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Let 3~ be a family of m subsets (lines) of a set of n elements (points). Suppose that each pair 
of lines has ~ points in common for some positive ~.. The Nonuniform Fisher Inequality asserts 
that under these circumstances m <~ n. We examine the case when m = n. We give a short proof 
of the fact that (with the exception of a trivial case) such an ~ must behave like a geometry in 
the following sense: a line must pass through each pair of points. This generalizes a result of de 
Bruijn and Erd6s. 

Dedicated to the memory of H.J. Ryser 

A hypergraph is a pair ~ = (X, 3:) where X = { X l , . . . ,  xn} is a finite set of 
points and 3: = { F ~ , . . . ,  Fm} is a family of subsets of X called lines. We shall 
always use n and m to denote the numbers of points and lines, resp. We suggest 
Lov~isz' excellent book [7] as a general reference on hypergraphs. 

Generalizing R.A. Fisher's celebrated inequality [4], Majumdar [8] and later 
Isbell [6] found the following result (of. Lov~isz [7, Problem 13.15(b)]). 

Theorem 1 (Nonuniform Fisher Inequality). Let ~ be a hypergraph with n points 
and m lines. I f  every pair o f  lines has precisely 2 points in common for some 
positive integer 2~, then m <- n. 

Fisher's original result is equivalent to this theorem for the case of dual 
BIBD's. (The dual of a hypergraph is obtained by interchanging the roles of 
points and blocks, preserving the incidence relation.) R.C. Bose found a very 
elegant proof of Fisher's inquality [1] which actually works for any uniform 
hypergraph. (~o is uniform if IFd = " ' =  IFml). Bose's proof uses elementary 
linear algebra in a surprising way. Only a slight modification of his proof is 
needed in order to eliminate the uniformity conditions and thus obtain Theorem 
1. No proof, avoiding this linear algebra trick, of Theorem 1 appears to be 
known. (Fisher's original proof [4] uses direct counting arguments and does not 
seem to generalize beyond the BIBD case.) We note, however, that an infinite 
version of Theorem 1 exists (Komj~ith [15]). 
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The Nonuniform Fisher Inequality contains a result of de Bruijn and ErdSs [3] 
as the particular case ~ = 1. For this case, a "purely combinatorial" proof exists 
([3], cf. [7, Problems 13.14 and 13.15(a)]). It has been quoted as an advantage of 
the proof avoiding linear algebra that it permits characterization of the extremal 
cases (m = n). As shown by de Bruijn and Erd/Js, in the case 3. = 1, equality will 
hold in the following cases only. 

(a) One of the lines is a singleton. 
(b) ~' is a possibly degenerate projective plane. 

In case (a), all the other lines must have 2 points. 
A possibly degenerate projective plane is a hypergraph satisfying the following 

axioms: 
(i) Through every pair of points there is a line; 

(ii) Every pair of lines intersects in precisely one point; 
(iii) There exists a triangle (three points not on a line). 

We obtain the axioms of a projective plane if we strengthen (iii) to 
(iv) There exists a quadrilateral (four points, no three of which are on a line). 

A degenerate plane is one that satisfies (i), (ii), (iii) but not (iv). It is easy to show 
that there exists precisely one degenerate plane for every n >i 3; it has one line 
with n - 1 points and n - 1 lines with two points each, the latter connecting the 
points of the long line to the point it misses. 

So the crucial step in characterizing the extremal case (m = n) in the de 
Bruijn-ErdSs theorem is proving that unless there is a singleton among the lines, 
the hypergraph must satisfy (i). (If there is no singleton there, it is straight- 
forward to verify (iii).) 

Although this fact follows from the results of Ryser [11] and Woodall [14], their 
arguments are certainly much more involved than those of de Bruijn and ErdSs. 
The aim of this note is to demonstrate that it is possible to use the linear algebra 
method to verify (i) for the extremal hypergraphs in a very simple way. This 
approach permits a generalization to Z > 1; we shall prove that for arbitrary Z, if 
m = n in the Nonuniform Fisher Inequality, then (i) holds. 

Theorem 2 (Ryser, Woodall). Let ~ be a hypergraph with n points and m = n 
lines. Assume no line is a singleton. I f  every pair of  lines has precisely ). points in 
common for some positive )., then through every pai r of  points there is a line. 

If we add uniformity ( lEvi-  ""-- IF,,I k) • to the conditions of Theorem 2, 
then, by a result of H.J. Ryser [9], ~ must also be regular of degree k (every 
point must belong to precisely k lines) and there must be precisely ;t lines through 
each pair of points. This means the hypergraph is a symmetric design [10, Ch. 8]. 

The nonuniform extremal configurations are called Z-designs [11]. Ryser [11] 
and Woodall [14] prove that the points of a ).-design have only two different 
degrees, rl and r2, say. (The degree or "replication number" of a point is the 
number of lines through the point.) It is no longer true that every pair of points is 
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linked by Z lines. An example of de Witte [13] (cf. [11]) shows that there exists a 
A-design with n = m = 7, Z - 2 where some pairs of points are linked by 1, others 
by 2, still others by 3 lines. 

Only one class of A-designs is known ("point-complemented symmetric block 
designs" for Z/> 2, cf. [2]). That  all A-designs are of this type is the A-design 
conjecture. Bridges [2] shows that a A-design is of this type if and only if every 
pair of points of different degrees is linked by precisely Z lines. Seress [16] proves 
the A-design conjecture assuming rlr2 = Z ( n -  1). (It is known that r~r2 < - Z ( n -  
1).) 

The proof of Theorem 2 is entirely self-contained and makes no reference to 
the results quoted above. It incorporates the (known) compact proof of Theorem 
1 (see the fourth paragraph of the proof). 

Proof of Theorem 2. Let us not assume for a moment that m = n. If there is a 
line with fewer than Z points then m = 1. If some line, say F~, has precisely Z 
points, then the sets F~ - F~ must be pairwise disjoint and therefore m ~< n - Z + 1. 
This is always <~n with equality only if Z = 1 and thus one of the lines is a 

singleton. Henceforth we assume that the numbers li de~ [Fd - Z are all positive. 
Let M be the indicence matrix of ~ .  M is an m x n matrix; its columns 

correspond to the points and its rows to the lines. The entry M[i, j] is 1 if point x~ 
belongs to line F~. 

The intersection matrix of ~ is the m x m matrix A = M M  T. Our intersection 
conditions are summarized in the matrix equation 

M M  T = ~ + L, (1) 

where J is the m × m matrix with all entries equal to 1 and L is the diagonal 
matrix L - - d i a g ( l l , . . . ,  lm). 

Since both J and L are positive semidefinite Hermitian matrices and L is 
positive definite, A is positive definite as well. In particular A is nonsingular, 
therefore rank M = m, proving Theorem 1 (m ~< n). 

Let us henceforth assume m = n. Notice that M is now a nonsingular n x n 
matrix. 

Theorem 3. Assume M is a nonnegative square matrix satisfying (1), where Z > 0 
and L is a diagonal matrix with positive diagonal entries. Then all entries o f  MTM 
are positive. 

Our objective is to prove that all entries o f  the matrix MTM are positive. 
We begin with three simple observations. All matrices below are n by n, with 

real entries. 
Let B and C be two matrices. We write B > C (B ~> C, resp.) if all entries of 

B - C are positive (nonnegative, resp.). 
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Observation 1. I f  B > O, C >I 0 and no column of  C is zero then BC > O. I f  no row 
o f  C is zero, then CB > O. 

Observation 2. A n y  matrix o f  the form BJ can be written as BJ = D J, where 
D = d i a g ( d l , . . . ,  dn) is a diagonal matrix. 

(As before, J is the all-ones matrix.) 

Proof. Make di equal to the sum of the ith row of B. [] 

Observation 3. Let B and C be arbitrary n x n matrices. I f  the matrices JC and 
BJC are positive, then so is BJ. 

Proof. By Observation 2, B J = D J  for some diagonal matrix D = 
diag(dl, . . . ,  dn). We have to prove that all the di are positive. Let r denote a 
row of JC. Then the ith row of BJC = DJC is dir. Since both JC and BJC are 
positive, we infer di > O. El 

We proceed with the proof of Theorem 2. 
By (1) we have 

MT= M-I( J + L). (2) 
Consequently, 

MTL -~= M - X ( M L  -1 + I), (3) 

where I is the identity matrix. Multiplying by J from the right we obtain 

MTL-~J = M-~J(~,L-~J + I). (4) 

The left hand side is positive by Observation I since MTL -1 is nonnegative and 
non-singular. Setting B = M -  ~ and C = ZL- IJ  + I, we notice that C and therefore 
JC are positive, and BJC is positive because the left hand side of (4) is. Using 
Observation 3 we conclude that BJ > 0, i.e., 

M-~J>O.  (5) 

Multiplying both sides of (3) by M from the right, we obtain 

MTL-1M = ZM-1JL-1M + L (6) 

Here, ~.M-1J > 0 by (5) and L - 1 M  is nonnegative and nonsingular. Consequently 
(by Observation 1) the right hand side is positive. We conclude that 

MTM = MTIM >I M'rL-1M > O, 

completing the proof of Theorem 2. [] 
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