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a b s t r a c t

The aim of this paper is twofold. First, we dealwith the extension to the random framework
of the piecewise Fröbenius method to solve Airy differential equations. This extension is
based on mean square stochastic calculus. Second, we want to explore the capability to
provide not only reliable approximations for both the average and the standard deviation
functions associated to the solution stochastic process, but also to save computational
time as it happens in dealing with the analogous problem in the deterministic scenario.
This includes a comparison of the numerical results with respect to those obtained
by other commonly used operational methods such as polynomial chaos and Monte
Carlo simulations. To conduct this comparative study, we have chosen the Airy random
differential equation because it has highly oscillatory solutions. This feature allows us to
emphasize differences between all the considered approaches.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the deterministic scenario, Airy differential equations appear in a variety of applications to mathematical physics
such as the description of the solution of Schrödinger equation for a particle confined within a triangular potential, in the
solution for one-dimensionalmotion of a quantumparticle affected by a constant force, or in the theory of diffraction of radio
waves around the earth’s surface [1,2]. From these few examples, the introduction of randomness in the Airy differential
equation seems to be quite natural. This can be straightforwardly justified from two perspectives: first, because in practice
the calibration of both the initial conditions and the coefficient require exhaustive measurements that usually contain some
sort of error; second, because the inherent complexity of the phenomena under study justifies that it be more coherent
to consider the information that determines the model as random variables rather than deterministic values. These types
of argument lead to consideration of the Airy random differential equation to be of great interest in physics and related
areas.

Solutions to deterministic Airy differential equations are highly oscillatory, and they have claimed the attention of
numerical analysts in comparing the effectiveness of different computational methods [3]. Thus, it seems to be a good
example to check the numerical capacity of different techniques to compute the corresponding solution stochastic process
of the random Airy differential equation. Recently, in [4], some of the authors have studied the random Airy differential
equation

Ẍ(t) + AtX(t) = 0, −∞ < t < ∞, X(0) = Y0, Ẋ(0) = Y1, (1)

∗ Corresponding author. Tel.: +34 963879144.
E-mail addresses: jccortes@imm.upv.es, jccortes@mat.upv.es (J.-C. Cortés), ljodar@imm.upv.es (L. Jódar), jvromero@imm.upv.es (J.-V. Romero),

drosello@imm.upv.es (M.-D. Roselló).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.08.056

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82570862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.08.056
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:jccortes@imm.upv.es
mailto:jccortes@mat.upv.es
mailto:ljodar@imm.upv.es
mailto:jvromero@imm.upv.es
mailto:drosello@imm.upv.es
http://dx.doi.org/10.1016/j.camwa.2011.08.056


3412 J.-C. Cortés et al. / Computers and Mathematics with Applications 62 (2011) 3411–3417

where A, Y0, and Y1 are random variables. This study is based on an extension of the deterministic Fröbenius method to the
random framework by applyingmean square calculus; see [5]. In that paper, it is assumed that statistical absolute moments
with respect to the origin of random input A grow at the most exponentially, i.e., there exist a nonnegative integer n0 and
positive constants H and M such that

E

|A|

n
≤ H Mn < +∞, ∀ n ≥ n0. (2)

This allows one to obtain an approximate solution stochastic process of the Airy model as well as its main statistical
functions such as average and variance by truncating a random power series solution. In [4], it is shown that every random
variable Awhose codomain or support is bounded satisfies such a condition; otherwise (as happens, for example, when A is
a Gaussian random variable), we proposed to truncate the support to take advantage of that approach. The truncation can
be done in such a way that the censured support contains most of the values of the random variable (for instance, if A is
a Gaussian random variable with mean µA and standard deviation σA, then the interval [µA − 3σA, µA + 3σA] contains on
average 99.7% of its values). Although a priori this truncation may mean a loss of accuracy that could affect computations
related to relevant statistical information about the solution stochastic process, such as its average and standard deviation
functions, this potential inconvenience can be easily overcomeby enlarging the length of the censured interval. Furthermore,
in practice, this strategy does not entail any significant increase of computational cost.

In the deterministic scenario, a modification of the Fröbenius method has been successfully developed by some of the
authors in order to save computational time when dealing with problems like (1) [6,7]. This motivates the two goals of this
paper: first, to explore whether this modification of the Fröbenius method works in the random framework and also speeds
up computations, and, second, to compare results obtained by this new approach with respect to those provided by other
available methods, including the polynomial chaos technique.

The application of the homogeneous and generalized polynomial chaos method to the solution of random differential
equations has already been tested successfully by some authors [8–10], although other contributions have highlighted
its current limitations in dealing with random differential models appearing in some engineering applications [11]. In
addition,we emphasize that interesting alternativemethods to dealwith random inputs are those based onWiener–Hermite
expansion, which can be regarded as its continuous counterpart [12].

The paper is organized as follows. Based on the deterministic approach shown in [7], Section 2 is devoted to presenting
a modification of the random Fröbenius method developed in paper [4]. Section 3 introduces the polynomial chaos method,
including its application to model (1). In Section 4, through an illustrative example, we compare the numerical results
obtained by the modified random Fröbenius method to approximate the average and standard deviation functions with
respect to the corresponding ones computed by polynomial chaos, Monte Carlo simulations, and the random Fröbenius
method presented in [4]. Conclusions are presented in Section 5.

2. Developing a piecewise random Fröbenius method

In the recent paper [4], an extension of the deterministic Fröbenius method to deal with the random Airy differential
equation (1) is presented. Themethod is based on the construction of amean square convergent random infinite power series
solution centered at the origin t = 0which is truncated in order to obtain approximations of the average and variance of the
solution stochastic process to (1). To apply themethod, condition (2) is assumed to be satisfied by random input A. Although
the computation time required in the numerical experiments presented in [4] showed themselves to be competitive with
respect to other approaches, as we have pointed out above, in this paper we are also interested in comparing it with respect
to other strategies. More precisely, in this section we want to adapt to the random framework a piecewise version of the
Fröbenius method that some of the authors have tested to be more advantageous in the deterministic scenario [7].

The method consists of dividing the t-interval where we want to construct the approximate solution, say [0, T ], into
K subintervals of length a = T/K , denoted respectively by [(j − 1)a, ja], 1 ≤ j ≤ K , where K = [T/a], [·] being the
integer part function. Then, following [4], in the first step we construct the solution X1

K (t) on the interval [0, a] using a
random power series centered at t0 = 0 and considering the random initial data X1

K (0) = Y0, Ẋ1
K (0) = Y1. Taking as initial

conditions X2
K (a) = X1

K (a) and Ẋ2
K (a) = Ẋ1

K (a), in the second step, we then construct an approximate random power series
solution X2

K (t) centered at the point t1 = a on the interval [a, 2a]. In general, in the j-th step, we construct an approximate
random power series X j

K (t) centered at the point tj−1 = (j − 1)a on the interval [(j − 1)a, ja], taking as initial conditions
X j
K ((j−1)a) = X j−1

K ((j−1)a) and Ẋ j
K ((j−1)a) = Ẋ j−1

K ((j−1)a). The procedure continues until K approximate randompower
series solutions have been defined on each subinterval, respectively, covering the total domain [0, T ]. Then a piecewise
random power series solution XK (t) is defined on interval [0, T ] through


X j
K (t) : t ∈ [(j − 1)a, ja], 1 ≤ j ≤ K


.

Based on the previous exposition, and following an analogous development to that shown in [4], the approximate random
power series solution centered at the point tj−1 is constructed on the interval [(j − 1)a, ja] as follows:

X j
K (t) =

−
n≥0

X j
n(t − tj−1)

n, tj−1 = (j − 1)a, 1 ≤ j ≤ K , (3)

where coefficients X j
n satisfy the following recurrence relationship:
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X j
2 = −

Atj−1X
j
0

2
,

X j
n+2 = −

A

X j
n−1 + tj−1X

j
n


(n + 2)(n + 1)

, n ≥ 1, 1 ≤ j ≤ K ,

(4)

for given initial conditions X j
0 and X j

1. These coefficients become those given in expression (17) in [4] when K = 1 (and so
j = K = 1). Note that, with a fixed value j : 1 ≤ j ≤ K , recurrence (4) starts from X j

0 = X j−1
K (tj−1) and X j

1 = Ẋ j−1
K (tj−1).

Setting a truncation order of series (3), say N , one obtains the following approximate random power series solution on the
interval [(j − 1)a, ja] which is centered at the point tj−1:

X j
K ,N(t) =

N−
n=0

X j
n(t − tj−1)

n, tj−1 = (j − 1)a, 1 ≤ j ≤ K .

This allows us to define the following approximation for the average of the approximate solution stochastic process on
the interval [(j − 1)a, ja]:

E

X j
K ,N(t)


=

N−
n=0

E

X j
n


(t − tj−1)

n, tj−1 = (j − 1)a, 1 ≤ j ≤ K . (5)

In order to compute an approximation of the variance, we must take into account that

Var

X j
K ,N(t)


= E

[
X j
K ,N(t)

2
]

−


E

X j
K ,N(t)

2
, (6)

together with

E
[

X j
K ,N(t)

2
]

=

N−
n=0

E

(X j

n)
2 (t − tj−1)

2n
+ 2

N−
n=1

n−1−
m=0

E

X j
nX

j
m


(t − tj−1)

n+m, 1 ≤ j ≤ K .

In this way, approximate average and standard deviation functions of piecewise random power series XK (t) are defined.
In the following, these approximations will be denoted by µF

XK ,N
(t) and σ F

XK ,N
(t), respectively.

3. Applying the polynomial chaos method

This section is concerned with introducing the polynomial chaos method, including its application to construct an
approximate solution stochastic process for problem (1). Henceforth, we shall assume that coefficient A is a random variable
(r.v.) defined on a sample space Ω of a certain probability space (Ω, F , P) [13, part I]. Thus, r.v. A depends on an outcome
ω ∈ Ω , i.e., A = A(ω). As a consequence, the solution X(t) = X(t; ω) to problem (1) becomes a stochastic process (s.p.).

The polynomial chaos method was first introduced by Wiener, who called it homogeneous chaos [14]. In this context, if
L2 denotes the set of all r.v.’s χ whose statistical second-order moments with respect to the origin are finite, i.e., r.v.’s such
that


χ2


< +∞ (and as a consequence its variance is also finite), then every χ ∈ L2 can be represented in the form

χ(ω) = χ0H0 +

∞−
i1=1

χi1H1(ξi1(ω)) +

∞−
i1=1

i1−
i2=1

χi1 i2H2(ξi1(ω), ξi2(ω))

+

∞−
i1=1

i1−
i2=1

i2−
i3=1

χi1 i2 i3H3(ξi1(ω), ξi2(ω), ξi3(ω)) + · · · .

In this representation, Hn = Hn(ξ) are Hermite polynomials in terms of vector ξT =

ξi1 , . . . , ξin


whose components are n

independent standard Gaussian r.v.’s. An explicit formula to generate these polynomials is given by

Hn(ξi1(ω), . . . , ξin(ω)) = exp

1
2
ξTξ


(−1)n

∂n

∂ξi1 · · · ∂ξin


−

1
2
ξTξ


.

Hn(·) is usually referred to as the n-th order homogeneous chaos. As a consequence, the two first terms in the representation
(7) related toH0 andH1 can be interpreted as theGaussian part of r.v.χ . For convenience, this representation can be arranged
through a certain polynomials basis {Φi} as

χ(ω) =

∞−
i=0

χiΦi(ξ(ω)), (7)
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Table 1
One-dimensional polynomial chaos values and their variances for n = 1 (taken
from Table 2.1. [15, p. 52]).

i p, order of the polynomial chaos i-th polynomial chaos Φi

(Φi)

2


0 p = 0 1 1
1 p = 1 ξ1 1
2 p = 2 (ξ1)

2
− 1 2

3 p = 3 (ξ1)
3
− 3ξ1 6

4 p = 4 (ξ1)
4
− 6(ξ1)2 + 3 24

since there is a one-to-one correspondence between Φi(·) and Hi(·). The number of r.v.’s in ξ represents the dimension of
the chaos. {Φi} constitutes a complete set of statistically orthogonal s.p.’s of the Hilbert space L2 with respect to the inner
product, i.e.,


Φi, Φj


= δij ⟨Φi, Φi⟩, where ⟨·⟩ denotes the following average:

⟨f (ξ), g(ξ)⟩ =

∫
Rn

f (ξ)g(ξ)W (ξ)dξ,

W (ξ) =
1

√
(2π)n

exp


−
1
2
ξTξ


,

(8)

and δij is the Kronecker delta function. In addition, for i ≥ 1, these polynomials are centered at the origin, i.e., ⟨Φi⟩ = 0, i ≥ 1,
and Φ0 = 1. As a consequence, from (7), the expectation and variance of r.v. χ can be computed in terms of coefficients χi
in the following way:

⟨χ(ω)⟩ = χ0, Var [χ(ω)] =

∞−
i=1

(χi)
2 

(Φi(ξ(ω)))2

; (9)

see [15] for further details.
In operational practice, the infinite summation (7) needs to be truncated at a finite term, say P . In our case, this leads to

the following expansion of both the input r.v. A(ω) and the solution s.p. X(t; ω):

A(ω) =

P−
i=0

AiΦi(ξ(ω)), X(t; ω) =

P−
i=0

Xi(t)Φi(ξ(ω)). (10)

In these expansions, the total number of terms is P + 1. This value is fixed by the dimension of the chaos, i.e., n (the number
of components of vector ξ) and the highest order p of the polynomial basis {Φi} in the followingway: P+1 = (n+p)!/(n!p!).
Since we are going to consider A as the only input r.v. in problem (1), we will take n = 1, so p = P . In practice, the value
of truncation index P is obtained after observing the stabilization of numerical solution. Purely as an illustrative example,
if we fix p = 4, then this implies that r.v. A is going to be expanded by means of the one-dimensional polynomial chaos
whose functionals {Φi} are just the Hermite polynomials of degree 0, 1, . . . , 4 which depend on r.v. ξ1 (see Table 1). In this
particular case, P = 4 in the spectral representation given by (10).

Now, we are ready to explain how the polynomial chaos operational methodology works in model (1). First, we impose
that the truncated polynomial chaos series given by (10) satisfies random Airy differential equation (1)

P−
i=0

Ẍi(t)Φi(ξ1(ω)) + t
P−

i=0

P−
j=0

AiXj(t)Φi(ξ1(ω))Φj(ξ1(ω)) = 0.

A Galerkin projection of the previous equation onto each polynomial basis {Φi} is then conducted in order to ensure that
the error is orthogonal to the functional space spanned by the finite-dimensional basis {Φi}:

P−
i=0

Ẍi(t) ⟨Φi(ξ1(ω)), Φl(ξ1(ω))⟩ + t
P−

i=0

P−
j=0

AiXj(t)

Φi(ξ1(ω))Φj(ξ1(ω)), Φl(ξ1(ω))


= 0, l = 0, 1, . . . , P.

Now, taking advantage of the orthogonality properties of polynomial basis {Φi}, one obtains the following coupled second-
order system of deterministic differential equations:

Ẍl(t) = −
t
el

P−
i=0

P−
j=0

eijlAiXj(t), l = 0, 1, . . . , P, (11)

where

eijl = ⟨Φi(ξ1(ω))Φj(ξ1(ω)), Φl(ξ1(ω))⟩, 0 ≤ i, j, l ≤ P,

el =

(Φl(ξ1(ω)))2


, Ai =

⟨A, Φi(ξ1(ω))⟩

⟨(Φi(ξ1(ω)))2⟩
, l, i = 0, 1, . . . , P. (12)



J.-C. Cortés et al. / Computers and Mathematics with Applications 62 (2011) 3411–3417 3415

Note that the coefficients el and eijl can be computed directly from expression (8). More precisely, in the illustrative case
previously introduced where n = 1 and p = 4, to compute the coefficients el and eijl, we just need to use expression (8) and
the two last columns of Table 1. In the significant casewhere A is also a Gaussian r.v., the coefficients Ai can still be computed
in the sameway as el and eijl. However, if A is a non-Gaussian r.v., the computation of the numerator of coefficients Ai requires
both the r.v.’s involved, A and ξ1, to be transformed to the same uniformly distributed r.v. u using the inverse transformation
method. This can be done as follows:

⟨A, Φi(ξ1(ω))⟩ =

∫ 1

0
F−1
A (u)Φi(F−1

ξ1
(u))du, i = 0, 1, . . . , P, (13)

where F−1
A (·) and F−1

ξ1
(·) denote the inverse probability distribution functions of r.v.’s A and ξ1, respectively.

4. Comparing the modified random Fröbenius method with other techniques: An illustrative example

This section compares the modified random Fröbenius method presented in Section 2 with other available methods. On
the one hand, as we have explained in Section 1, we have selected the random Airy differential equation to conduct this
comparative study because it has highly oscillating solutions, so it is expected to be an adequate model that is capable of
showing discrepancies between the different methods. On the other hand, a random variable with unbounded domain will
be considered to play the role of coefficient A in model (1) in order to require the truncation of its codomain to deal with
the random Fröbenius method. This will allow us to show the differences between the considered approaches, including
polynomial chaos and Monte Carlo methods [16], in a better way. Specifically, this numerical comparative study will be
made by computing approximations of the average and standard deviation functions of the solution s.p. to problem (1).

From (11), note thatwe first need to compute the coefficients el, eijl, andAi. Aswehave alreadypointed out, the coefficients
el and eijl do not depend on r.v. A; therefore these computations can be stored for reusability with independence of the r.v.
A involved. Note also that the coefficients Ai given by (12) neither depend on the form of the random differential equation
to be solved nor on the initial conditions.

Let us assume the frequent case where A is a Gaussian r.v. with mean µA and standard deviation σA > 0, i.e., A ∼

N(µA; σA). Taking into account that A can be written as A = µA + σAξ1, ξ1 ∼ N(0; 1), then, from (12), it is straightforward
to see that

A0 = µA, A1 = σA, Ai = 0, i = 2, 3, 4, . . . , P.

In the context of the illustrative example introduced above, that is, for n = 1 and p = P = 4, the deterministic coupled
linear differential system (11) becomes

Ẍ0(t) = −t (µAX0(t) + σAX1(t)) ,

Ẍ1(t) = −t (σAX0(t) + µAX1(t) + 2σAX2(t)) ,

Ẍ2(t) = −
t
2

(2σAX1(t) + 2µAX2(t) + 6σAX3(t)) ,

Ẍ3(t) = −
t
6

(6σAX2(t) + 6µAX3(t) + 24σAX4(t)) ,

Ẍ4(t) = −
t
24

(24σAX3(t) + 24µAX4(t)) .


(14)

In order to establish the corresponding initial conditions, let us assume that Y0 ∼ N(µY0; σY0) and Y1 ∼ N(µY1; σY1);
hence Y0 = µY0 + σY0ξ1, Y1 = µY1 + σY1ξ1. We nowmultiply by Φi, 0 ≤ i ≤ P expression (10) for X(t; ω) and Ẋ(t; ω) with
t = 0. Then we apply the expectation operator, and finally we take advantage of orthogonality of the polynomial basis {Φi};
thus we obtain

X0(0) = µY0; X1(0) = σY0; Xi(0) = 0, i = 2, 3, . . . , P,

Ẋ0(0) = µY1; Ẋ1(0) = σY1; Ẋi(0) = 0, i = 2, 3, . . . , P.


(15)

Since we are only interested in comparing the piecewise random Fröbenius method with other approaches considering
the case that random input A has codomain unbounded, for readability, we have taken deterministic initial conditions:
Y0 = 3 and Y1 = 1 (then µY0 = 3, µY1 = 1, σY0 = σY1 = 0) and A ∼ N(µA = 2; σA = 0.5). For the computations, we have
taken [−6, 10] as the censured interval for random variable A, in order to apply the random Fröbenius method.

Tables 2 and 3 collect, respectively, the numerical approximations at several points for the average (µ) and standard
deviation (σ ) by using the following techniques: the random Fröbenius approach and its piecewise modification introduced
in Section 2, Monte Carlo simulations, and the polynomial chaos method. Columns µF

XN
(t) and σ F

XN
(t) have been computed

by applying the random Fröbenius method with truncation order N . Columns µF
XK ,N

(t) and σ F
XK ,N

(t) have been computed by
applying the piecewise random Fröbenius method with truncation order N and splitting interval [0, 5] into K subintervals
of the same length. Note that expressions (5)–(7) have been used to deal with computations. Columns µMC

Xm (t) and σMC
Xm (t)

have been obtained by applying the Monte Carlo technique with m simulations and, finally, columns µ
pc
XP

(t), σ pc
XP

(t) have
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Table 2
Comparison of the average obtained by using the random Fröbenius method, piecewise
random Fröbenius method, Monte Carlo simulations, and the polynomial chaos approach for
A ∼ N(µA = 2; σA = 0.5), Y0 = 3 and Y1 = 1.

t µF
X69

(t), µF
X2,35

(t), µF
X5,17

(t) µF
X200,4

(t) µMC
Xm (t)

m = 100 000
µ

pc
X6

(t)

0.00 3.00000 3.00000 3.00000 3.00000
1.00 2.91023 2.91023 2.90932 2.91023
2.00 −1.22508 −1.22508 −1.228 −1.22508
3.00 −0.759985 −0.759962 −0.755933 −0.759985
4.00 1.07227 1.07223 1.06919 1.07227
5.00 −0.705977 −0.705934 −0.702016 −0.705977

Table 3
Comparison of the standard deviation obtained by using the random Fröbeniusmethod,
piecewise random Fröbenius method, Monte Carlo simulations, and the polynomial
chaos approach for A ∼ N(µA = 2; σA = 0.5), Y0 = 3 and Y1 = 1.

t σ F
X63

(t), σ F
X2,32

(t), σ F
X5,17

(t) σ F
X200,4

(t) σMC
Xm (t)

m = 100 000
σ

pc
X12

(t)

0.00 0 0 0 0
1.00 0.256018 0.25602 0.255866 0.256018
2.00 0.816923 0.81692 0.815421 0.816923
3.00 1.19504 1.19504 1.19562 1.19504
4.00 1.18406 1.18404 1.18305 1.18406
5.00 1.39934 1.39927 1.38065 1.39934

been calculated by formulae (9), respectively, following the polynomial chaos approach previously presented. In column
2, for both the random Fröbenius methods of order N and {N, K}, respectively, and also for polynomial chaos of degree P
(last column), these numerical computations were performed until they reached stabilization of six significant digits of the
numerical values with respect to N and P .Mathematica©instruction NDSolve was used to obtain a numerical solution of the
corresponding analogous systems to (14) together with the initial conditions (15). In accordance with Tables 2 and 3, at this
point, we stress that in order to obtain numerical stabilization of the average, a nonlinear coupled system like (14) but with
seven equations was solved while the corresponding one for the standard deviation has 13 equations.

From the previous example, we have observed that both versions of the random Fröbenius method as well as the
polynomial chaos technique achieve stabilization of the numerical results. We stress that, by increasing the number K of
subintervals associated to the piecewise random Fröbenius method, we can reduce the degree N of the approximate finite
series, which is just a polynomial. In practice, the smaller the degree N of the polynomial is, the lower the computational
cost will be. However, this cost will increase as the number K of subintervals increases. Comments on this issue are added
later.

From a computational standpoint, unlike what happens in the deterministic scenario, the piecewise random Fröbenius
method takes more computational time than the random Fröbenius method. This is expected, because splitting the whole
domain into subintervals entails a considerable increase of handling of the algebraic expressions involved in order to deal
with the average and standard deviation functions.

In practice, a balance between K and N must be sought. In our case, we found that the time taken until numerical
stabilization was reduced by applying the random Fröbenius method (corresponding to N = 69), while the time taken
for computations using polynomial chaos (P = 6) and the piecewise random Fröbenius method (with K = 5,N = 17) were
similar.

As the numerical approximations obtained by the differential approaches practically coincide, for the sake of clarity in
the presentation, Fig. 1 shows the average (given by X0(t)) and the standard deviation (denoted by σX (t)) approximations
on the interval [0, 5]. Note that the standard deviation shape is justified by the oscillatory behavior of the average.

5. Conclusions

Based on the results obtained by some of the authors through a piecewise Fröbenius method in the deterministic
case [6,7], in this paper we have explored whether we can also take advantage of this approach by extending it to the
random scenario. For this study, we have chosen Airy differential equations because in the deterministic framework their
solutions are highly oscillatory. Thus, this seems to be a good example to test the quality of this piecewise random Fröbenius
method, and compare it with other techniques commonly used in the study of random differential equations, including the
polynomial chaos method.

The formulation in the random framework of the piecewise random Fröbenius method has taken as a starting point
a previous paper by some of the authors [4]. In that former contribution, the input random variable A was assumed to
satisfy condition (2). Note that a flexible and wide family of random variables satisfying this condition is defined by random
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a b

Fig. 1. Representation of the mean approximation X0(t) (left) and the standard deviation approximation σX (t) (right) on the interval [0, 5] when
A ∼ N(µA = 2; σA = 0.5), Y0 = 3, and Y1 = 1.

variables having bounded codomain. Otherwise, the truncationmethod allows us to deal with unbounded randomvariables,
although in this case a loss of quality of the approximations is expected. As we also want to consider this feature, we have
chosen a Gaussian random variable to play the role of the random input A.

As a remarkable difference with respect to it occurs in the deterministic case, and based on the illustrative example that
we have considered, we realized that the piecewise random Fröbenius method requires more computational time than its
former version developed in [4]. As far as the piecewise random Fröbenius method and polynomial chaos are concerned,
we have seen that both require similar computational time whenever an appropriate balance between parameters {N, K} is
kept. Although it is one of the most popular methods to deal with random differential equations, in this example the Monte
Carlo technique is not competitive with both the random Fröbenius and the polynomial chaos approaches. This feature is
highlighted in our test example as being likely due to the highly oscillatory behavior of the solutions.

Although it is not the case for the study of random Airy differential equation (1), mean square analyticity of the
coefficients is, in general, required in order to apply the random Fröbenius method. Nevertheless, we want to stress that
useful characterizations of mean square analyticity can be found in terms of a correlation function [5, p. 99]. We point out
that another significant advantage of the Fröbenius method with respect to polynomial chaos is that the Fröbenius method
provides us with a series representation of the solution stochastic process directly in terms of the random input, say A, rather
than as a function of standardGaussian randomvariableswhich constitutes the cornerstone of the homogeneous polynomial
chaos-type representation. This feature can become of prime importance in order to deduce, for instance, the true statistical
distribution of the solution stochastic process.
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