVs
GUVs were prepared as described previously [20,27]. Briefly, type

IX-A agarose (1% w/w) was coated on a glass-base dish (Iwaki, Tokyo,
Japan) and dried on a hotplate (40 °C) for 1 h. Then, 1-mM chloro-
form solutions containing the respective lipids (5 μL) were spread
on the agarose film and dried in vacuo for 20 min. PBS(−) containing
100 mM sucrose (200 μL) was gently added to the agarose-lipid film.
The mixture was then left to stand for 3 h in the dark to allow hydration
and swelling of the lipids. The supernatant was replaced with PBS(−)
containing 100 mMglucose (150 μL) to yieldGUVswith 100 mMsucrose
and glucose in PBS(−) as the inner and outer solutions, respectively.
When membranes were stained with DiD or Rhodamine-DOPE, lipid
mixtures containing 0.5 mol% DiD or 2 mol% Rhodamine-DOPE were
spread on agarose film. For the preparation of GUVs encapsulating
sulforhodamine B (SRB), PBS(−) containing 100 mM sucrose and
20 μM SRB was employed for hydration of the lipids.

2.3.2. LUVs
LUVs were prepared as described previously [28]. Briefly, a chloro-

form solution containing the appropriate lipids was placed at the bot-
tom of a flask and a lipid film was formed by rotary evaporation. After
vacuum drying overnight, the lipid film was hydrated with PBS(−)
and vortex-mixed to produce multilamellar vesicles (MLVs). The sus-
pension was subjected to five freeze–thaw cycles and then extruded
through polycarbonate filters (two filters, 100 nm pore size) using a
LiposoFast extruder system (Avestin, Ottawa, Ontario, Canada) for 21
times. The concentration of LUVs was expressed as the lipid concentra-
tion, determined using a LabAssay Phospholipid kit (Wako).

2.4. CLSM observations of GUVs treated with peptides and PyB

Stock solutions of peptides (12 μM) in PBS(−) containing 100 mM
glucose (25 μL) were added to the outer solution of GUVs PBS(−)
containing 100 mM glucose (150 μL), as described in Section 2.3.1.;
the time at which peptide solutions were added was defined as time
zero. After 30 s, 0.12 mM PyB in PBS(−) containing 100 mM glucose
and 4% DMSO (25 μL)was added to the appropriate final concentration.
PBS(−) containing 4%DMSO (25 μL)was employed as a control for PyB.
The peptide–GUV interaction was analyzed using a confocal laser scan-
ning system (FV1000; Olympus) consisting of an inverted microscope
(IX81; Olympus) equipped with a 20× UPlanSApo objective (dry, NA
0.75).

2.5. Fluorescence measurements

A RF-5300PC fluorescence spectrometer (Shimadzu, Kyoto, Japan)
was employed, except for the anisotropy decay measurement. All mea-
surements were obtained at 20 °C. The concentration of fluorescent
molecules was set such that the inner filter effect was avoided.

2.5.1. Steady-state fluorescence anisotropy measurements of
1,6-diphenyl-1,3,5-hexatriene (DPH)

Fluorescence anisotropy measurements were acquired using a
RF-5300PC fluorescence spectrometer equipped with polarizers. DPH
in tetrahydrofuran (3 μL) was added to PBS(−) (1 mL) to a final con-
centration of 2 μM. R8 (4 μM) in 2 mM LUV solution (500 μL) and
20 mM PyB in DMSO (1 μL) dissolved in PBS(−) (500 μL) was succes-
sively added to the DPH solution. As a control, DMSO (1 μL) was used
instead of 20 mM PyB. The mixtures were stirred gently for 30 min to
equilibrate the distribution of DPH into lipid bilayers. Spectra were
then recorded at excitation and emission wavelengths of 385 and
450 nm, respectively. Slit widths were 1.5 and 5 nm for excitation and
emission, respectively.



2136 S. Katayama et al. / Biochimica et Biophysica Acta 1828 (2013) 2134–2142
The steady-state anisotropy (r) was calculated according to the
equation:

r ¼ Ivv−GIvh
Ivv þ 2GIvh

where I represents the fluorescence intensity, and the two subscripts in-
dicate the settings of the excitation and emission polarizers, respective-
ly. v and h refer to the vertical and horizontal orientations, respectively.
G is an instrumental correction factor, which is the ratio of the sensitiv-
ities of the individual detection systems. The G-factor can be deter-
mined according to the equation:

G ¼ Ihv
Ihh

:

G-factors were measured for each sample and anisotropy values
were corrected.

2.5.2. Time-resolved fluorescence anisotropy measurement (fluorescence
anisotropy decay) of R-BODIPY

Fluorescence anisotropy decaywasmeasured using a time-correlated
single-photon countingmethod on a HORIBA FluoroCube 3000U fluores-
cence lifetime spectrofluorometer equipped with polarizers and a light
source with the appropriate wavelength for excitation. The pulse rate of
excitation was 1 MHz. Data were analyzed using the DAS6 Fluorescence
Decay Analysis Software (HORIBA). PyB (20 mM) in DMSO (0.5 μL) was
dissolved in PBS(−) (500 μL) and mixed with 2 μM R8-BODIPY in LUVs
(lipid concentration 1 mM) (500 μL) to yield final concentrations of
1 μM peptide, 10 μM PyB and 500 μM LUVs. As a control, DMSO
(0.5 μL) was used instead of 20 mM PyB. Samples were mixed gently
by pipetting. Detailed instrument settings are listed in Table 1.

The time-resolved anisotropy decay r(t) is expressed by the equa-
tion [29]:

r tð Þ ¼ Ivv tð Þ−GIvh tð Þ
Ivv tð Þ þ 2GIvh tð Þ

where Ivv(t) and Ivh(t) represent the parallel and perpendicular polar-
ized components of the fluorescence, respectively, after excitation by
Table 1
Anisotropy decay of R8-BOPIPY.

Conditiona Exponentialb θ (ns) S.D.

PyB

PBS − 1 0.777 0.030
+ 1 0.931 0.031

2 θ1 4.776 0.550
θ2 0.689 0.0710

DOPC 100% − 1 0.584 0.0450
+ 1 0.800 0.0830

2 θ1 3.318 0.0770
θ2 0.634 0.0110

DOPC/DOPS (80/20) − 2 θ1 4.718 0.588
θ2 0.416 0.0420

+ 2 θ1 7.904 1.428
θ2 0.390 0.048

a R8-BODIPY, 1 μM; PyB, 10 μM, Lipid, 500 μM.
b In PBS(−) or in the presence of neutral DOPC LUVs, data were well fitted by one exponen

exponential analysis and thus two-exponential fittings were employed. For comparison, the θ v
c Relative amplitude was calculated as follows;

T1 channelð Þ � B1þ T2 channelð Þ � B2 ¼ S

where T1 and T2 are each channel of component, and B1 and B2 are each fractional amplitude
vertically polarized light. G represents the instrument-dependent fac-
tor for the anisotropy sensitivity, which is expressed as follows:

G ¼ ∫∞
0
Ihv tð Þdt=∫∞

0
Ihh tð Þdt

where Ihv(t) and Ihh(t) are the fluorescence intensities of the vertical
and horizontal components after excitation by horizontally polarized
light.

Generally, r(t) can be described as multi-exponential decay:

r tð Þ ¼ r∞ þ∑
j
r0j exp −t=θj

� �

where r∞ is limiting anisotropy, θj represents individual correlation
time, and r0j represents the fractional anisotropy that decays with
correlation time θj. The fluorescence anisotropy decay r(t) was deter-
mined by least-square fitting of single or double exponential decay.

3. Results and discussion

3.1. Preferential adsorption of octaarginine (R8) on GUVs containing
negatively charged lipids

Previous reports using artificial membranes have demonstrated
the preferential accumulation of arginine-rich CPPs including TAT
on negatively charged membranes [30–33]. Prior to investigating
the mechanism by which PyB accelerates translocation of arginine
peptides through plasma membranes using simplified artificial mem-
branes, we first confirmed the preferential accumulation of arginine
peptides on negatively charged membranes. Considering the hetero-
geneity of plasma membranes and the possible effects on membrane
adsorption and translocation of arginine peptides, we employed sim-
plified membrane models featuring coexisting liquid-disordered (Ld)
and -ordered (Lo) lipid phases. DOPC and DOPS were employed as
neutral and negatively charged lipids, respectively. GUVs composed
of DOPC/SM/Chol (2:2:1) and DOPC/DOPS/SM/Chol (1:1:2:1) were
prepared as examples of neutral and negatively charged artificial
membranes, respectively [16,30,34,35]. Alexa Fluor 488-labeled
octaarginine peptide (R8-Alexa) was employed as a representative
arginine-rich CPP, and the modes of peptide interaction with mem-
branes were visualized by CLSM (Fig. 1). Phase separation was
Fractional amplitude Relative amplitudec Average θ χ2

– – 0.777 0.93
– – 0.931 1.13
0.00012 1.07 0.695 1.02
0.0076 98.93
– – 0.584 0.99
– – 0.800 0.98
0.010 43.52 0.981 0.98
0.070 56.48
0.087 88.01 2.039 1.15
0.14 11.99
0.084 94.99 4.018 1.14
0.073 5.01

tial approximation. In the presence of DOPC/DOPS (4:1) LUVs, data were not fitted by one
alues analyzed by two exponential fittings in PBS(−) and DPPC LUVs were also provided.

. Relative amplitude of T1 = T1 ∗ B1 / S ∗ 100.



A DOPC/SM/Chol (2:2:1)

B DOPC/DOPS/SM/Chol (1:1:2:1)

DIC Alexa DiD

no peptide

R8-Alexa

DiD (surface)

DIC Alexa DiD

no peptide
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Fig. 1. Preferential accumulation of R8-Alexa on the liquid-disordered (Ld) phase of negatively charged GUVs. GUVs, composed of DOPC/SM/Chol (2:2:1) (A) or DOPC/DOPS/SM/
Chol (1:1:2:1) (B), were incubated with peptides (1.5 μM) for 1 h and analyzed by CLSM. GUVs contain 0.5 mol% DiD as a Ld-phase marker. Although distinct separation of the
liquid-ordered (Lo) and Ld phases was not observed in the cross-section of DOPC/SM/Chol GUV, the image focused on the GUV surface (right) shows the phase separation. Arrows
in B indicate the colocalization of Alexa488 and DiD signals. Scale bar, 20 μm. Each image was obtained under the same intensity settings.
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visualized by incorporation of 0.5 mol% DiD, a dye that distributes
preferentially into the Ld phase [36].

When R8-Alexa (1.5 μM) was incubated with the respective GUVs
for 1 h, no significant accumulation of R8-Alexa was observed on the
membranes of neutral GUVs composed of DOPC/SM/Chol (2:2:1)
(Fig. 1A). In contrast, a marked R8-Alexa peptide signal was observed
on the membranes of DOPC/DOPS/SM/Chol (1:1:2:1) GUVs containing
DOPS as a negatively charged lipid (Fig. 1B). However, judging by the
difference in R8-Alexa signal levels inside and outside of GUVs, the
internalization of R8-Alexa was not significant, even in the case of the
latter GUVs.

Heterogeneous signal distributions of DiD on both neutral and
negatively charged GUV membranes were observed, and more distinct
phase separation was observed for the DOPC/DOPS/SM/Chol (1:1:2:1)
GUVs (Fig. 1A and B) — the phase separation of the DOPC/SM/Chol
(2:2:1) GUVswasmore evidentwhen the CLSMwas focused on the sur-
face of the GUVs instead of the equatorial plane (Fig. 1A, right). The sig-
nals of R8-Alexa accumulated on DOPC/DOPS/SM/Chol (1:1:2:1) GUVs
well colocalized with those of DiD, suggesting preferential localization
of R8-Alexa on the Ld phase (Fig. 1B, arrows). These results are in agree-
ment with previous findings [22] regarding the HIV-1 TAT peptide, an-
other representative arginine-rich CPP [5,37].
Previously, we reported that modification of the N-terminus of R8
with hexanoic acid resulted in enhanced peptide interaction with
plasma membranes, which promoted direct penetration of R8
through the membranes [38]. In the current study, we evaluated
the modes of interaction of Alexa-labeled hexanoyl-R8 (hexanoyl-
R8-Alexa) with GUVs in comparison with those of R8-Alexa (Fig.
S1). Similar to R8-Alexa, hexanoyl-R8-Alexa showed preferential
adsorption onto the Ld phase of negatively charged GUVs (Fig.
S1A). However, R8-Alexa showed little membrane penetration
through DOPC/DOPS/SM/Chol (1:1:2:1) GUV membranes 1 h after
peptide administration (Fig. 1B and the lower panels in Fig. S1C),
whereas time-dependent increase in internalized hexanoyl-R8-
Alexa signals in GUVs was observed (Fig. S1B and C). Judged by
confocal microscopic observation, hexanoyl-R8-Alexa reached the
inside of more than half of GUVs with the same lipid composition
in 30 min, yielding no substantive differences in signal intensities
inside and outside of the membranes (upper panels in Fig. S1C).
Line intensity profiles of DiD and Alexa signals confirmed this ob-
servation (right panels in Fig. S1C; note that DiD also serves as a
lipid marker in this experiment). Thus, enhancement of the pep-
tide–membrane interaction may promote membrane translocation
of R8.
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Fig. 2. (A) CLSM observation of GUVs composed of DOPC/DOPS/SM/Chol (1:1:2:1). (A) GUVs were treated with R8-Alexa (1.5 μM) in the presence and absence of PyB (15 μM) for
15 min. (B) Alexa-R8 signals were observed on GUV membranes beginning 3 min after addition of R8-Alexa (1.5 μM) and PyB (15 μM). (C) Significant internalization of R8-Alexa
accompanied its surface adsorption on GUVs 5 min after addition of R8-Alexa and PyB (left). The panel on the right side represents the intensity profiles of Alexa (green) and DiD
(red) signals along the lines on the confocal pictures on the left. The lack of difference in Alexa signal intensity inside and outside GUVs suggested the completion of internalization
of R8-Alexa at this time point. (D) This was further confirmed by the fact that all GUVs showed internalized R8-Alexa after 10 min when cotreated with PyB. (E) Inhibition of phase
separation of GUVs by addition of PyB. GUVs having Ld/Lo phase separation were treated with or without PyB (15 μM) for 15 min. All GUVs contain 0.5 mol% DiD as a Ld-phase
marker, which was also regarded as a lipid marker in this experiment. Scale bars, 20 μm (A, B, and E), and 50 μm (D), respectively.
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3.2. Addition of PyB leads to enhancement of peptide–membrane
interactions

Next, we examined the effects of PyB on the peptide–lipid interac-
tion. The R8-Alexa/PyB ratio was set at 1:10, considering that R8 pos-
sesses eight guanidino-functions in one molecule that potentially form
pairs with PyB and mimicking the condition necessary for efficient
translocation of R8-Alexa through plasma membranes into cells [10].
While DOPC/DOPS/SM/Chol (1:1:2:1) GUVs exhibited a marked accu-
mulation of R8 on their Ld phase (Fig. 1A), the addition of PyB acceler-
ated R8-Alexa accumulation on the membranes (Fig. 2A).1 More than
30 min was needed to detect significant R8-Alexa signals on the mem-
branes of DOPC/DOPS/SM/Chol (1:1:2:1) GUVs in the absence of PyB
under the given conditions. In contrast, R8-Alexa signals were observed
on the membrane as early as 3 min after peptide treatment of GUVs in
the presence of PyB (Fig. 2B). Moreover, significant internalization of
R8-Alexa accompanied its surface adsorption on DOPC/DOPS/SM/Chol
(1:1:2:1) GUVs; as determined by means of line intensity profiles of
Alexa signals, there were no substantive differences in Alexa signals in-
side and outside of GUVs after 5 min (Fig. 2C). At 10 min after peptide
administration, almost all GUVs showed internalized R8-Alexa, with
very little membrane perturbation (Fig. 2D). Therefore, the addition of
1 Additionally, although the addition of premixed PyB and R8-Alexa to GUVs or the
addition of PyB prior to R8-Alexa also resulted in R8-Alexa adsorption onto DOPC/
DOPS/SM/Chol (1:1:2:1) GUVs and their internalization, addition of R8-Alexa prior to
PyB, as above, resulted in the most efficient R8-Alexa adsorption onto, and internaliza-
tion into, GUVs. Membrane unbound pyrenebutyrate may compete with negatively
charged GUV surfaces, inhibiting the attachment of R8-Alexa to the surface. However,
the reason for the differences in the internalization efficiency of R8-Alexa resulting
from the order of addition of R8-Alexa and PyB to the GUVs is currently unclear.
PyB accelerates the accumulation of R8-Alexa on DOPC/DOPS/SM/Chol
(1:1:2:1) GUV surfaces and its internalization into GUVs. In contrast,
when neutral GUVs composed of DOPC/SM/Chol (2:2:1) were
employed, neither significant accumulation of R8-Alexa on the GUV
surfaces, nor internalization, occurred even in the presence of PyB 1 h
after peptide addition (data not shown). These findings suggest the im-
portance of both negatively charged lipids and PyB for efficient internal-
ization of R8-Alexa into GUVs.

The ability of PyB to enhance peptide–membrane interaction was
further evaluated by fluorescence anisotropy decay analysis of
R8-BODIPY on DOPC 100% and DOPC/DOPS (3:1) LUVs (Table 1).
Tight interaction between the peptide and the membrane may reduce
the mobility of the fluorescent probe, which can be detected as the
anisotropy decay change. To assess the effect of negative charges of
membrane more directly, simpler systems without SM and Chol
were employed. Initially, we employed R8-Alexa to evaluate anisotro-
py decay. However, the possible repulsion between the negative
charge of the Alexa moiety and the negatively charged DOPS and
PyB may have prevented sufficient interaction for evaluation of an-
isotropy of the Alexa moiety (data not shown). Therefore, we
employed the neutral BODIPY moiety as the probe for this assay. In
PBS(−) or in the presence of neutral DOPC LUVs, a 20–40% increase
in the rotational correlation time (θ) of R8-BODIPY was found in the
presence of PyB compared to its absence (Table 1). In the presence
of DOPC/DOPS (4:1) LUVs, the average θ value was two to three
times higher than those in PBS(−) or in the presence of DOPC 100%
LUVs, even in the absence of PyB, which was doubled upon addition
of PyB (Table 1). The above results support the contribution of nega-
tively charged lipids in binding of the R8 peptide on the membrane, as
well as the synergic effect of PyB.



Table 2
Fluorescence anisotropy of DPH.

DPH R8 + PyB PyB alone

DOPC/SM/Chol (2:2:1) 0.195 0.195 0.196
DOPC/DOPS/SM/Chol (1:1:2:1) 0.205 0.160 0.160
Anisotropy at 450 nm
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3.3. PyB also increases membrane fluidity

Another notable finding is distributional alteration of the Ld phase
marker, DiD (Fig. 2A). In the absence of PyB, DOPC/DOPS/SM/Chol
(1:1:2:1) GUVs have distinct domains comprising Ld and Lo phases;
R8-Alexa accumulated preferentially on the Ld phase, exhibiting
good colocalization with DiD signals (Fig. 1B and Fig. 2A, upper
A

DIC SRB

R8-Alexa/PyB
(5 min)

R8-Alexa/PyB
(20 min)

B

DOPC/DOPS/SM/Chol (1:1:2

DOPC/DOPS (4:1)

DIC SRB

R8-Alexa/PyB
(5 min)

R8-Alexa/PyB
(10 min)

C DOPC/DOPS/Chol (3:1:1

DIC SRB

R8-Alexa/PyB
(20 min)

Fig. 3. No marked SRB leakage from DOPC/DOPS/SM/Chol (1:1:2:1) GUVs due to interaction
same treatment using DOPC/DOPS (4:1) led to complete efflux of SRB in 10 min (B). Howev
20 μm.
panels). When DOPC/DOPS/SM/Chol (1:1:2:1) GUVs were incubated
with R8-Alexa in the presence of PyB, the separation of the Ld and
Lo phases became ambiguous. Ubiquitous spread of DiD and
R8-Alexa signals across GUV membranes was observed with notably
higher levels of R8-Alexa accumulation than in the absence of PyB
(Fig. 2A, lower panels). The spread of DiD signals was also induced by
the addition of PyB alone (Fig. 2E). This suggests that PyB dissipates
Ld/Lo phase separation or the Lo domain, thus increasing the fluidity
of the GUV membrane.

We next examined the ability of PyB to modify membrane fluidity.
Membrane fluidity was evaluated based on the anisotropy in LUV
membranes containing 1,6-diphenyl-1,3,5-hexatriene (DPH) [39,40];
an increase in membrane fluidity should result in decreased DPH an-
isotropy. Because DPH fluorescence overlaps that of R8-Alexa, we
used non-labeled R8 peptide (1 μM) and PyB (10 μM) in this
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experiment (Table 2). DPH has been reported to partition equally to the
Ld and Lo phases [36,41].

No anisotropy changes were observed for DOPC/SM/Chol (2:1:1)
LUVs upon addition of R8 followed by PyB; however, a ~20% decrease
in anisotropy occurred after identical treatment of DOPC/DOPS/SM/
Chol (1:1:1:1) LUVs (Table 2, R8 + PyB). The same reduction in anisot-
ropy was obtained using PyB alonewithout addition of R8 (Table 2, PyB
alone). Therefore, PyB is likely the major contributor to the increased
fluidity of negatively charged membranes, and is thus relevant to the
disappearance of distinct Lo phases in GUV membranes of the same
lipid composition. These results are also in agreement with a previous
report that the TAT peptide had no significant effect on DPH anisotropy
in the presence of DMPC/DMPG (3:1) LUVs [33].

3.4. Translocation of R8-Alexa through GUV membranes and membrane
integrity

In the above sections, we showed the importance of the peptide–
membrane interaction andmembrane fluidity in promoting the adsorp-
tion and translocation of R8-Alexa, and their enhancement by PyB.
R8-mediated translocation of sulforhodamine B (SRB) or membrane
perturbation can be assessed by means of dye release from the vesicles
[11,13,42]. We next evaluated efflux of a GUV-encapsulated fluorescent
dye from the above GUVs and the effect of membrane composition on
this efflux.

DOPC/DOPS/SM/Chol (1:1:2:1) GUVs containing SRB, a small,
membrane-impermeable dye, were prepared and the efflux of the dye
and influx of R8-Alexa was assessed by CLSM. The GUVs were treated
with R8-Alexa in the presence of PyB for 20 min, leading to membrane
accumulation and internalization of R8 into GUVs (Fig. 3A). While no
dramatic decrease in SRB in the GUVs was observed by CLSM, detailed
analysis (Fig. 3A, right) revealed a ~15% decrease in SRB signal intensity
after 20 min (Fig. S2). Thus, treatment of DOPC/DOPS/SM/Chol (1:1:2:1)
GUVs with R8-Alexa in the presence of PyB led to gradual SRB efflux. No
decrease in SRB signals was observed for GUVs of identical composition
treated with R8-Alexa or PyB alone (Fig. S2), suggesting that dye efflux
was accompanied by the influx of R8-Alexa.

A more facile efflux of SRB was observed when GUVs composed of
DOPC/DOPS (4:1) were employed; little SRB signal remained in the
A

0 min

DICRho-PE

4 min

30 min

Fig. 4. CLSM observation of brain total lipid extract (BTLE) GUVs treated with PyB (15 μM) (A
(15 μM). Confocal images of identical GUVs subjected to the respective conditions are show
was used as a lipid marker. Scale bars, 10 μm.
GUVs after 10 min (Fig. 3B). This may be in accordance with the recent
report byMadani et al. that the addition of PyB resulted in proton efflux
from a bacteriorhodopsin-incorporated POPC/POPG (4:1) LUV, used as
a light-inducible endosome-mimicking system [43]. In contrast, the in-
clusion of cholesterol in GUV membranes prevented SRB leakage. SRB
levels in DOPC/DOPS/Chol (3:1:1) GUVs were almost identical to
those in DOPC/DOPS/SM/Chol (1:1:2:1) GUVs 20 min after treatment
with R8-Alexa in the presence of PyB (Fig. 3C). As no significant collapse
of GUVs was induced by treatment with R8-Alexa in the presence of
PyB, even when this treatment was associated with marked SRB leak-
age, the defects in the membranes accompanied by this counteranion-
mediated influx of R8-Alexa should be, if any, highly transient. More-
over, such defects likely do not comprise stable pores or extensive
membrane perturbation as is often observed with basic antimicrobial
peptides [44]. This is consistent with the very low cytotoxicity of intra-
cellular delivery using R8 with the assistance of PyB. Additionally, Chol,
a major component of plasma membranes, stabilizes membrane integ-
rity during treatment with R8-Alexa in the presence of PyB, as demon-
strated in this study.

3.5. Effect of PyB on membrane curvature and the implication for R8
translocation

The ability of oligoarginines, including the R8 and HIV TAT pep-
tides, to induce membrane curvature has been hypothesized as an ex-
planation for the translocation of these peptides [20,45–51]. Also, PyB
can alter erythrocyte membrane structures [52]. If PyB can induce
membrane curvature, the possible synergistic effect of R8 and PyB
may be relevant to membrane translocation of R8 in the presence of
PyB. GUVs composed of brain total lipid extract (BTLE) have often
been employed to evaluate the effect of cytoplasmic proteins on
membrane curvature formation [53]. Indeed, marked formation of in-
ward tubular structures was observed a few minutes after addition of
PyB to BTLE GUVs of this composition, and was visible after 30 min in
almost all BTLE GUVs (Fig. 4A), suggesting negative curvature forma-
tion by PyB. When R8-Alexa was added to BTLE GUVs after formation
of inward tubules by PyB treatment, most of the tubules disappeared
after 5 min (Fig. 4B). Additionally, pretreatment of BTLE GUVs with
R8-Alexa or simultaneous addition of R8-Alexa and PyB to GUVs
B DICRho-PE

0 min

4 min

20 min

). In (B), R8-Alexa (1.5 μM)was added to the BTLE GUVs 5 min after the addition of PyB
n. Time zero represents the point at which PyB was added. Rhodamine-DOPE (Rho-PE)
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markedly suppressed the formation of the inward tubular structures
(Fig. S3). Although no significant R8-Alexa influx into GUVs was ob-
served under the conditions used, these data suggest that R8-Alexa
and PyB may have reciprocal tendencies in terms of curvature forma-
tion. Simultaneous treatment with R8-Alexa and PyB may produce
local and temporal deformation of the membrane, simultaneously
yielding both positive and negative curvatures, which may enhance
R8 translocation, as suggested by Sakamoto [45] and Wong [51] and
coworkers.

4. Conclusions

In the present study, we evaluated the factors involved in PyB-
mediated direct membrane translocation of R8. Confocal microscopic
analyses of GUVs treated with R8-Alexa demonstrated the importance
of the negatively charged lipid DOPS in R8 accumulation on the mem-
brane; this was accelerated by PyB. Anisotropy decay measurement of
R8-BODIPY also suggested the synergistic effect of anionic lipids and
PyB on peptide recruitment to the membranes. Although it showed no
substantive perturbation in model membranes containing SM and Chol,
PyB had a marked effect on fragmentation or disappearance of the Lo
phase, thus increasing membrane fluidity. The potential ability of PyB to
induce negative membrane curvature was also demonstrated. Although
more detailed evaluations are needed, our findings facilitate greater un-
derstanding of the unique effects of PyB in terms of promotion of R8
membrane translocation.
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