Controllability of Second-Order Integrodifferential Evolution Systems in Banach Spaces

K. BALACHANDRAN
Department of Mathematics, Bharathiar University
Coimbatore 641 046, India

D. G. PARK
Department of Mathematics, Dong-A University
Pusan 604-714, South Korea

P. MANIMEGALAI
Department of Mathematics, Kongu Nadu Arts and Science College
Coimbatore 641 029, India

(Received May 2003; revised and accepted March 2005)

Abstract—In this paper, we study the controllability of second-order nonlinear integrodifferential systems in Banach spaces. Further, we derive a set of sufficient conditions for the controllability of second-order nonlinear integrodifferential evolution systems in Banach spaces. The results are established by using the theory of strongly continuous cosine families of bounded linear operators and the Schaefer fixed-point theorem. © 2005 Elsevier Ltd. All rights reserved

Keywords—Controllability, Second-order integrodifferential systems, Evolution systems, Fixed-point theorem

1. INTRODUCTION

Controllability of nonlinear systems represented by ordinary differential equations in infinite dimensional spaces has been extensively studied by several authors [1]. Tsujioka [2] investigated the controllability problem for second-order evolution systems in Hilbert spaces by converting it into a first-order system. The problem of controllability of second-order nonlinear systems in Banach spaces has received considerable attention in recent years. Park and Han [3] discussed controllability of second-order nonlinear systems in Banach spaces with the help of the Schauder fixed-point theorem. Balachandran and Marshal Anthoni [4] discussed the controllability of second-order semilinear differential systems in Banach spaces. Park and Han [5] established sufficient conditions for the approximate controllability of second-order integrodifferential systems in Banach spaces with the help of the Schauder fixed-point theorem. Balachandran et al. [6] discussed the controllability of second-order semilinear Volterra integrodifferential systems in

The authors are thankful to the referee for the improvement of the paper.

0898-1221/05/$ - see front matter © 2005 Elsevier Ltd. All rights reserved. Typeset by A\&E-TEX
doi:10.1016/j.camwa.2005.03.001
Banach spaces and in [7], they studied delay integrodifferential systems. Recently, Balachandran and Marshal Anthoni [8] established sufficient conditions for the controllability of nonlinear second-order neutral systems in Banach spaces. The purpose of this paper is to study the controllability of second-order nonlinear integrodifferential systems and integrodifferential evolution systems in Banach spaces. The results are established by using the Schaefer fixed-point theorem.

2. PRELIMINARIES

The following basic results concerning strongly continuous cosine families have been established in [9,10].

Definition 2.1. A one-parameter family $C(t)$, $t \in \mathbb{R}$, of bounded linear operators mapping the Banach space X into itself is called a strongly continuous cosine family if and only if

(i) $C(s + t) + C(s - t) = 2C(s)C(t)$ for all $s, t \in \mathbb{R}$;
(ii) $C(0) = I$;
(iii) $C(t)x$ is continuous in t on \mathbb{R} for each fixed $x \in X$.

If $C(t)$, $t \in \mathbb{R}$, is a strongly continuous cosine family in X, then $S(t)$, $t \in \mathbb{R}$, is the associated sine family of operators in X defined by

$$S(t)x = \int_0^t C(s)x \, ds, \quad x \in X, \quad t \in \mathbb{R}.$$\hspace{1cm} (2.1)

Proposition 2.1. Let $C(t)$, $t \in \mathbb{R}$, be a strongly continuous cosine family in X. Then, the following are true.

(i) $C(t) = C(-t)$ for all $t \in \mathbb{R}$.
(ii) $C(s)$, $S(s)$, $C(t)$, and $S(t)$ commute for all $s, t \in \mathbb{R}$.
(iii) $S(t)x$ is continuous in t on \mathbb{R} for each fixed $x \in X$.
(iv) $S(s + t) + S(s - t) = 2S(s)C(t)$ for all $s, t \in \mathbb{R}$.
(v) $C(s + t) = S(s)C(t) + S(t)C(s)$ for all $s, t \in \mathbb{R}$.
(vi) $S(t) = -S(-t)$ for all $t \in \mathbb{R}$.
(vii) There exist constants $K \geq 1$ and $\omega \geq 0$, such that $|C(t)| \leq Ke^{\omega|t|}$.
(viii) $|S(t) - S(t')| \leq K \int_t^{t'} e^{\omega|s|} \, ds$, for all $t, t' \in \mathbb{R}$.

The infinitesimal generator of a strongly continuous cosine family $C(t)$, $t \in \mathbb{R}$, is the operator $A : X \to X$ defined by

$$Ax = \left. \frac{d^2}{dt^2} C(t)x \right|_{t=0}, \quad x \in D(A),$$

where $D(A) = \{x \in X : C(t)x$ is twice continuously differentiable in $t\}$. Define $E = \{x \in X : C(t)x$ is once continuously differentiable in $t\}$.

Proposition 2.2. Let $C(t)$, $t \in \mathbb{R}$, be a strongly continuous cosine family in X with infinitesimal generator A. Then, the following are true.

(i) $D(A)$ is dense in X and A is a closed operator in X.
(ii) If $x \in X$ and $r, s \in \mathbb{R}$, then $x = \int_t^s S(t)x \, dt \in D(A)$ and $Ax = C(s)x - C(r)x$.
(iii) If $x \in X$ and $r, s \in \mathbb{R}$, then $x = \int_0^s \int_0^r C(t)C(\theta)x \, dt \, d\theta \in D(A)$ and $Ax = 2^{-1}(C(s + r)x - C(s - r)x)$.
(iv) If $x \in X$, then $C(t)x \in E$.
(v) If $x \in E$, then $S(t)x \in D(A)$ and $\frac{d}{dt} C(t)x = AS(t)x$.
(vi) If $x \in D(A)$, then $C(t)x \in D(A)$ and $\frac{d^2}{dt^2} C(t)x = AC(t)x = C(t)Ax$.
(vii) If $x \in E$, then $\lim_{t \to \infty} AS(t)x = 0$.
(viii) If $x \in E$, then $S(t)x \in D(A)$ and $\frac{d}{dt} S(t)x = AS(t)x$.
(ix) If $x \in D(A)$, then $S(t)x \in D(A)$ and $AS(t)x = S(t)Ax$.
(x) $C(t + s) - C(t - s) = 2AS(t)S(s)$ for all $s, t \in \mathbb{R}$.
Assume the following conditions on A.

(H_1) A is the infinitesimal generator of a strongly continuous cosine family $C(t)$, $t \in \mathbb{R}$, of bounded linear operators from X into itself and the adjoint operator A^* is densely defined, that is $\text{D}(A^*) = X^*$ (see [11]).

Proposition 2.3. (See [10]) Let (H_1) hold, let $v : \mathbb{R} \rightarrow X$ be such that v is continuously differentiable and let $q(t) = \int_0^t S(t-s)v(s)\,ds$. Then, q is twice continuously differentiable, $q(t) \in \text{D}(A)$, for $t \in \mathbb{R}$, and

\[
q'(t) = \int_0^t C(t-s)v(s)\,ds
\]

and

\[
q''(t) = \int_0^t C(t-s)v'(s)\,ds + C(t)v(0) = Aq(t) + v(t).
\]

Schaefer Theorem. (See [12].) Let E be a normed linear space. Let $F : E \rightarrow E$ be a completely continuous operator, that is, it is continuous and the image of any bounded set is contained in a compact set, and let

\[
\xi(F) = \{x \in E : x = \lambda Fx, \text{ for some } 0 < \lambda < 1\}.
\]

Then, either $\xi(F)$ is unbounded or F has a fixed point.

3. Second-Order Delay Integrodifferential Systems

Consider the second-order delay integrodifferential control systems of the form,

\[
x''(t) = Ax(t) + f\left(t, x_t, \int_0^t g(t, s, x_s, x'(s))\,ds, x'(t)\right) + Bu(t), \quad t \in [0, T],
\]

\[
x_0 = \phi \in C, \quad x'(0) = y \in X,
\]

where A is the infinitesimal generator of the strongly continuous cosine family $C(t)$, $t \in \mathbb{R}$ of bounded linear operators in a Banach space X, g is a function from $J \times J \times C \times X$ to X, f is a nonlinear mapping from $J \times C \times X \times X$ to X, B is a bounded linear operator from U to X and the control function $u(\cdot)$ is given in $L^2(J, U)$, a Banach space of admissible control functions, with U as a Banach space. Here, $C = C([-r, 0] : X)$ is the Banach space of the continuous functions $\phi : [-r, 0] \rightarrow X$ endowed with the supremum norm,

\[
\|\phi\| = \sup \{|\phi(s)| : -r \leq s \leq 0\}.
\]

Also, for $x \in C([-r, T] : X)$, we have $x_t \in C$ for $t \in [0, T]$, $x_t(s) = x(t+s)$ for $s \in [-r, 0]$. We make the following assumptions.

(H_2) $g(t, s, \cdot, \cdot) : C \times X \rightarrow X$ is continuous for each $t, s \in J$ and the function $g(\cdot, \cdot, x, y) : J \times J \rightarrow X$ is strongly measurable.

(H_3) $f(t, \cdot, \cdot, \cdot) : C \times X \times X \rightarrow X$ is continuous for each $t \in J$ and the function $f(\cdot, x, y, z) : J \rightarrow X$ is strongly measurable for each $(x, y, z) \in C \times X \times X$.

(H_4) For every positive constant k there exists $\alpha_k \in L^1(J)$, such that

\[
\sup_{\|x\|,\|y\|,\|z\| \leq k} \|f(t, x, y, z)\| \leq \alpha_k(t), \quad \text{for } t \in J, \text{ a.e.}
\]
(H6) There exists an integrable function \(m : J \to [0, \infty) \), such that
\[
\| f(t, \phi, x, y) \| \leq m(t) \Omega \left(\| \phi \| + \| x \| + \| y \| \right), \quad t \in J, \quad \phi \in C, \quad x, y \in X,
\]
where \(\Omega : [0, \infty) \to (0, \infty) \) is a continuous nondecreasing function.

(H7) \(Bu(t) \) is continuous.

(H8) The linear operator \(W : L^2(J, U) \to X \) defined by
\[
Wu = \int_0^T S(T - s) Bu(s) \, ds
\]
has a bounded inverse operator \(W^{-1} : X \to L^2(J, U)/\ker W \).

(H9) \(C(t) \), \(t > 0 \) is compact.

Then, the system (1) has a mild solution of the form,
\[
x(t) = C(t) \phi(0) + S(t) y + \int_0^t S(t - s) Bu(s) \, ds
+ \int_0^t S(t - s) f \left(s, x_s, \int_0^s g(t, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_s(\tau) \right) \, ds,
\]
t \in J, \quad (2)

Let \(M = \sup \{ \| C(t) \| : t \in J \} \), \(M^* = \sup \{ \| AS(t) \| : t \in J \} \), \(\mu(t) = \sup \{ \| x(s) \| : s \in [-r, t] \} \), \(t \in J \), \(v(t) = \sup \{ \| x'(s) \| : s \in [0, t] \} \), \(t \in J \), and \(\hat{m}(t) = \max \{ M(T + 1) \mu(t), n(t, t) \} \). Let \(c = K_1 + K_2 \) where
\[
K_1 = M \| \phi \| + MT \| y \| + MT^2 \| B \| \left\| \frac{\hat{W}^{-1}}{\Omega} \right\| \left(\| x_1 \| + M \| \phi \| + MT \| y \| \right)
+ MT \int_0^T \hat{m}(s) \Omega \left(\| x_s \| + \int_0^s n(s, \tau) \Omega \left(\| x_\tau \| + \| x'_\tau(\tau) \| \right) \, d\tau + \| x'(s) \| \right) \, ds,
\]
\[
K_2 = M^* \| \phi \| + M \| y \| + MT \| B \| \left\| \frac{\hat{W}^{-1}}{\Omega} \right\| \left(\| x_1 \| + M \| \phi \| + MT \| y \| \right)
+ MT \int_0^T \hat{m}(s) \Omega \left(\| x_s \| + \int_0^s n(s, \tau) \Omega \left(\| x_\tau \| + \| x'_\tau(\tau) \| \right) \, d\tau + \| x'(s) \| \right) \, ds.
\]

DEFINITION 3.1. System (1) is said to be controllable on \(J \) if for every \(\phi \in C \) with \(\phi(0) \in D(A) \), \(y \in E \) and \(x_1 \in X \) there exists a control \(u \in L^2(J, U) \), such that the solution \(x(\cdot) \) of (1) satisfies \(x(T) = x_1 \).

THEOREM 3.1 Suppose (H1)-(H9) hold. Further if
\[
\int_0^T \hat{m}(s) \, ds < \int_c^\infty \frac{ds}{\Omega(s) + \Omega_0(s)},
\]
then the system (1) is controllable on \(J \).

PROOF. Consider the space \(Z = C([-r, T], X) \cap C^1(J, X) \) with the norm
\[
\| x \|^* = \max \{ \| x \|, \| x' \| \},
\]
where
\[\|x\|_r = \sup \{ |x(t)| : -r \leq t \leq T \}, \quad \|x\|_0 = \sup \{ |x'(t)| : 0 \leq t \leq T \}. \]

Using (Hs) for an arbitrary function \(x(\cdot) \), we define the control,

\[
 u(t) = \tilde{W}^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right.
\]

\[
 - \int_0^T S(T-s) f \left(s, x_s, \int_0^s g(\tau, r, x_r, x_r') d\tau, x'(s) \right) ds \bigg] (t)
\]

Using this control, we will show that the operator defined by

\[
(Fx)(t) = C(t) \phi(0) + S(t) y + \int_0^t S(t-s) f \left(s, x_s, \int_0^s g(\tau, r, x_r, x_r') d\tau, x'(s) \right) ds
\]

\[
+ \int_0^t S(t-s) B \tilde{W}^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right.
\]

\[
 - \int_0^T S(T-\theta) f \left(\theta, x_\theta, \int_0^\theta g(\theta, r, x_r, x_r') d\tau, x'(\theta) \right) d\theta \bigg] (s) ds,
\]

\[t \in J = \phi(t), \quad t \in [-r, 0], \]

has a fixed point. Then, this fixed point is a solution of equation (2).

Clearly, \((Fx)(T) = x_1\), which means that the control \(u \) steers the system from the initial function \(\phi \) to \(x_1 \) in time \(T \), provided we obtain a fixed point of the nonlinear operator \(F \).

In order to study the controllability problem for system (1), we have to apply the Schaefer theorem to the following nonlinear operator equation as in [13,14],

\[
x(t) = \lambda Fx(t), \quad \lambda \in (0, 1).
\]

That is,

\[
x(t) = \lambda \left(C(t) \phi(0) + S(t) y + \int_0^t S(t-s) f \left(s, x_s, \int_0^s g(\tau, r, x_r, x_r') d\tau, x'(s) \right) ds \right.
\]

\[
+ \lambda \int_0^t S(t-s) B \tilde{W}^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right.
\]

\[
 - \int_0^T S(T-\theta) f \left(\theta, x_\theta, \int_0^\theta g(\theta, r, x_r, x_r') d\tau, x'(\theta) \right) d\theta \bigg] (s) ds
\]

\[\|x(t)\| \leq M \|\phi\| + MT \|y\| + MT \int_0^t m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\|
\]

\[+ \|x'(\tau)\| d\tau + \|x'(s)\| \right) ds + MT \|B\| \|\tilde{W}^{-1}\| \left[\|x_1\| + M \|\phi\| + MT \|y\|
\]

\[+ MT \int_0^T m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\| + \|x'(\tau)\|) d\tau + \|x'(s)\| \right) ds \right]
\]

\[= K_1 + MT \int_0^t m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\| + \|x'(\tau)\|) d\tau + \|x'(s)\| \right) ds.
\]

Denoting by \(p(t) \) the right-hand side of the above inequality, we have

\[p(0) = K_1, \quad \|x(t)\| \leq p(t), \quad t \in J, \]
and
\[p'(t) = MT \left[m(t) \Omega \left(\|x_t\| + \|x'(t)\| + \int_0^t n(t,s) \Omega_0 (\|x_s\| + \|x'(s)\|) ds \right) \right]. \]

However,
\[x'(t) = \lambda [AS(t)x_0(t) + C(t)y(t)] + \lambda \int_0^t C(t-s) f \left(s, x_s, \int_0^s g(s, \tau, x_\tau, x'(\tau)) d\tau, x'(s) \right) ds \]
\[+ \lambda \int_0^t C(t-s) B\hat{W}^{-1} \left[x_1 - C(T)x_0(t) - S(T)y(t) \right] \cdot \]
\[- \int_0^T S(T-\theta) f \left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x_\tau, x'(\tau)) d\tau, x'(\theta) \right) d\theta \left(s \right) ds. \]

Thus, we have
\[
\|x'(t)\| \leq M^* \|x_0\| + M \|y\| + M \int_0^t m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\| + \|x'(\tau)\|) d\tau + \|x'(s)\| \right) ds + MT \|B\| \|\hat{W}^{-1}\| \left[\|x_1\| + M \|x_0\| + MT \|y\| \right]
\[+ MT \int_0^T m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\| + \|x'(\tau)\|) d\tau + \|x'(s)\| \right) ds \]
\[= K_2 + M \int_0^t m(s) \Omega \left(\|x_s\| + \int_0^s n(s, \tau) \Omega_0 (\|x_\tau\| + \|x'(\tau)\|) d\tau + \|x'(s)\| \right) ds. \]

Denoting by \(q(t) \) the right-hand side of the above inequality, we have
\[q(0) = K_2, \quad \|x'(t)\| \leq q(t), \]
and
\[\quad q'(t) = Mm(t) \Omega \left(\|x_t\| + \|x'(t)\| + \int_0^t n(t,s) \Omega_0 (\|x_s\| + \|x'(s)\|) ds \right), \quad t \in J. \]

Let
\[w(t) = p(t) + q(t) + \int_0^t n(t,s) \Omega_0 (p(s) + q(s)) ds, \quad t \in J. \]

Then, \(w(0) = p(0) + q(0) = c \) and
\[
w'(t) = p'(t) + q'(t) + n(t,t) \Omega_0 (p(t) + q(t)) \
\leq MTm(t) \Omega (w(t)) + Mm(t) \Omega (w(t)) + n(t,t) \Omega_0 (w(t))
\leq M(T+1) m(t) \Omega (w(t)) + n(t,t) \Omega_0 (w(t))
\leq \hat{n}(t) (\Omega (w(t)) + \Omega_0 (w(t))), \quad t \in J. \]

This implies
\[
\int_{w(0)}^{w(t)} \frac{ds}{\Omega(s) + \Omega_0(s)} \leq \int_0^T \hat{n}(s) ds < \int_0^\infty \frac{ds}{\Omega(s) + \Omega_0(s)}. \]

This inequality implies that there is a constant \(K \), such that
\[p(t) + q(t) \leq w(t) \leq K, \quad t \in J. \]

Then,
\[\|x(t)\| \leq p(t), \quad \|x'(t)\| \leq q(t), \quad t \in J, \]
and hence,
\[
\|x\|^* \leq \|x(t)\| + \|x'(t)\| \leq p(t) + q(t) \leq K,
\]
where \(K\) depends only on \(T\) and on the functions \(m, n, \Omega, \Omega_0\). We shall now prove that the operator \(F : Z \to Z\) defined by
\[
(Fx)(t) = C(t) \phi(0) + S(t) y + \int_0^t S(t-s) f\left(s, x_s, \int_0^s g(s, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_s(s)\right) \, ds
\]
\[
+ \int_0^t S(t-s) B W^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right]
\]
\[
- \int_0^T S(T-\theta) f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_\theta(\theta)\right) \, d\theta \right) \, ds,
\]
\(t \in J, \)
\[
(Fx)(t) = \phi(t), \quad t \in [-r, 0],
\]
is a completely continuous operator. Let \(B_k = \{x \in Z : \|x\|^* \leq k\}\) for \(k \geq 1\). We first show that \(F\) maps \(B_k\) into an equicontinuous family. Let \(x \in B_k\) and \(t_1, t_2 \in J\). Then, if \(0 < t_1 < t_2 \leq T, \)
\[
\|(F(t_1) - (F(t_2)) \leq ||(C(t_1) - C(t_2)) \phi(0)|| + ||(S(t_1) - S(t_2)) y||
\]
\[
+ \left| \int_0^{t_1} [S(t_1-s) - S(t_2-s)] f\left(s, x_s, \int_0^s g(s, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_s(s)\right) \, ds \right|
\]
\[
+ \left| \int_{t_1}^{t_2} S(t_2-s) f\left(s, x_s, \int_0^s g(s, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_s(s)\right) \, ds \right|
\]
\[
+ \left| \int_0^{t_1} [S(t_1-s) - S(t_2-s)] B W^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right]
\]
\[
- \int_0^T S(T-\theta) f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_\theta(\theta)\right) \, d\theta \right) \, ds \right|
\]
\[
+ \left| \int_{t_1}^{t_2} S(t_2-s) B W^{-1} \left[x_1 - C(T) \phi(0) - S(T) y \right]
\]
\[
- \int_0^T S(T-\theta) f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x_\tau, x'_\tau(\tau)) \, d\tau, x'_\theta(\theta)\right) \, d\theta \right) \, ds \right|
\]
\[
\leq ||(C(t_1) - C(t_2)) \phi(0)|| + ||(S(t_1) - S(t_2)) y||
\]
\[
+ \int_0^{t_1} \|S(t_1-s) - S(t_2-s)\| \alpha_k(s) \, ds + \int_{t_1}^{t_2} \|S(t_2-s)\| \alpha_k(s) \, ds
\]
\[
+ \int_0^{t_1} \|S(t_1-s) - S(t_2-s)\| B \left\| W^{-1} \right\| \left[\|x_1\| + M \|\phi\|
\]
\[
+ MT \|y\| + MT \int_0^T \alpha_k(\theta) \, d\theta \right] \, ds + \int_{t_1}^{t_2} \|S(t_2-s)\| B \left\| W^{-1} \right\|
\]
\[
\times \left[\|x_1\| + M \|\phi\| + MT \|y\| + MT \int_0^T \alpha_k(\theta) \, d\theta \right] \, ds.
\]
Similarly,
\[
\|(F(t_1))' - (F(t_2))'\| \leq \|[C'(t_1) - C'(t_2)] \phi(0)|| + \|[S'(t_1) - S'(t_2)] y||
\]
\[
+ \left[C(t_1-s) - C(t_2-s) \right]
\]
\[\times f \left(s, x_s, \int_0^s g \left(s, \tau, x_\tau, x'_\tau (\tau) \right) d\tau, x'(s) \right) ds \]
\[+ \left\| \int_{t_1}^{t_2} C(t_2 - s) f \left(s, x_s, \int_0^s g \left(s, \tau, x_\tau, x'_\tau (\tau) \right) d\tau, x'(s) \right) ds \right\| \]
\[+ \left\| \int_0^{t_1} \left[C(t_1 - s) - C(t_2 - s) \right] BW^{-1} \left[x_1 - C(T) \phi(0) \right. \right. \]
\[\left. \left. - S(T) y - \int_0^T S(T - \theta) \right\| \right\| \times f \left(\theta, x_\theta, \int_0^\theta g \left(\theta, \tau, x_\tau, x'_\tau (\tau) \right) d\tau, x'_\theta (\theta) \right) d\theta \right\| (s) ds \]
\[\leq \left\| A \left(S(t_1) - S(t_2) \right) \right\| \phi(0) \| + \left\| C(t_1) - C(t_2) \right\| y \|
\[+ \int_0^{t_1} \| C(t_1 - s) - C(t_2 - s) \| \alpha_k(s) ds \]
\[+ \int_{t_1}^{t_2} \| C(t_2 - s) \| \alpha_k(s) ds \]
\[+ \int_0^{t_1} \| C(t_1 - s) - C(t_2 - s) \| B \|
\[\times \left\| W^{-1} \right\| \left[\| x_1 \| + M \| \phi \| + MT \| y \| + MT \int_0^T \alpha_k(\theta) d\theta \right] ds \]
\[+ \int_{t_1}^{t_2} \| C(t_2 - s) \| B \| \left\| W^{-1} \right\| \]
\[\times \left[\| x_1 \| + M \| \phi \| + MT \| y \| + MT \int_0^T \alpha_k(\theta) d\theta \right] ds. \]

The right-hand sides of the above inequalities are independent of \(x \in B_k \) and tends to zero as \(t_2 \to t_1 \), since \(C(t), S(t) \) are uniformly continuous for \(t \in J \) and the compactness of \(C(t), S(t) \) for \(t > 0 \) imply the continuity in the uniform operator topology (see Remark in [15] and [16, p. 308]). The compactness of \(S(t) \) follows from that of \(C(t) \). Thus, \(F \) maps \(B_k \) into an equicontinuous family of functions.

The equicontinuity for the cases, \(t_1 < t_2 < 0 \) and \(t_1 < 0 < t_2 \), follows from the uniform continuity of \(\phi \) on \([-\tau, 0]\) and from the relation,
\[\| (Fx)(t_1) - (Fx)(t_2) \| \leq \| \phi(t_1) - (Fx)(t_2) \| \leq \| (Fx)(t_2) - (Fx)(0) \| + \| \phi(0) - \phi(t_1) \| , \]
respectively. It is easy to see that the family \(FB_k \) is uniformly bounded. Next, we show \(\overline{FB_k} \) is compact. Since we have shown \(FB_k \) is an equicontinuous collection, it suffices by the Arzel-Ascoli theorem to show that \(F \) maps \(B_k \) into a precompact set in \(X \). Let \(0 < t \leq T \) be fixed.
and \(\epsilon \), a real number satisfying \(0 < \epsilon < t \). For \(x \in B_k \), we define

\[
(F \phi)(t) = C(t) \phi(0) + S(t) y + \int_0^t S(t-s) \left[x_1 - C(T) \phi(0) - S(T) y \right] ds,
\]

where \(S(t-s) \) is the semigroup generated by \(A \). Since \(C(t) \) and \(S(t) \) are compact operators, the set \(Y_\epsilon(t) = \{(F \phi)(t) : x \in B_k\} \) is precompact in \(X \) for every \(\epsilon, 0 < \epsilon < t \). Moreover, for every \(x \in B_k \), we have

\[
\| (F \phi)'(t) - (F \phi)(t) \| \leq \int_0^t \| S(t-s) \left(\frac{\partial}{\partial t} \phi(s) \right) \| ds.
\]

Therefore, there are precompact sets arbitrarily close to the set \(\{(F \phi)(t) : x \in B_k\} \). Hence, the set \(\{(F \phi)(t) : x \in B_k\} \) is precompact in \(X \). For that consider the space \(C^0 = \{ x \in C([-r, T]; X) : x_0 = \phi = 0 \} \). Let \(\{x_n\}_{n=1}^\infty \subseteq C^0 \) with \(x_n \rightarrow x \) in \(C^0 \). Then, there is an integer \(\nu \), such that \(\|x_n(t)\| \leq \nu, \|x_n'(t)\| \leq \nu \) for all \(n \) and \(t \in J \), so \(\|x(t)\| \leq \nu, \|x'(t)\| \leq \nu \) and \(x, x' \in B_\nu \). By (H3),

\[
\int_0^t g(t, x_n(s), x'_n(s)) ds, x'_n(t) \rightarrow f(t, x_t, \int_0^t g(t, x_s, x'_s) ds, x'(t)),
\]

for each \(t \in J \) and since

\[
\| f(t, x_n, \int_0^t g(t, s, x_n, x'_n(s)) ds, x'_n(t)) - f(t, x_t, \int_0^t g(t, s, x, x'_s) ds, x'(t)) \| \leq 2\alpha(t),
\]
we have by dominated convergence theorem,

\[
\|F x_n - F x\| = \sup_{t \in J} \left\| \int_0^t S(t-s) \left[f\left(s, x_{ns}, \int_0^s g(s, \tau, x_{nt}, x'_n(\tau)) \, d\tau, x'_n(s)\right) \right. \right.
\]

\[
\left. - f\left(s, x_s, \int_0^s g(s, \tau, x, x'_s(\tau)) \, d\tau, x'_s(s)\right) \right] ds
\]

\[
- \int_0^t S(t-s) B W^{-1} \int_0^T S(T-\theta) \left[f\left(\theta, x_{n\theta}, \int_0^\theta g(\theta, \tau, x_{n\tau}, x'_n(\tau)) \, d\tau, x'_n(\theta)\right) \right.
\]

\[
\left. - f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x, x'_\tau(\tau)) \, d\tau, x'_\tau(\theta)\right) \right] d\theta \, ds
\]

\[
\left. \left\| F x_n - F x \right\| \leq \int_0^T \left\| S(t-s) \left[f\left(s, x_{ns}, \int_0^s g(s, \tau, x_{nt}, x'_n(\tau)) \, d\tau, x'_n(s)\right) \right. \right.
\]

\[
\left. - f\left(s, x_s, \int_0^s g(s, \tau, x, x'_s(\tau)) \, d\tau, x'_s(s)\right) \right] \right\| ds
\]

\[
+ \int_0^T \left\| S(t-s) B W^{-1} \int_0^T S(T-\theta) \left[f\left(\theta, x_{n\theta}, \int_0^\theta g(\theta, \tau, x_{n\tau}, x'_n(\tau)) \, d\tau, x'_n(\theta)\right) \right.
\]

\[
\left. - f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x, x'_\tau(\tau)) \, d\tau, x'_\tau(\theta)\right) \right] d\theta \right\| ds \to 0, \quad \text{as } n \to \infty,
\]

and

\[
\left\| (F x_n)' - (F x)' \right\| = \sup_{t \in J} \left\| \int_0^t C(t-s) \left[f\left(s, x_{ns}, \int_0^s g(s, \tau, x_{nt}, x'_n(\tau)) \, d\tau, x'_n(s)\right) \right. \right.
\]

\[
\left. - f\left(s, x_s, \int_0^s g(s, \tau, x, x'_s(\tau)) \, d\tau, x'_s(s)\right) \right] ds
\]

\[
- \int_0^t C(t-s) B W^{-1} \int_0^T S(T-\theta)
\]

\[
\times \left[f\left(\theta, x_{n\theta}, \int_0^\theta g(\theta, \tau, x_{n\tau}, x'_n(\tau)) \, d\tau, x'_n(\theta)\right) \right.
\]

\[
\left. - f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x, x'_\tau(\tau)) \, d\tau, x'_\tau(\theta)\right) \right] d\theta \, ds
\]

\[
\left. \left\| (F x_n)' - (F x)' \right\| \leq \int_0^T \left\| C(t-s) \left[f\left(s, x_{ns}, \int_0^s g(s, \tau, x_{nt}, x'_n(\tau)) \, d\tau, x'_n(s)\right) \right. \right.
\]

\[
\left. - f\left(s, x_s, \int_0^s g(s, \tau, x, x'_s(\tau)) \, d\tau, x'_s(s)\right) \right] \right\| ds
\]

\[
+ \int_0^T \left\| C(t-s) B W^{-1} \int_0^T S(T-\theta)
\]

\[
\times \left[f\left(\theta, x_{n\theta}, \int_0^\theta g(\theta, \tau, x_{n\tau}, x'_n(\tau)) \, d\tau, x'_n(\theta)\right) \right.
\]

\[
\left. - f\left(\theta, x_\theta, \int_0^\theta g(\theta, \tau, x, x'_\tau(\tau)) \, d\tau, x'_\tau(\theta)\right) \right] d\theta \right\| ds \to 0, \quad \text{as } n \to \infty.
\]

Thus, \(F \) is continuous. This completes the proof that \(F \) is completely continuous.

We have already proved that the set \(\mathcal{C}(F) = \{ x \in Z : x = \lambda F x, \lambda \in (0, 1) \} \) is bounded. Hence, by Schaefer's theorem, the operator \(F \) has a fixed point in \(Z \). This means that any fixed point
controllability of evolution systems

of \(F \) is a mild solution of (1) on \(J \) satisfying \((Fx)(t) = x(t)\). Thus, system (1) is controllable on \(J \).

Example. Consider the partial delay integrodifferential equation of the form,

\[
\begin{align*}
 z_{tt}(t, y) &= z_{yy}(t, y) + \mu(t, y) + \frac{z(t-h, y)}{t(1+t^{2})} \int_{0}^{t} e^{-z(s-h, y)} ds, \\
 z(t, 0) &= z(t, 1) = \phi(t), \quad t \in [-h, 0], \\
 z(y, 0) &= z_{0}(y), \quad z_{t}(y, 0) = z_{1}(y), \quad 0 < y < 1, \quad t \in J = [0, T],
\end{align*}
\]

where \(\mu : J \times (0, 1) \rightarrow J \) is continuous.

Let \(X = L^{2}[0, 1] \) and let \(A : X \rightarrow X \) be defined by \(Aw = w'' \), \(w \in D(A) \), where

\[
D(A) = \{ w \in X : w, w' \text{ are absolutely continuous, } w'' \in X, \ w(0) = w(1) = 0 \}
\]

Then,

\[
Aw = \sum_{n=1}^{\infty} n^{2} (w, w_{n}) w_{n}, \quad w \in D(A),
\]

where \(w_{n}(s) = \sqrt{2} \sin ns, n = 1, 2, 3 \ldots, \) is the orthogonal set of eigenvectors of \(A \). It can be easily shown that \(A \) is the infinitesimal generator of a strongly continuous cosine family \(C(t) \), \(t \in R \), in \(X \) given by

\[
C(t) w = \sum_{n=1}^{\infty} \cos nt (w, w_{n}) w_{n}, \quad w \in X,
\]

and that the associated sine family is given by

\[
S(t) w = \sum_{n=1}^{\infty} \frac{1}{n} \sin nt (w, w_{n}) w_{n}, \quad w \in X.
\]

Let

\[
\int_{0}^{t} g(t, s, z_{s}) (y) ds = \int_{0}^{t} e^{-z(s-h, y)} ds,
\]

\[
f(t, z_{t}, \int_{0}^{t} g(t, s, z_{s}) ds)(y) = \frac{1}{t(1+t^{2})} z(t-h, y) \int_{0}^{t} e^{-z(s-h, y)} ds.
\]

Further, we have

\[
\left| \frac{1}{t(1+t^{2})} z(t-h, y) \int_{0}^{t} e^{-z(s-h, y)} ds \right| \leq \frac{1}{1+t^{2}} |z|.
\]

Let \(Bu : J \rightarrow X \) be defined by

\[
(Bu)(t)(y) = \mu(t, y), \quad y \in (0, 1).
\]

With the choice of \(A, B, \) and \(f \), (1) is the abstract formulation of (4). Now, the linear operator \(W \) is given by

\[
(Wu)(y) = \sum_{n=1}^{\infty} \int_{0}^{1} \frac{1}{n} \sin ns (\mu(s, y), w_{n}) w_{n} ds, \quad y \in (0, 1).
\]

Assume that this operator has a bounded inverse operator \(\tilde{W}^{-1} \) in \(L^{2}(J, U)/\ker W \). Further, all other conditions of the theorem are satisfied. Hence, system (4) is controllable on \(J \).
4. SECOND-ORDER INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

The main aim is to derive sufficient conditions for the controllability of the integrodifferential evolution system

\[x''(t) = A(t)x(t) + Bu(t) + f(t,x(t),x'(t)) + \int_0^t g(t,s,x(s),x'(s)) \, ds, \]

\[x(0) = x_0 \in X, \quad x'(0) = y_0 \in X, \quad t \in J = [0,T], \]

where the state \(x(\cdot) \) takes values in \(X \), \(A(t) : X \to X \) is a closed densely defined operator, \(f \) is a nonlinear mapping from \(J \times X \times X \) to \(X \), \(g \) is a nonlinear mapping from \(J \times J \times X \times X \) to \(X \), \(B \) is a bounded linear operator from a Banach space \(U \) to \(X \) and the control function \(u(\cdot) \) is given in \(L^2(J,U) \), a Banach space of admissible control functions. Let us assume that the domain of \(A(t) \) does not depend on \(t \in [0,T] \) and denote it by \(D(A(t)) \) (for each \(t \in [0,T] \), \(D(A(t)) = D(A) \)).

Now, we define the fundamental solution of a second-order equation.

Let \(X \) denote a real reflexive Banach space and, for each \(t \in [0,T] \), let \(A(t) : X \to X \) be a closed densely defined operator. The fundamental solution for the second-order evolution equation,

\[x''(t) = A(t)x(t), \]

has been developed by Kozak [17] (see also [18]).

Definition 4.1. A family \(S \) of bounded linear operators \(S(t,s) : X \to X \), \(t,s \in [0,T] \), is called a fundamental solution of the second-order equation (6) if,

\[
\begin{align*}
&[Z_1] \text{ for each } x \in X, \text{ the mapping } [0,T] \times [0,T] \ni (t,s) \mapsto S(t,s)x \in X \text{ is of class } C^1 \text{ and } \\
&(i) \text{ for each } t \in [0,T], \ S(t,t) = 0, \\
&(ii) \text{ for all } t, s \in [0,T], \text{ and for each } x \in X, \\
&\left. \frac{\partial}{\partial t} S(t,s) \right|_{t=s} x = x, \quad \left. \frac{\partial}{\partial s} S(t,s) \right|_{t=s} x = -x;
\end{align*}
\]

\[
\begin{align*}
&[Z_2] \text{ for all } t, s \in [0,T], \text{ if } x \in D(A), \text{ then } S(t,s)x \in D(A), \text{ the mapping } [0,T] \times [0,T] \ni (t,s) \mapsto S(t,s)x \in X \text{ is of class } C^2 \text{ and } \\
&(i) \frac{\partial^2}{\partial t^2} S(t,s)x = A(t)S(t,s)x, \\
&(ii) \frac{\partial^2}{\partial s \partial t} S(t,s)x = S(t,s)A(s)x, \\
&(iii) \left. \frac{\partial}{\partial s} S(t,s) \right|_{t=s} x = 0; \\
&[Z_3] \text{ for all } t, s \in [0,T], \text{ if } x \in D(A), \text{ then } \frac{\partial}{\partial s} S(t,s)x \in D(A), \text{ there exist } \frac{\partial^2}{\partial s^2} \frac{\partial}{\partial s} S(t,s)x, \frac{\partial^2}{\partial s^2} S(t,s)x, \text{ and } \\
&(i) \frac{\partial^2}{\partial s^2} \frac{\partial}{\partial s} S(t,s)x = A(t) \frac{\partial}{\partial s} S(t,s)x, \\
&(ii) \frac{\partial^2}{\partial s \partial t} \frac{\partial}{\partial s} S(t,s)x = \frac{\partial}{\partial s} S(t,s)A(s)x, \text{ and the mapping } [0,T] \times [0,T] \ni (t,s) \mapsto A(t) \frac{\partial}{\partial s} S(t,s)x \text{ is continuous.}
\end{align*}
\]

Definition 4.2. Any continuous function \(x : [0,T] \to X \) is called a mild solution of problem (5) if \(x(t) \in D(A(t)) \), for each \(t \in [0,T] \) and if it satisfies the following integral equation,

\[
x(t) = \left. -\frac{\partial}{\partial s} S(t,s) \right|_{s=0} x_0 + S(t,0)y_0 + \int_0^t S(t,s)Bu(s) \, ds \\
+ \int_0^t S(t,s)f(s,x(s),x'(s)) \, ds + \int_0^t S(t,s)g(s,\tau,x(\tau),x'(\tau)) \, d\tau \, ds.
\]
DEFINITION 4.3. System (5) is said to be controllable on J if for every \(x_0, y_0 \in D(A) \) and \(x_1 \in X \) there exists a control \(u \in L^2(J, U) \), such that the solution \(x(\cdot) \) of (5) satisfies \(x(T) = x_1 \). To establish our main theorem we need the following assumptions.

1. \(x(t) \in D(A(t)) \), for each \(t \in [0, T] \).
2. There exists a fundamental solution \(S(t, s) \) of (6).
3. \(S(t, s) \) is compact for each \(t, s \in [0, T] \) and there exist positive constants \(M, M^* \) and \(N, N^* \), such that
 \[
 M = \sup \{ \| S(t, s) \| : t, s \in J \}, \quad M^* = \sup \{ \| \frac{\partial}{\partial t} S(t, s) \| : t, s \in J \},
 \]
 and
 \[
 N = \sup \{ \| \frac{\partial}{\partial s} S(t, s) \| : t, s \in J \}, \quad N^* = \sup \{ \| \frac{\partial^2}{\partial t \partial s} S(t, s) \| : t, s \in J \}, \text{ respectively.}
 \]
4. \(Bu(t) \) is continuous in \(t \) and \(\| B \| \leq M_1 \) for some constant \(M_1 > 0 \).
5. The linear operator \(W : L^2(J, U) \to X \) defined by
 \[
 W u = \int_0^T S(T, s) B u(s) \, ds
 \]
 induces a bounded invertible operator \(\hat{W} : L^2(J, U)/\ker W \to X \), such that \(\| \hat{W}^{-1} \| \leq M_2 \) for some constant \(M_2 > 0 \).
6. \(f(t, \cdot, \cdot) : X \times X \to X \) is continuous for each \(t \in J \) and the function \(f(\cdot, x, y) : J \to X \) is strongly measurable for each \((x, y) \in X \times X \).
7. \(g(t, s, \cdot, \cdot) : X \times X \to X \) is continuous for each \(t, s \in J \) and the function \(g(\cdot, \cdot, x, y) : J \times J \to X \) is strongly measurable for each \((x, y) \in X \times X \).
8. For every positive constant \(k \), there exists \(\alpha_k \in L^1(J) \), such that
 \[
 \sup_{\| x \|, \| y \| \leq k} \| f(t, x, y) \| \leq \alpha_k(t), \quad t \in J \text{ a.e.}
 \]
9. For every positive constant \(k \), there exists \(\beta_k \in L^1(J) \), such that
 \[
 \sup_{\| x \|, \| y \| \leq k} \left\| \int_0^t g(t, s, x, y) \, ds \right\| \leq \beta_k(t), \quad t \in J \text{ a.e.}
 \]
10. There exists an integrable function \(m : J \to [0, \infty) \), such that
 \[
 \| f(t, x, y) \| \leq m(t) \Omega(\| x \| + \| y \|), \quad t \in J, \ x, y \in X,
 \]
 where \(\Omega : [0, \infty) \to (0, \infty) \) is a continuous nondecreasing function.
11. There exists an integrable function \(n : J \to [0, \infty) \), such that
 \[
 \left\| \int_0^t g(t, s, x, y) \, ds \right\| \leq n(t) \Omega_0(\| x \| + \| y \|), \quad t \in J, \ x, y \in X,
 \]
 where \(\Omega_0 : [0, \infty) \to (0, \infty) \) is a continuous nondecreasing function and
 \[
 (M + N) \int_0^T q_0(s) \, ds < \int_0^\infty \frac{ds}{\Omega(s) + \Omega_0(s)},
 \]
 where \(q_0(s) = \max\{ m(t), n(t) \}, \ c = (M^* + N^*)\| x_0 \| + (M + N)\| y_0 \| + M_1 M_2 M_3 T \), and M_3 = \| x_1 \| + M^*\| x_0 \| + M\| y_0 \| + \int_0^T M m(s) \Omega(\| x(s) \| + \| x'(s) \|) \, ds + \int_0^T M n(s) \Omega_0(\| x(s) \| + \| x'(s) \|) \, ds.\]
THEOREM 4.1. If assumptions (C1)-(C11) hold, then system (5) is controllable on J.

PROOF. Consider the space \(Z = C^1(J, X) \) with norm \(\|x\| = \max\{\|x\|_0, \|x\|_1\} \) where \(\|x\|_0 = \sup\{\|x(t)\| : 0 \leq t \leq T\} \), \(\|x\|_1 = \sup\{\|x'(t)\| : 0 \leq t \leq T\} \). By (C6), for an arbitrary function \(x(\cdot) \), we define the control,

\[
 u(t) = W^{-1} \left[x_0 + \frac{\partial}{\partial s} S(T, s) \int_{s=0}^{T} S(T, s) f(s, x(s), x'(s)) ds \right.

\[
- \int_{0}^{T} \int_{0}^{s} S(T, s) g(s, \tau, x(\tau), x'(\tau)) d\tau ds
\]

Using this control, we will show that the operator \(F : Z \rightarrow Z \) defined by

\[
 (Fx)(t) = \frac{\partial}{\partial s} S(t, s) x_0 + S(t, 0) y_0 + \int_{0}^{t} S(t, s) BW^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T, \tau) \right]_\tau=0 \nonumber

\[
- S(T, 0) y_0 - \int_{0}^{T} S(T, \tau) f(\tau, x(\tau), x'(\tau)) d\tau
\]

has a fixed point. Clearly, \((Fx)(T) = x_1 \), which means that the control \(u \) steers the system from the initial state \(x_0 \) to \(x_1 \) in time \(T \), provided we obtain a fixed point of the nonlinear operator \(F \). In order to study the controllability problem for system (5), we have to apply the Schaefer fixed-point theorem to the following operator equation,

\[
 x(t) = \lambda Fx(t), \quad \lambda \in (0, 1). \tag{9}
\]

Then, from (8) and (9) we have

\[
 x(t) = -\lambda \frac{\partial}{\partial s} S(t, s) x_0 + \lambda S(t, 0) y_0 + \lambda \int_{0}^{t} S(t, s) BW^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T, \tau) \right]_\tau=0 \nonumber

\[
- S(T, 0) y_0 - \int_{0}^{T} S(T, \tau) f(\tau, x(\tau), x'(\tau)) d\tau
\]

So,

\[
 \|x(t)\| \leq M^* \|x_0\| + M \|y_0\| + MM_1M_2M_3T
\]

\[
+ \int_{0}^{t} Mm(s) \Omega(\|x(s)\| + \|x'(s)\|) ds + \int_{0}^{T} Mm(s) \Omega_0(\|x(s)\| + \|x'(s)\|) ds.
\]

Denoting by \(v(t) \) the right-hand side of the above inequality, we have

\[
\|x(t)\| \leq v(t), \quad t \in J,
\]

\[
v(0) = M^* \|x_0\| + M \|y_0\| + MM_1M_2M_3T,
\]

\[
v'(t) = Mm(t) \Omega(\|x(t)\| + \|x'(t)\|), \quad t \in J.
\]
From (8), we have
\[x'(t) = -\lambda \frac{\partial}{\partial t} S(t, s) \bigg|_{s=0} x_0 + \lambda \frac{\partial}{\partial t} S(t, 0) y_0 \]
\[+ \lambda \int_0^t \frac{\partial}{\partial t} S(t, s) B \bar{W}^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T, \tau) \right]_{\tau=0} x_0 - S(T, 0) y_0 \]
\[- \int_0^T S(T, \tau) f(\tau, x(\tau), x'(\tau)) d\tau - \int_0^T \int_0^{\tau} S(T, \tau) g(\tau, \theta, x(\theta), x'(\theta)) d\theta d\tau \]
\[+ \lambda \int_0^t \frac{\partial}{\partial t} S(t, s) f(s, x(s), x'(s)) ds + \lambda \int_0^t \int_0^s \frac{\partial}{\partial t} S(t, s) g(s, \tau, x(\tau), x'(\tau)) d\tau ds \]
and
\[\|x'(t)\| \leq N^* \|x_0\| + N \|y_0\| + NM_1 M_2 M_3 T \]
\[+ N \int_0^t m(s) \Omega(|x(s)| + \|x'(s)\|) ds + N \int_0^t n(s) \Omega_0 (|x(s)| + \|x'(s)\|) ds. \]

Denoting by \(r(t) \) the right-hand side of the above inequality, we get
\[\|x'(t)\| \leq r(t), \quad t \in J, \]
\[r(0) = N^* \|x_0\| + N \|y_0\| + NM_1 M_2 M_3 T, \]
\[r'(t) = NM(t) \Omega(|x(t)| + \|x'(t)\|) + Nn(t) \Omega_0 (|x(t)| + \|x'(t)\|), \quad t \in J. \]

Let \(w(t) = v(t) + r(t), \) then, \(w(0) = v(0) + r(0) = c, \) and
\[w'(t) = v'(t) + r'(t) \]
\[\leq (M + N) [m(t) \Omega(w(t)) + n(t) \Omega_0 (w(t))] \]
\[\leq (M + N) q_0(t) [\Omega(w(t)) + \Omega_0 (w(t))]. \]

This implies
\[\int_{w(0)}^{w(t)} \frac{ds}{\Omega(s) + \Omega_0(s)} \leq (M + N) \int_0^t q_0(s) ds \leq (M + N) \int_0^T q_0(s) ds < \int_c^\infty \frac{ds}{\Omega(s) + \Omega_0(s)}. \]

This inequality implies that there is a constant \(K, \) such that
\[w(t) = v(t) + r(t) \leq K, \quad t \in J. \]

Thus, \(\|x(t)\| \leq v(t), \|x'(t)\| \leq r(t), t \in J, \) and hence, \(\|x\| \leq K, \) where \(K \) depends only on \(T \) and on the functions \(m, n, \) and \(\Omega. \)

We shall now prove that the operator \(F \) defined by (8) is a completely continuous operator. Let
\[B_k = \{ x \in Z : \|x\| \leq k \}\]
for some \(k \geq 1. \) We first show that \(F \) maps \(B_k \) into an equicontinuous family. Let \(x \in B_k \) and
Then, if $0 < t_1 < t_2 < T$,

$$
\|{(F(x)}(t_1) - (F(x))(t_2))\| \leq \left\| \frac{\partial}{\partial s} [S(t_1, s) - S(t_2, s)] \right\|_{s=0} x_0 + \|S(t_1, 0) - S(t_2, 0)| v_0
$$

$$
+ \int_0^{t_1} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \|S(T, 0) v_0\| + \int_0^{T} \|S(T, \tau)\| \alpha_k(\tau) \, d\tau + \int_0^{T} \|S(T, \tau)\| \beta_k(\tau) \, d\tau \right\| ds
$$

$$
+ \int_0^{t_1} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \|S(T, 0) v_0\|
$$

$$
+ \int_0^{t_2} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(T, \tau)\| \alpha_k(\tau) \, d\tau + \int_0^{T} \|S(T, \tau)\| \beta_k(\tau) \, d\tau \right\| ds
$$

$$
+ \int_0^{t_1} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_2} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(T, \tau)\| \alpha_k(\tau) \, d\tau + \int_0^{T} \|S(T, \tau)\| \beta_k(\tau) \, d\tau \right\| ds
$$

$$
+ \int_0^{t_1} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_2} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_1} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_2} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_1} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

$$
+ \int_0^{t_2} \|S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0 + \int_0^{T} \|S(t_1, s) - S(t_2, s)\| \|B\| \left\| \frac{\partial}{\partial t} S(T, \tau) \right\|_{\tau=0} x_0
$$

Thus, F maps B_k into an equicontinuous family of functions. It is easy to see that the family FB_k is uniformly bounded.

Next, we show that FB_k is compact. Since we have shown FB_k is an equicontinuous collection, it suffices by the Arzela-Ascoli theorem to show that F maps B_k into a precompact set in X. Let $0 < t \leq T$.
be fixed and ϵ a real number satisfying $0 < \epsilon < t$. For $x \in B_k$, we define

$$
(F\epsilon x)(t) = -\frac{\partial}{\partial s} S(t,s) \bigg|_{s=0} x_0 + S(t,0) y_0
+ \int_0^{t-\epsilon} S(t,s) B \tilde{W}^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T,\tau) \bigg|_{\tau=0} x_0 - S(T,0) y_0
- \int_0^T S(T,\tau) f(\tau, x(\tau), x'(\tau)) \, d\tau
- \int_0^T \int_0^T S(T,\tau) g(\tau, \theta, x(\theta), x'(\theta)) \, d\theta \, d\tau \right] (s) \, ds
+ \int_0^{t-\epsilon} S(t,s) f(s, x(s), x'(s)) \, ds
+ \int_0^{t-\epsilon} S(t,s) g(s, \tau, x(\tau), x'(\tau)) \, d\tau \, ds, \quad t \in J.
$$

Since $S(t,s)$ is a compact operator, the set $Y_\epsilon(t) = \{(F\epsilon x)(t) : x \in B_k\}$ is precompact in X for every ϵ, $0 < \epsilon < t$. Moreover, for every $x \in B_k$, we have

$$
\| (F\epsilon x)(t) - (F\epsilon \tilde{x})(t) \| \leq \int_{t-\epsilon}^t I_1 + \int_{t-\epsilon}^t S(t,s) \| \alpha_k(s) \| ds + \int_{t-\epsilon}^t S(t,s) \| \beta_k(s) \| ds \to 0, \quad \text{as } \epsilon \to 0,
$$

and

$$
\| (F\epsilon x)'(t) - (F\epsilon \tilde{x})'(t) \| \leq \int_{t-\epsilon}^t I_2 + \int_{t-\epsilon}^t S(t,s) \| \alpha_k(s) \| ds + \int_{t-\epsilon}^t S(t,s) \| \beta_k(s) \| ds \to 0, \quad \text{as } \epsilon \to 0.
$$

Therefore, there are precompact sets arbitrarily close to the set $\{(F\epsilon x)(t) : x \in B_k\}$. Hence, the set $\{(F\epsilon x)(t) : x \in B_k\}$ is precompact in X.

It remains to show that $F : Z \to Z$ is continuous. Let $\{x_n\}_{n=0}^\infty \subseteq Z$ with $x_n \to x$ in Z. Then, there is an integer ν, such that $\|x_n(t)\| \leq \nu$, $\|x_n'(t)\| \leq \nu$ for all n, and $t \in J$, so $\|x'(t)\| \leq \nu$, and $x, x' \in B_\nu$. By (C6),

$$
f(s, x_n(s), x_n'(s)) \to f(s, x(s), x'(s)), \quad g(t, s, x_n(s), x_n'(s)) \to g(t, s, x(s), x'(s)),$$

for each $t, s \in J$ and since

$$
\| f(s, x_n(s), x_n'(s)) - f(s, x(s), x'(s)) \| \leq 2\alpha_\nu(s)
$$

and

$$
\| \int_0^t [g(t, s, x_n(s), x_n'(s)) - g(t, s, x(s), x'(s))] \, ds \| \leq 2\beta_\nu(s),
$$
we have by dominated convergence theorem,

\[
\|F_{x_n} - Fx\| = \sup_{t \in J} \left| \int_0^t S(t, s) B\dot{W}^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T, \tau) \right]_{\tau = 0} x_0 - S(T, 0) y_0
- \int_0^T S(T, \tau) f(\tau, x_n(\tau), x'_n(\tau)) \, d\tau
- \int_0^T \int_0^\tau S(T, \tau) g(\tau, \theta, x_n(\theta), x'_n(\theta)) \, d\theta \, d\tau \right] (s) \, ds
- \int_0^t S(t, s) B\dot{W}^{-1} \left[x_1 + \frac{\partial}{\partial \tau} S(T, \tau) \right]_{\tau = 0} x_0 - S(T, 0) y_0
- \int_0^T S(T, \tau) f(\tau, x(\tau), x'(\tau)) \, d\tau
- \int_0^T \int_0^\tau S(T, \tau) g(\tau, \theta, x(\theta), x'(\theta)) \, d\theta \, d\tau \right] (s) \, ds
+ \int_0^t S(t, s) f(s, x_n(s), x'_n(s)) \, ds - \int_0^t S(t, s) f(s, x(s), x'(s)) \, ds
+ \int_0^t \int_0^s S(t, s) g(s, \tau, x_n(s), x'_n(s)) \, d\tau \, ds
- \int_0^t \int_0^s S(t, s) g(s, \tau, x(s), x'(s)) \, d\tau \, ds
\leq \int_0^t \left\| S(t, s) B\dot{W}^{-1} \left[\int_0^T S(T, \tau) [f(\tau, x_n(\tau), x'_n(\tau)) - f(\tau, x(\tau), x'(\tau))] \, d\tau
+ \int_0^T \int_0^\tau S(T, \tau) [g(\tau, \theta, x_n(\theta), x'_n(\theta)) - g(\tau, \theta, x(\theta), x'(\theta))] \, d\theta \, d\tau \right] (s) \right\| \, ds
+ \int_0^t \|S(t, s) [f(s, x_n(s), x'_n(s)) - f(s, x(s), x'(s))]\| \, ds
+ \int_0^t \int_0^s \|S(t, s) [g(s, \tau, x_n(s), x'_n(s)) - g(s, \tau, x(s), x'(s))]\| \, d\tau \, ds \rightarrow 0, \quad \text{as } n \rightarrow \infty,
\]
\[
+ \int_0^t \frac{\partial}{\partial t} S(t,s) f(s, x_n(s), x'_n(s)) \, ds \\
- \int_0^t \frac{\partial}{\partial t} S(t,s) f(s, x(s), x'(s)) \, ds \\
+ \int_0^t \int_0^s \frac{\partial}{\partial t} S(t,s) g(s, \tau, x_n(\tau), x'_n(\tau)) \, d\tau \, ds \\
- \int_0^t \int_0^s \frac{\partial}{\partial t} S(t,s) g(s, \tau, x(\tau), x'(\tau)) \, d\tau \, ds \\
\leq \int_0^t \left| \frac{\partial}{\partial t} S(t,s) B W^{-1} \left[\int_0^T S(T,\tau) \\
\times [f(\tau, x_n(\tau), x'_n(\tau)) - f(\tau, x(\tau), x'(\tau))] \, d\tau + \int_0^T \int_0^\tau S(T,\tau) \\
\times \left[g(\tau, \theta, x_n(\theta), x'_n(\theta)) - g(\tau, \theta, x(\theta), x'(\theta)) \right] \, d\theta \, d\tau \right] (s) \right| \, ds \\
+ \int_0^t \left| \frac{\partial}{\partial t} S(t,s) [f(s, x_n(s), x'_n(s)) - f(s, x(s), x'(s))] \right| \, ds \\
+ \int_0^t \int_0^s \left| \frac{\partial}{\partial t} S(t,s) [g(s, \tau, x_n(\tau), x'_n(\tau)) - g(s, \tau, x(\tau), x'(\tau))] \right| \, d\tau \, ds \to 0, \quad \text{as } n \to \infty.
\]

Thus, \(F \) is continuous. This completes the proof that \(F \) is completely continuous. We have already proved that the set \(\zeta(F) = \{ x \in Z : x = \lambda Fx, \lambda \in (0,1) \} \) is bounded. Hence, by the Schaefer fixed-point theorem, the operator \(F \) has a fixed point in \(Z \). This means that any fixed point of \(F \) is a mild solution of (5) on \(J \) satisfying \((Fx)(t) = x(t) \). Thus, system (5) is controllable on \(J \).

REFERENCES