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Report

Interruptions in the Expanded ATTCT Repeat of Spinocerebellar Ataxia
Type 10: Repeat Purity as a Disease Modifier?
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Spinocerebellar ataxia type 10 (SCA10) is one of numerous genetic disorders that result from simple repeat ex-
pansions. SCA10 is caused by expansion of an intronic ATTCT pentanucleotide repeat tract. It is clinically char-
acterized by progressive ataxia, seizures, and anticipation, which can vary within and between families. We report
two SCA10 families showing distinct frequencies of seizures and correlations of repeat length with age at onset.
One family displayed uninterrupted ATTCT expansions, whereas the other showed multiple interruptions of the
repeat by nonconsensus repeat units, which differed both in the length and/or sequence of the repeat unit. Disease-
causing microsatellite expansions have been assumed to be composed of uninterrupted pure repeats. Our findings
for SCA10 challenge this convention and suggest that the purity of the expanded repeat element may be a disease
modifier.
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Unstable microsatellite repeats in disease-associated
genes cause a large number of inherited neuromuscular
and neurological disorders on expansion to abnormal
sizes (Zoghbi and Orr 2000; Ranum and Day 2002).
Expansion mutations can result in disease through a
variety of mechanisms including suppression of gene
expression, as in fragile X syndrome (FMR1 [MIM
309550]) and Friedreich ataxia (FRDA [MIM 229300]).
Alternatively, normal protein function may be altered,
as in Huntington disease (HD [MIM 143100]), Kenn-
edy disease (SBMA [MIM 313200]), dentatorubropal-
lidoluysian atrophy (DRPLA [MIM 125370]), and a
number of spinocerebellar ataxias (SCA) caused by the
expansion of CAG trinucleotide repeats coding polyglu-
tamine tracts. A third mechanism appears to involve gen-
eration of toxic RNAs containing expanded repeats, as
in myotonic dystrophy types 1 (DM1 [MIM 160900])
and 2 (DM2 [MIM 602668]) and fragile X–associated
tremor/ataxia syndrome (FXTAS) (Ranum and Day
2002).

SCA10 (MIM 603516) is a rare, dominantly inherited
neurodegenerative disorder characterized by a unique

combination of progressive ataxia, seizure, and antici-
pation (Grewal et al. 1998; Matsuura et al. 1999; Zu
et al. 1999). The mutation of SCA10 is an unstable and
massive expansion of an ATTCT repeat in intron 9 of
the SCA10 gene mapped to chromosome 22q13.3.
SCA10 is the only disease known to be caused by an
expansion of a pentanucleotide repeat and, in its mutant
form, is among the largest expansion mutations found
to date in human genetic diseases (Matsuura et al. 2000).
There is a large gap between the documented normal
(10–22) and mutated repeat lengths (800–4,500) asso-
ciated with SCA10. The presence of “premutation” or
“reduced penetrance mutation” allele ranges is not yet
known for SCA10, in contrast to the polyglutamine
diseases including several types of SCAs. The SCA10
ATTCT expansion has unique characteristics of insta-
bility in both somatic and germline tissues, distinct from
the other repeat expansions (Matsuura et al. 2004). Phe-
notype and instability patterns are also variable, both
within and between families (Rasmussen et al. 2001;
Grewal et al. 2002); however, the underlying molecular
basis is currently unknown. One possibility is that the
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Figure 1 Small expansions in the SCA10 repeat tract. a, Long-range PCR of the pedigree of the patient with 280 ATTCT repeats. Filled
symbol, Affected individual. Open symbol, Non-affected individual. The numbers below symbols show the numbers of SCA10 repeats. Of note,
the 280-repeat allele is transmitted through her asymptomatic mother. NA p normal allele; F p father; M p mother; and P p patient. b,
Partial sequence of the expanded 280 repeats. Direct sequencing was performed using long-range PCR products. The first part of the expansion
is often interrupted by repetitive ATGCT repeats and the latter part by ATTCTAT septanucleotide repeats (not shown). Although it was
impossible to obtain the whole sequence throughout the expansion, there was a long stretch of pure ATTCT repeats in the middle of the
expansion. The expanded alleles from both the affected daughter and her asymptomatic mother were identical in sequence through the readable
portion. The identical whole sequence is as follows (“ATGCT” and “ATTCTAT” are highlighted in bold and in bold italics, respectively):
(ATTCT)10 (ATGCT)19 (ATTCT)14 (ATGCT) (ATTCT)2 (ATGCT)5 (ATTCT)2 (ATGCT) (ATTCT)8 (ATGCT) (ATTCT)3 (ATGCT) (ATTCT)10

(ATGCT)2 (ATTCT)5 (ATGCT) (ATTCT)6 (ATGCT) (ATTCT)2 (ATGCT) (ATTCT)5 (ATGCT) (ATTCT)4 (ATGCT) (ATTCT) (ATGCT)
(ATTCT)2 (ATGCT)3 (ATTCT) (ATGCT) (ATTCT)2 (ATGCT)3 (ATTCT) (ATGCT) (ATTCT)4 (ATGCT)2 … (ATTCT)79 (ATTCTAT) (ATTCT)2

(ATTCTAT) (ATTCT)3 (ATTCTAT) (ATTCT)3 (ATTCTAT) (ATTCT)12.

configuration of the expanded alleles may vary with phe-
notype and genetic stability; however, such characteri-
zation of large expansions has been hindered by difficult
cloning, propagating, and sequencing needs.

We recently identified an early-onset patient (onset at
age 14 years) with ataxia who was found to have an
unusual SCA10 allele of 280 ATTCT repeats, which is
much smaller than expansions previously identified in
SCA10 families (fig. 1a). In this small pedigree, the pa-
tient’s asymptomatic mother has the same 280-repeat
expansion, whereas her asymptomatic father has normal
ATTCT alleles. This suggests that repeat lengths !800
can be pathogenic and that a 280-repeat expansion may
be within a size range with reduced penetrance. Long-
range PCR (LP) successfully amplified the expanded al-
lele as well as the normal allele. The expanded allele was
agarose gel–purified and was sequenced from both ends.
We were surprised to find interruptions within the
ATTCT repeat tract. The configuration of this small
expansion was quite complex. The most proximal part
(5′ end) of the expansion is interrupted by multiple re-
petitive ATGCT repeats (fig. 1b) and the latter part (3′

end) by ATTCTAT septanucleotide repeats. Although it
was not possible to obtain the whole sequence through-
out the expansion, we did note a long stretch of pure
ATTCT repeats in the middle of the expanded tract. The
expanded alleles from both the affected daughter and
her asymptomatic mother were identical in sequence
through the readable portions. We hypothesized that in-
terruptions might play a role in disease presentation and
penetrance in this pedigree.

This observation stimulated us to search for interrup-
tions in other SCA10 patients. It is not possible, by use
of current methods, to sequence through all other ex-
pansions, which, to date, exceed 800 repeats. To over-
come this technical hurdle, we assessed the repeat con-
figuration, using an ATTCT repeat-primed PCR (RP)
that we previously developed to detect SCA10 expan-
sions (Matsuura and Ashizawa 2002). Here, the reverse
primer with a repeat sequence complementary to
ATTCT repeats, randomly binds at multiple sites within
the ATTCT repeat tract, and generates a mixture of
products containing a variable number of repeats with
the forward primer in the unique sequence proximal to



www.ajhg.org Matsuura et al.: SCA10 ATTCT Repeat Interruptions 127

Figure 2 Different patterns in ATTCT repeat-primed PCR between SCA10 families. a, SCA10 Patients in family 1 showed continuous
multiple ladders, whereas family 2 showed the complex interruption pattern beginning from the location of 43 repeats. NC p Normal controls.
The left-end lane of NC is a recently identified normal individual with a 29 pure ATTCT repeat allele. b, Sequence of a representative clone
from ATTCT-primed PCR products of a patient in family 2. Both septarepeat interruptions, ATTTTCT and ATATTCT, are duplicated in the
repeat tract. The whole sequence of the repeat (equivalent numbers of pentamers p 76) is (ATTCT)41 (ATTTTCT) (ATTCT) (ATATTCT)
(ATTCT) (ATATTCT) (ATTCT) (ATTTTCT) (ATTCT)11 (ATATTCT) (ATTCT)5 (ATATTCT) (ATTCT)10.

the repeat. To determine whether there are interruptions
in SCA10 expansions, RP products of SCA10 patients
were size separated by electrophoresis at a higher res-
olution than is typical for diagnostic purposes. In prin-
ciple, a pure uninterrupted ATTCT expansion would
be predicted to show a continuous ladder of products,
as the reverse primer anneals randomly within the pure
ATTCT repeat tract. Interruptions in repeat purity
would expectedly yield a stuttered ladder of products,
with stutter locations coincident with interruptions.

We studied the two initially identified large families,
since both are clinically and genetically well character-
ized (Grewal et al. 1998, 2002; Matsuura et al. 1999,
2000; Zu et al. 1999). All patients in family 1 showed
continuous ladders, whereas those in family 2 showed
a complex interruption pattern (fig. 2a). This pattern
was similar in all the affected individuals in family 2
through three generations, although the location of in-
terruptions was variable. The largest PCR products were
gel purified, cloned, and sequenced. Expanded alleles
from family 2 had two different septarepeat interrup-
tions, ATTTTCT and ATATTCT, which are duplicated

(fig. 2b), whereas family 1 had only pure repeats. The
interrupted sequence configuration in family 2 was pre-
served in the affected members of three generations. We
isolated no clones with 180 pentanucleotides, suggest-
ing a limit to the capacity of Escherichia coli systems
for propagating these sequences. The data indicate that
the expanded ATTCT repeat tract is highly mutable for
both length and sequence content in human patients
with variable sequence changes.

Sequence interruptions in normal alleles at SCA1
(MIM 164400), SCA2 (MIM 183090), FMR1, and
FRDA have been well characterized (Chung et al. 1993;
Kunst and Warren 1994; Imbert et al. 1996; Pulst et
al. 1996; Sanpei et al. 1996; Cossee et al. 1997; Mon-
termini et al. 1997; Gunter et al. 1998). They appear to
stabilize their repeat tracts, and the loss of interruptions
is associated with instability and repeat expansion. Most
normal SCA1, SCA2, and FMR1 alleles carry one or
more CAT, CAA, or AGG interruption, whereas GAG-
GAA hexanucleotide interruptions seen in FRDA are
confined to premutations or larger normal alleles of
FRDA. Interrupting sequences in a portion of large nor-
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Table 1

Sequence Configuration of ATTCT Large Normal
Alleles (�17 Repeats)

Allele Size Pure Motif n-AB-1 n-B-1 Total

17 6 6 4 16
18 2 9 1 12
19 1 1 3 5
20 1 1 0 2
21 0 0 1 1
22 0 0 1 1
29 1 0 0 1

Total 11 17 10 38

NOTE.—A p ATTGT and B p TTTCT.

mal FRDA alleles are also thought to act as anchors to
prevent further expansions. In stark contrast with these
triplet-repeat diseases, SCA8 (MIM 603680) has normal
alleles without interruptions and expanded alleles with
interruptions (Moseley et al. 2000). In our initial study
(Matsuura et al. 2000), sequence analysis of 40 SCA10
alleles from 20 normal individuals who were homozy-
gous for alleles ranging from 11 to 16 repeats showed
tandem ATTCT repeats without interruptions. Consid-
ering this situation, we reevaluated the sequencing of
a wider range of normal allele sizes, focusing especially
on large normal alleles (�17 repeats), which are found
at a frequency of 7.1% (43/604 alleles) (Matsuura et
al. 2000). As shown in table 1, more than half of large
normal alleles have ATTGT-TTTCT or TTTCT inter-
ruption (71.1% of 38 examined), whereas all 78 nor-
mal alleles of 11–16 repeats showed an uninterrupted
pentanucleotide. Interestingly, the location of all inter-
ruptions in normal alleles is confined to the second to
the last (most distal) repeat. This is similar to the FRDA
case, where most GAGGAA interruptions are restricted
to the fifth from the last repeat (Cossee et al. 1997;
Montermini et al. 1997). From these data, it is difficult
to predict the consequences of ATTGT-TTTCT, TTTCT
interruptions in the instability or stability of the normal
length repeat tract. Interruptions have been observed
in the majority of large normal alleles of �17 repeats.
At the same time, cloned expansion alleles from two
SCA10 families have shown uninterrupted, as well as
interrupted, mutant repeats.

As reported elsewhere (Grewal et al. 2002), the pres-
ence of seizures was found to be significantly different
in the two families described above. Some 25% of af-
fected members in family 1 exhibited seizure, whereas
80% in family 2 suffered from this SCA10-associated
phenotype. Correlation between age at onset and repeat
number also differs between the families despite clini-
cally observed anticipation; we found a strong inverse
correlation ( , ) in family 1 and no2r p 0.79 P p .001
significance in family 2. Although we could not apply
this RP technique to amplify the 3′ end of the expansion
(since the genomic sequence downstream of the ATTCT
repeat is immediately followed by a long stretch of
AluSg, MER11A, and MER11B repeats) to confirm that
the ATTCT tracts are uninterrupted in the whole ex-
pansion in family 1, differences in the sequence inter-
ruption patterns may well explain their variable effect
on phenotype and patterns of instability. As seen in
SCA1, pathogenicity in the overlapping zone between
normal and disease ranges is directly related to the pres-
ence/absence of interruptions (Zühlke et al. 2002) and
to their locations (Sobczak and Krzyzosiak 2004). Al-
though it will require analysis of additional families to
confirm this finding, our data strongly suggest that the
sequence configuration itself can be a disease modifier

in this noncoding repeat expansion disease. This may be
explained by the notion that these pathogenic repeat
expansions act as toxic RNA species, which might have
different effects dependent on sequence and/or RNA
structure.

It has been assumed that noncoding microsatellite
expansions contain uninterrupted pure repeats, on the
basis of the finding that loss of interruptions appears to
be a precursor to repeat instability. However, large ex-
panded repeats have not typically been cloned and se-
quenced; thus, there is no direct evidence for this notion.
We have demonstrated that this is not the case for
SCA10, and we recommend caution regarding assump-
tions about sequence configurations in other disorders.
Indeed, interruptions may be the basis for the complex
relationship between repeat length and disease severity
seen in other noncoding repeat expansions, including
DM1, DM2, SCA8, SCA12 (MIM 604326), and
FXTAS. It is also possible that interruptions with di-
vergent effects on phenotype may also serve to further
distinguish these diseases from the polyglutamine
disorders.
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