Periodic Solutions of Nonlinear Functional Differential Equations

J. Mawhin*
Institut d'Astrophysique, Université de Liège, B-4200 Cointe-Ougrée, Belgium

Received June 11, 1970

1. Intronuction

This paper is devoted to an existence study of periodic solutions in nonlinear functional differential equations [1-3]. Although some arguments of the present work can be applied to autonomous functional differential equations, our attention will be focused to the nonautonomous case. The method used here will be an extension of that proposed in [4] by the author for ordinary differential equations and reducing the problem to the existence of a fixed point for some operator in a suitable space of periodic functions.
The corresponding operator for functional differential equations, which seems to be new, is introduced in Section 2 and a necessary and sufficient condition for the existence of periodic solutions is proved (Theorem 1). As an application of this result and of some properties of Leray Schauder's degree [5-7], we obtain in Section 3 a sufficient condition for the existence of periodic solutions (Theorem 2) and then in Section 4 an extension to functional differential equations of a result first proved by G. Güsefeldt [8, 9] (see also [4]) for ordinary differential equations (Theorem 3). In Section 5 is proved Theorem 4 which covers cases where the previous result is not applicable and which generalizes a recent criterion of the author for equations without time lags $[4,10]$. The remainder of the paper is devoted to applications of Theorem 4. First, in Section 6, Theorem 5 is an extension to functional differential equations of the basic theorem of the "method of guiding functions" introduced by M. A. Krasnosel'skii et al. [11-17] to study periodic solutions of ordinary and differential-difference equations. It is easy to verify that the new proof given here for the more general case of functional differential equations is much simpler and shorter than the original one given in [16] by Krasnosel'skii for ordinary differential equations and which was based upon the properties of the Poincaré-Andronov operator

[^0]of translation along the solutions. Moreover, for differential-difference equations, Krasnosel'skii has still to use some homotopy argument to reduce these equations to ordinary differential equations [13-15], and it is not at all clear how to apply this process to general functional differential equations. As an application of Theorem 5 we extend a result of J . Cronin recently published in this Journal [18]. The last section is devoted to a direct application of Theorem 4 to systems of coupled Liénard functional differential equations (Theorem 6), the corresponding result in the case of ordinary Lienard equations having been given by the author in [19].

For other interesting papers concerning the periodic solutions of nonautonomous functional differential equations but not directly related to the method and the results introduced here, see $[1,3,20-28]$.

2. A Necessary and Sufficient Condition for the Existence of Periodic Solutions of Functional Differential Equations

Let \mathscr{C} denote the (Banach) space of mappings

$$
\varphi:[-r, 0] \rightarrow R^{n}, \quad \theta \mapsto \varphi(\theta)
$$

($r \geqslant 0$ a fixed number) with the uniform norm

$$
\|\varphi\|_{\mathscr{\theta}}=\sup _{\theta \in[-r, 0]}\|\varphi(\theta)\|,
$$

$\|\cdot\|$ being an arbitrary norm in R^{n}. If the mapping

$$
x: R \rightarrow R^{n}, \quad t \mapsto x(t)
$$

is continuous, then, for every $t \in R$, we shall denote by x_{t} the element of \mathscr{C} defined by

$$
x_{t}(\theta)=x(t+\theta), \quad \theta \in[-r, 0]
$$

$\Omega \subset \mathscr{C}$ being an open sct, let

$$
\begin{equation*}
q: R \times \Omega \rightarrow R^{n}, \quad(t, \varphi) \mapsto q(t, \varphi) \tag{2.1}
\end{equation*}
$$

be a continuous mapping such that

$$
q(t+T, \varphi)=q(t, \varphi)
$$

for every $(t, \varphi) \in R \times \Omega, T$ (the period) a strictly positive fixed number.
Let us consider the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=q\left(t, x_{t}\right) \tag{2.2}
\end{equation*}
$$

where $x^{\prime}(t)$ is the right-hand derivative with respect to t. It is well known that the class of Eqs. (2.2) contains ordinary differential equations (take $r=0$), differential-difference equations and some integro-differential equations. A T-periodic solution of (2.2) (cf., for example, [3]) will be a solution $x(t)$ such that

$$
\begin{equation*}
x(t+T)=x(t) \tag{2.3}
\end{equation*}
$$

for every $t \in R$.
We shall now briefly recall the definition and properties of the operators P and H introduced by Cesari $[29,30]$ in his studies of periodic solutions of nonlinear equations and used in [4]. Let C_{T} be the (Banach) space of mappings

$$
x: R \rightarrow R^{n}, \quad t: \rightarrow x(t)
$$

continuous and T-periodic (i.e., satisfying (2.3)) with the norm

$$
x\left\|_{0}=\sup _{t \in R}\right\| x(t)\left\|=\sup _{t \in[0, T]}\right\| x(t) \|
$$

and let P be the operator

$$
P: C_{T} \rightarrow R^{n}, \quad x \mapsto \frac{1}{T} \int_{0}^{T} x(t) d t
$$

(due to the isomorphism between R^{n} and the subspace of C_{T} of constant mappings, we denote in the following this last subspace also by R^{n}, the norm induced by $\|\cdot\|_{0}$ being $\left.\|\cdot\|\right)$. It is clear that

$$
\left\|P_{x}\right\|_{0}=\|P x\| \leqslant\|x\|_{0} .
$$

For every $x \in C_{T}$, it is well known $[10,29,30]$ that there exists an (unique) operator of primitivation H such that

$$
H(I-P) x \in C_{T}
$$

is of class C^{1} (I the identity), and satisfies

$$
P H(I-P) x=0, \quad \frac{d}{d t}[H(I-P) x(t)]=x(t)-P x
$$

for every $t \in R$. Moreover [10, 29, 30],

$$
\|H(I-P) x\|_{0} \leqslant 3^{-1 / 2}(T / 2)\|x\|_{0} .
$$

If $\omega \subset C_{T}$ is the set

$$
\omega=\left\{x \in C_{T}: x_{t} \in \Omega \text { for every } t \in R\right\}
$$

and if A is an arbitrary $n \times n$ constant nonsingular matrix, then the operators

$$
\tilde{q}: \omega \rightarrow C_{T}, \quad x(t) \mapsto q\left(t, x_{t}\right)
$$

for every $t \in R$, and

$$
\begin{equation*}
F: \omega \rightarrow C_{T}, \quad x \mapsto P x+A P \tilde{q} x+H(I-P) \tilde{q} x \tag{2.4}
\end{equation*}
$$

are well defined and, for every $x \in \omega,(F x)(t)$ is of class C^{1}.
We can now prove the following
Theorem 1. The functional differential equation (2.2) will have a T periodic solution if and only if there exists an $x \in \omega$ such that

$$
\begin{equation*}
x=F x . \tag{2.5}
\end{equation*}
$$

Proof. If x is a fixed point of $F, x(t)$ is T-periodic and of class C^{1}, then differentiating both members of (2.5), we obtain

$$
x^{\prime}(t)=q\left(t, x_{t}\right)-P \tilde{q} x, \quad t \in R .
$$

If we now apply P to (2.5), we find

$$
P x=P x+A P \tilde{q} x
$$

i.e.,

$$
P \tilde{q} x=0
$$

and the condition is sufficient. Conversely, if $x(t)$ is a T-periodic solution of (2.2), then, applying P to both members of (2.2), we obtain

$$
P \check{q} x=P x^{\prime}=0
$$

and hence

$$
x-P x=H \tilde{q} x=H(I-P) \tilde{q} x=A P \tilde{q} x+H(I-P) \tilde{q} x,
$$

i.e.,

$$
x=F x .
$$

3. Leray-Schauder's Degree and the Existence of Periodic Solutions of (2.2)

Using Theorem 1, the existence of a T-periodic solution for (2.2) is reduced to the study of the fixed points of the operator F in some set of the (Banach) space C_{T} and it is known that one of the most powerful tools in this domain
is the theory of Leray-Schauder's degree for completely continuous perturbations of the identity operator. We have, therefore, to find conditions ensuring the complete continuity of the operator F. If E_{1} and E_{2} are Banach spaces, the (not necessarily linear) operator

$$
W: S \subset E_{1} \rightarrow E_{2}
$$

will be said to satisfy the B-property if it transforms every bounded set contained in S into a bounded set of E_{2}. If W is linear, this is the usual boundedness property.

Lemma 1. If the mapping q defined in (2.1) is continuous and satisfies the B-property, then F is completely continuous in ω.

Proof. The continuity of F is an immediate consequence of the continuity of P, H and q. Let us now show that F is compact. Let $\left\{x^{k}\right\}$ be a bounded sequence of elements of ω. There will exist a positive constant M such that

$$
\left\|x^{k}\right\|_{0} \leqslant M, \quad k=1,2, \ldots
$$

and, if

$$
y^{k}=F x^{k}, \quad k=1,2, \ldots
$$

then, using B-property,

$$
\begin{aligned}
\left\|y^{k}\right\|_{0} & \leqslant\left\|P x^{k}\right\|_{0}+\|A\| P \tilde{q} x^{k}\left\|_{0}+\right\| H(I-P) \tilde{q} x^{k} \|_{0} \\
& \leqslant\left\|x^{k}\right\|_{0}^{\prime}+\|A\|\left\|\tilde{q} x^{k}\right\|_{0}+3^{-1 / 2}(T / 2)\left\|\tilde{q} x^{k}\right\|_{0} \\
& \leqslant M+\|A\| N+3^{-1 / 2}(T / 2) N
\end{aligned}
$$

where N is the positive constant such that

$$
\left\|q\left(t, x_{t}\right)\right\|_{0} \leqslant N
$$

if $t \in R, x_{l} \in \Omega$ and

$$
\left\|x_{t}\right\|_{8} \leqslant\|x\|_{0} \leqslant M
$$

Moreover, for every $k=1,2, \ldots, y^{k}(t)$ is of class C^{1} and

$$
\left\|\left(y^{k}\right)^{\prime}\right\|_{0}=\left\|(I-P) \tilde{q} x^{k}\right\|_{0} \leqslant 2\left\|\tilde{q} x^{k}\right\|_{0} \leqslant 2 N, \quad k=1,2, \ldots
$$

Then $\left\{y^{k}\right\}$ is an equibounded and equicontinuous sequence of elements of C_{T} and the compactness of F follows immediately from Arzela-Ascoli's theorem.

It can be noted that if (2.2) is an ordinary differential equation

$$
x^{\prime}(t)=q[t, x(t)]
$$

or a differential-difference equation

$$
x^{\prime}(t)=q\left[t, x(t), x\left(t-\tau_{1}\right), x\left(t-\tau_{2}\right), \ldots, x\left(t-\tau_{k}\right)\right]
$$

$\tau_{j}>0, j=1,2, \ldots, k$, the B-property for q is an immediate consequence of its continuity. The same is true if the constants τ_{j} are replaced by T-periodic continuous lags $\tau_{j}(t), j=1,2, \ldots, k$.

Using Theorem 1, Lemma 1 and the basic properties of Leray--Schauder's degree, we obtain immediately the following

Theorem 2. If conditions of Lemma 1 are satisfied and if there exists an open bounded set ω_{0} such that
(i) $\bar{\omega}_{0} \subset \omega\left(\bar{\omega}_{0}\right.$ is the closure of $\left.\omega_{0}\right)$;
(ii) $x \neq F x$ for every $x \in \partial \omega_{0}\left(\partial \omega_{0}\right.$ is the boundary of $\left.\omega_{0}\right)$;
(iii) the Leray-Schauder's degree $d\left(x-F x, \omega_{0}, 0\right)$ is not zero, then Eq. (2.2) has at least one T-periodic solution contained in ω_{0}.

To apply Theorem 2 it is often useful to introduce a family of functional differential equations depending continuously on a parameter, say

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x_{t}, \lambda\right), \quad \lambda \in[0,1] \tag{3.1}
\end{equation*}
$$

such that (3.1) reduces to (2.2) if $\lambda=1$ and such that the Leray-Schauder's degree of Theorem 2 is easier to compute for the operator F corresponding to (3.1) with $\lambda=0$. To apply the invariance property of Leray-Schauder's degree with respect to homotopy, we need the following

Lemma 2. With the notations of Section 2, if the mapping

$$
f: R \times \Omega \times[0,1] \rightarrow R^{n}, \quad(t, \varphi, \lambda) \mapsto f(t, \varphi, \lambda)
$$

is continuous, T-periodic with respect to t and satisfies the B-property, then the operator
$\mathscr{F}: \omega \times[0,1] \rightarrow C_{T}, \quad(x, \lambda) \mapsto P x+\operatorname{APf}(x, \lambda)+H(I-P) f(x, \lambda)$
with

$$
\tilde{f}: \omega \times[0,1] \rightarrow C_{T}, \quad[x(t), \lambda] \mapsto f\left(t, x_{t}, \lambda\right), \quad t \in R,
$$

is completely continuous.
Proof. It follows exactly the lines of the proof of Lemma 1 . Instead of $\left\{x^{k}\right\}$, one has to use a bounded sequence $\left\{\left(x^{k}, \lambda^{k}\right)\right\}$ of elements of $\omega \times[0,1]$.

4. An Extension of a Theoreal of Güssefelitt

As a first application of 'Theorem 2 let us consider the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=s\left(t, x_{t}\right) \quad p\left(t, x_{i}\right), \tag{4.1}
\end{equation*}
$$

where the mappings

$$
\begin{aligned}
& s: R \times \Sigma \rightarrow R^{n}, \quad(t, \varphi): \rightarrow s(t, \varphi), \\
& p: R \times \Sigma \rightarrow R^{n}, \\
& (t, \varphi) \rightarrow p(t, \varphi),
\end{aligned}
$$

are continuous, T-periodic with respect to t, and satisfy the B-property with Σ an open set of \mathscr{C} such that $-\varphi \in \Sigma$ if $\varphi \in \Sigma$. Morcover, let us suppose that

$$
s(t,-\varphi)=-s(t, \varphi)
$$

for every $(t, \varphi) \in R \times \Sigma$ and that there exists a mapping

$$
g: R \times \Sigma \times[0,1] \rightarrow R^{n}, \quad(t, \varphi, \lambda) \rightarrow g(t, \varphi, \lambda)
$$

continuous, T-periodic with respect to t, and satisfying the B-property and the relations

$$
g(t, \varphi, 0)=0, \quad g(t, \varphi, 1)=p(t, \varphi)
$$

for every $(t, \varphi) \in R \times \Sigma$.
If $\sigma=\left\{x \in C_{T}: x_{t} \in \Sigma\right.$ for every $\left.t \in R\right\}$, we can prove the following

Theorem 3. Under the conditions quoted above, if there exists an open bounded set σ_{0} such that $\bar{\sigma}_{0} \subset \sigma,-x \in \bar{\sigma}_{0}$ if $x \in \bar{\sigma}_{0}$ and such that for every possible T-periodic solution of

$$
x^{\prime}(t)=s\left(t, x_{t}\right)+g\left(t, x_{t}, \lambda\right), \quad \lambda \in[0,1],
$$

we have

$$
\begin{equation*}
x \notin \partial \sigma_{0}, \tag{4.2}
\end{equation*}
$$

then (4.1) has at least one T-periodic solution situated in σ_{0}.
Proof. Let us introduce the mappings

$$
\begin{aligned}
& q: R \times \Sigma \rightarrow R^{n}, \quad(t, \varphi) \mapsto q(t, \varphi)=s(t, \varphi)+p(t, \varphi) \\
& f: R \times \Sigma \times[0,1] \rightarrow R^{n}, \quad(t, \varphi, \lambda) \mapsto f(t, \varphi, \lambda)=s(t, \varphi)+g(t, \varphi, \lambda)
\end{aligned}
$$

If the corresponding operators F and \mathscr{F} are, respectively, defined in (2.4) and (3.2) with σ instead of ω, and if we write

$$
F_{0}: \sigma \rightarrow C_{T}, \quad x \mapsto \tilde{F}(x, 0)=P x+A P \tilde{s} x+H(I-P) \tilde{s} x
$$

with

$$
\tilde{s}: \sigma \rightarrow C_{T}, \quad x(t) \rightarrow s\left(t, x_{t}\right), \quad t \in R,
$$

and

$$
F_{1}: \sigma \rightarrow C_{T}, \quad x: \mathscr{F}(x, 1),
$$

then it is clear that

$$
\begin{equation*}
F_{0}(-x)=-F_{0} x, \quad F_{1} x=F x \tag{4.3}
\end{equation*}
$$

for every $x \in \sigma$. By Lemma $2, \mathscr{F}$ is completely continuous on $\bar{\sigma}_{0} \times[0,1]$, and, using condition (4.2) and Theorem 1, we have

$$
x \neq \mathscr{F}(x, \lambda)
$$

for every $x \in \hat{\partial} \sigma_{0}$ and $\lambda \in[0,1]$. Therefore, by the property of invariance under homotopy of Leray-Schauder's degree,

$$
\begin{equation*}
d\left(x-F x, \sigma_{0}, 0\right)=d\left(x-F_{1} x, \sigma_{0}, 0\right)=d\left(x-F_{0} x, \sigma_{0}, 0\right) \tag{4.4}
\end{equation*}
$$

But, using (4.3), we obtain from a theorem of Krasnosel'skii [31] that $d\left(x-F_{0} x, \sigma_{0}, 0\right)$ is an odd number. Theorenn 3 is then an immediate consequence of (4.4) and of Theorem 2.

In the case of ordinary differential equations, Theorem 3 was first proved by G. Güssefeldt $[8,9]$ by writing (4.1) in the form

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+s^{(1)}[t, x(t)]+p[t, x(t)] \tag{4.5}
\end{equation*}
$$

with $A(t)$ a noncritical matrix [30], and using then the Green function of

$$
x^{\prime}(t)=A(t) x(t), \quad x(0)=x(T)
$$

to reduce the problem of periodic solutions of (4.5) into an integral equation of Hammerstein type. A direct proof analogous to that used here was given in [4] by the author.

5. A Sufficient Condition for the Existence of T-Periodic Solutions of (2.2)

It is clear from its proof that, contrarily to Theorem 2, Theorem 3 can only cover cases where the Leray-Schauder's degree of $x-F x$ is an odd number but, of course, it is more suitable for applications. In this section we
shall prove an existence theorem in which the Leray-Schauder's degree need not to be odd and which is also very suitable for applications as shown in Sections 5 and 6. This theorem is an extension to functional differential equations of a result first proved in $[4,10]$ by the author for ordinary differential cquations.

To prove the existence of T-periodic solutions for (2.2), let us introduce the auxiliary equation

$$
x^{\prime}(t)=\lambda g\left(t, x_{t}, \lambda\right), \quad \lambda \in[0,1]
$$

where the mapping

$$
g: R \times \Omega \times[0,1] \rightarrow R^{n}, \quad(t, \varphi, \lambda) \mapsto g(t, \varphi, \lambda)
$$

is continuous, T-periodic with respect to t, satisfies the B-property and is such that

$$
g(t, \varphi, 1)=q(t, \varphi)
$$

for every $(t, \varphi) \in R \times \Omega$. Let \mathscr{G} be the operator
$\mathscr{G}: \omega \times[0,1] \rightarrow C_{T}, \quad(x, \lambda) \mapsto \mathscr{G}(x, \lambda)=P x-P \tilde{g}(x, \lambda)+\lambda H(I-P) \tilde{g}(x, \lambda)$
with

$$
\tilde{g}: \omega \times[0,1] \rightarrow C_{T}, \quad[x(t), \lambda] \mapsto g\left(t, x_{t}, \lambda\right)
$$

for every $t \in R$.
We can now prove the following
Theorem 4. If the following conditions are satisfied:
(i) There exists an open ball b_{ρ} of center 0 and of radius $\rho>0$ such that $\bar{b}_{0} \subset \omega$ and such that, for every possible T-periodic solution x of the functional differential equations

$$
\begin{equation*}
\left.\left.x^{\prime}(t)=\lambda g\left(t, x_{t}, \lambda\right), \quad \lambda \in\right] 0,1\right] \tag{5.1}
\end{equation*}
$$

we have

$$
x \notin \partial b_{o}
$$

(ii) Every possible solution $a \in R^{n}$ of the equation

$$
g_{0}(a) \equiv \frac{1}{T} \int_{0}^{T} g(t, a, 0) d t=0
$$

is such that

$$
a \notin \partial B
$$

with

$$
B_{\rho}=b_{\rho} \cap R^{n}=\left\{a \in R^{n}:\|a\|<\rho\right\} ;
$$

(iii) The topological (Brouwer) degree d $\left[g_{0}(a), B_{n}, 0\right]$ is not zero, then (2.2) has at least one 7 -periodic solution situated in b_{ρ}.

Remark. It is to be noted that, in $g(t, a, 0), a$ has to be considered as an element of the (isomorphic to R^{n}) subspace of \mathscr{C} of constant mappings.

Proof of Theorem 4. From Theorem 1 it is clear that, for every $\lambda \in] 0,1]$, the fixed points of

$$
x=\mathscr{G}(x, \lambda)
$$

coincide with the T-periodic solutions of (5.1), and hence, using condition (i), we have

$$
\begin{equation*}
x \neq \mathscr{G}(x, \lambda) \tag{5.2}
\end{equation*}
$$

for every $x \in \partial b_{\rho}$ and $\left.\left.\lambda \in\right] 0,1\right]$. Moreover, if we write, for every $\lambda \in[0,1]$,

$$
G_{\lambda}: \omega->C_{T}, \quad x_{1}>\mathscr{G}(x, \lambda)
$$

then every fixed point of G_{0} satisfies

$$
\begin{equation*}
x=P x-P \tilde{g}(x, 0) \tag{5.3}
\end{equation*}
$$

and hence, applying P to both members of (5.3),

$$
x=P x, \quad P \tilde{g}(P x, 0)=0
$$

As a consequence, the set of possible fixed points of G_{0} is contained in R^{n} and coincides with the set of zeroes of g_{0}. Therefore, using condition (ii),

$$
x \neq G_{0} x=\mathscr{G}(x, 0)
$$

for every $x \in \partial b_{o}$ and then (5.2) holds for every $\lambda \in[0,1]$. By Lemma 2, \mathscr{G} is a completely continuous mapping and, using the invariance under homotopy and excision properties of Leray-Schauder's degree we have

$$
\begin{aligned}
d\left(x-F x, b_{\rho}, 0\right) & =d\left(x-G_{1} x, b_{\rho}, 0\right)-d\left(x-G_{0} x, b_{\rho}, 0\right) \\
& =d\left(x-G_{0} x \mid R^{n}, b_{o} \cap R^{n}, 0\right)=d\left(g_{0}(a), B_{\rho}, 0\right)
\end{aligned}
$$

because, on $b_{o} \cap R^{n}$,

$$
x-G_{0} x=a-a+P \tilde{g}(a, 0)=g_{0}(a)
$$

Theorem 4 follows then from Theorem 2 and condition (iii).

6. An Extescion of the Basic Theoren of the Method of Guiding Functions

Let us consider the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=f\left[t, x(t), x_{1}\right] . \tag{6.1}
\end{equation*}
$$

where

$$
f: R \times R^{\prime \prime} \times \nrightarrow R^{\prime \prime}, \quad(t, x, \varphi) \rightarrow f(t, x, \varphi)
$$

is continuous, T-periodic with respect to t and satisfies the B-property. It is clear that (6.1) is only a particular (and convenient for what follows) manner to write (2.2) with $\Omega=6$ because, if we introduce the (bounded) linear operator

$$
L: \not \subset \rightarrow R^{\prime \prime} \times \not{\not,}, \varphi \rightarrow[\varphi(0), \varphi],
$$

then we have

$$
f\left[t, x(t), x_{1}\right]=f\left(t, L x_{t}\right) \stackrel{d \mathrm{def}}{=} q\left(t, x_{t}\right),
$$

and the mapping q satisfies the conditions given in Section 2 and the B-property. In this section and in Section 7, will always denote the Euclidian norm and , the scalar product in $R^{\prime \prime}$.

As an easy consequence of Theorem 4 we shall prove first a generalization of the basic theorem of the "method of guiding functions" introduced and developed by Krasnosel'skii et al. [11-17]. We need then the following

Definition. A function

$$
V: R^{\prime \prime} \rightarrow R, \quad x \nrightarrow V(x)
$$

will be a guiding function for Equation (6.1) it there cxists a $\rho>0$ such that

$$
\begin{equation*}
\langle\operatorname{grad} V(x), f(t, x, \varphi)\rangle>0 \tag{6.2}
\end{equation*}
$$

for every $t \in R, \varphi \in \mathscr{C}$ and $x \in R^{n}$ satisfying $x=\rho$.
When we shall have to consider some guiding function V_{j} with a subscript j we shall write ρ_{j} for the corresponding value of ρ. We can now prove the following

Theorem 5. If there exist $m+1(\geq 1)$ guiding functions $V_{0}, V_{1}, \ldots, V_{m}$ for (6.1) such that

$$
\begin{equation*}
\lim _{|x|\} \rightarrow \infty}\left[V_{0}(x)\left|+\left|V_{1}(x)\right|+\cdots+\right| V_{m}(x)\right]=\infty \tag{6.3}
\end{equation*}
$$

and

$$
d\left[\operatorname{grad} V_{0}(x), B_{o_{0}}, 0\right] \neq 0
$$

with

$$
B_{p_{0}}=\left\{x \in R^{n}: x<\rho_{0}\right\},
$$

then (6.1) has at least one T-periodic solution.
Proof. Let us introduce the auxiliary equation

$$
\begin{equation*}
\left.\left.x^{\prime}(t)=\lambda f\left[t, x(t), x_{t}\right], \quad \lambda \in\right] 0,1\right], \tag{6.4}
\end{equation*}
$$

and let $x(t)$ be a possible T-periodic solution of (6.4). If we write

$$
\mathscr{V}_{j}(t)=V_{j}[x(t)], \quad j=0,1, \ldots, m,
$$

then

$$
\begin{aligned}
\mathscr{V}_{j}^{\prime}(t)=\left\langle\operatorname{grad} V_{j}[x(t)], x^{\prime}(t)\right\rangle & =\lambda\left\langle\operatorname{grad} V_{j}[x(t)], f\left[t, x(t), x_{t}\right]\right\rangle \\
j & =0,1, \ldots, m ; \quad t \in R .
\end{aligned}
$$

For every τ_{j}, such that

$$
\left|\mathscr{V}_{j}\left(\tau_{j}\right)_{i}=\sup _{t \in R} \mathscr{V}_{j}(t)=\sup _{t \in[0, T]}\right| \mathscr{V}_{j}(t)_{i}, \quad j=0,1, \ldots, m
$$

we have

$$
\mathscr{V}_{j}^{\prime}\left(\tau_{j}\right)=0, \quad j=0,1, \ldots, m
$$

and then, using (6.2),

$$
\left\|x\left(\tau_{j}\right)\right\|<\rho_{j}, \quad j=0,1, \ldots, m
$$

Hence, for every $t \in R$,

$$
V_{j}[x(t)]!\leqslant \sup _{\| x_{i}^{\prime} \leqslant \rho_{j}}\left|V_{j}(x)\right|=M_{j}, \quad j=0,1, \ldots, m
$$

for every possible T-periodic solution of (6.4). Therefore,

$$
\sum_{j=0}^{m}\left|V_{j}^{\prime}[x(t)]\right| \leqslant \sum_{j=0}^{m} M_{j}=M, \quad t \in R,
$$

and, by condition (6.3), there will exist one $\rho_{M}>0$ such that

$$
\sup _{t \in[0, T]}\|x(t)\|<\rho_{M}
$$

for every possible T-periodic solution of (6.4).

Using (6.2), we find now

$$
\left\langle\operatorname{grad} V_{0}(a), \frac{1}{T} \int_{0}^{T} f(t, a, a) d t\right\rangle \quad 0
$$

for every $a \in R^{n}$ such that $\|a\| \geq \rho_{0}$, and hence every possible solution of

$$
g_{0}(a)=\frac{1}{T} \int_{0}^{T} f(t, a, a) d t=0
$$

is contained in $B_{\rho_{0}}$, and, by Poincaré-Bohl theorem [6],

$$
d\left[g_{0}(a), B_{p}, 0\right]=d\left[\operatorname{grad} V_{0}(a), B_{o}, 0\right] \neq 0
$$

for every $\rho \geqslant \rho_{0}$. With $\rho=-\max \left(\rho_{0}, \rho_{M}\right)$, the conditions of Theorem 4 are satisfied and Theorem 5 is proved.

A direct application of this result is the following extension of a theorem proved for ordinary differential equations by Cronin [18] using the Brouwer fixed point theorem:

Corollary 1. Let us consider the functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=h[x(t)]+g\left[t, x(t), x_{t}\right], \tag{6.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& h: R^{n} \rightarrow R^{n}, \quad x \mapsto h(x), \\
& g: R \times R^{n} \times \mathscr{C} \rightarrow R^{n}, \quad(t, x, \varphi) \mapsto g(t, x, \varphi)
\end{aligned}
$$

are continuous, h being homogeneous of degree $s>1$ and g, T-periodic with respect to t, satisfying the B-property and being such that

$$
\begin{equation*}
\frac{\|g(t, x, \varphi)\|}{\|x\|^{s}} \rightarrow 0 \text { if }\|x\| \rightarrow \infty \tag{6.6}
\end{equation*}
$$

uniformly in (t, φ). If 0 is an asymptotically stable critical point of

$$
\begin{equation*}
x^{\prime}(t)=h[x(t)] \tag{6.7}
\end{equation*}
$$

then (6.5) has at least one T-periodic solution.
Proof. 0 being an asymptotically stable critical point of (6.7), there will exist, by virtue of a theorem due to Zubov [32, 33], two functions V and W :

$$
\begin{aligned}
V: R^{n} \rightarrow R^{+} \cup\{0\}, & x \rightarrow V(x), \\
W: R^{n} \rightarrow R^{+} \cup\{0\}, & x \mapsto W(x),
\end{aligned}
$$

that are of class C^{1}, homogeneous of respective degrees 2 and $s+1$, and such that

$$
V(x)=W(x)=0 \quad \text { if and only if } \quad x=0
$$

and

$$
\langle\operatorname{grad} V(x), p(x)\rangle=-W(x)
$$

Therefore, we can find two strictly positive constants v and w such that

$$
\|\operatorname{grad} V(x)\| \leqslant v\|x\|, \quad W(x) \geqslant w\|x\|^{s+1}
$$

for every $x \in R^{n}$. If we write

$$
V_{0}(x)=-V(x)
$$

then

$$
\begin{aligned}
\left\langle\operatorname{grad} V_{0}(x), h(x)+g(t, x, \varphi)\right\rangle & =W(x)-\langle\operatorname{grad} V(x), g(t, x, \varphi)\rangle \\
& \geqslant w\|x\|^{s+1}-\|\operatorname{grad} V(x)\|\|g(t, x, \varphi)\| \\
& \geqslant w\|x\|^{s+1}-v\|x\|\|g(t, x, \varphi)\|
\end{aligned}
$$

But, for every $\epsilon>0$ it follows from condition (6.6) that we can find one $\rho(\epsilon)>0$ such that

$$
\|g(t, x, \varphi)\| \leqslant \epsilon\|x\|^{s}
$$

if $t \in R, \varphi \in \mathscr{C}$, and $\|x\| \geqslant \rho(\epsilon)$, and hence
for every $t \in R, \varphi \in \mathscr{C}$ and $x \in R^{n}$ such that $\|x\| \geqslant \rho_{0}=\rho(w / 2 v)$.
Now, the negative definite quadratic form $V_{0}(x)$ can be written

$$
V_{0}(x)=\frac{1}{2}\left\langle x, \mathscr{V}_{0} x\right\rangle
$$

with \mathscr{V}_{0} an $n \times n$ negative symmetric matrix such that

$$
\operatorname{grad} V_{0}(x)=\mathscr{V}_{0} x
$$

and hence [10]

$$
d\left[\operatorname{grad} V_{0}(x), B_{o}, 0\right]=d\left[\mathscr{V}_{0} x, B_{\rho}, 0\right]=(-1)^{n}
$$

for every $\rho>0$. Then, $V_{0}(x)$ satisfies the conditions of Theorem 5 and Corollary 1 is proved.

7. Periodic Solutions of a Systfa of Lienard Functional Differential Equation:

The applications of Theorem 4 given up to now are all of theoretical natare. In this section we shall make a dircct use of this theorem to prove the existence of T-periodic solutions for a class of systems of coupled Lienard functional differential equations. The criterion thus obtained is an extension of results, proved by the author in [19], for a system of ordinary Lienard differential equations. It is to be noted that a number of other existence theorems given in $[10,34,35]$ for ordinary differential equations can also be extended in some way to corresponding functional differential equations.

Theorem 6. Let us consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+\frac{d}{d t}\{\operatorname{grad} \Phi[y(t)]\}+\int_{-\gamma}^{\prime \prime} d \eta(\theta) y(t+\theta)=e(t) \tag{7.1}
\end{equation*}
$$

where $y \in R^{\prime \prime}$,

$$
\Phi: R^{n} \rightarrow R, \quad y \rightarrow \Phi(y)=\Phi_{1}(y)+\Phi_{2}(y)
$$

is an application of class C^{2} with Φ_{1} homogeneous of degree $2 p \geqslant 2$ and of definite sign and with Φ_{2} such that

$$
\begin{equation*}
\forall \operatorname{grad} \Phi_{2}(y) \|\left. C_{2} y\right|^{2 p-2}+C_{3}, \quad C_{2}, C_{3} \geqslant 0 \tag{7.2}
\end{equation*}
$$

Moreover, let us suppose that

$$
e: R \rightarrow R^{n}, \quad t \mapsto e(t)
$$

is continuous, T-periodic and satisfies

$$
\frac{1}{T} \int_{0}^{T} e(t) d t=0
$$

and that $\eta(\theta),-r \leqslant \theta \leqslant 0$, is an $n \times n$ matrix whose elements have bounded variation and are such that the matrix

$$
M=\int_{-r}^{0} d \eta(\theta)
$$

is nonsingular. Then (7.1) has at least one T-periodic solution.
To prove Theorem 6 we shall need the following

Lemma 3. With the notations of Theorem 6 , if $y \in C_{T}$ and $z \in C_{T}$, there exists one constant N depending only upon η, r and such that

$$
\begin{align*}
& \left|\frac{1}{T} \int_{0}^{T} \int_{-r}^{0}\langle d \eta(\theta) y(t+\theta), z(t)\rangle d t\right| \\
& \quad \leqslant N\left[\left.\frac{1}{T} \int_{0}^{T} y(t)\right|^{2} d t\right]^{1 / 2}\left[\frac{1}{T} \int_{0}^{T} \|\left.\approx(t)\right|^{2} d t\right]^{1 / 2} \tag{7.4}
\end{align*}
$$

Proof. Every component of the matrix $\eta(\theta)$ having bounded variation, we have [36]

$$
\eta_{i j}(\theta)=\eta_{i j}^{(1)}(\theta)-\eta_{i j}^{(2)}(\theta), \quad i, j=1,2, \ldots, n
$$

where the $\eta_{i j}^{(k)}(\theta)(k=1,2 ; i, j=1,2, \ldots, n)$ are increasing functions. Then, using Fubini-Lebesgue theorem [36] and Schwarz inequality, we obtain

$$
\begin{aligned}
\left\lvert\, \frac{1}{T}\right. & \left.\int_{0}^{T} \int_{-r}^{0} d \eta(\theta) y(t+\theta), z(t)\right\rangle d t \mid \\
& \leqslant \sum_{k=1}^{2} \sum_{i, j=1}^{n}\left|\frac{1}{T} \int_{0}^{T} \int_{-r}^{0} y_{i}(t+\theta) z_{j}(t) d \eta_{i i}^{(k)}(\theta) d t\right| \\
& \leqslant \sum_{k=1}^{2} \sum_{i, j=1}^{n} \int_{-r}^{0}\left|\frac{1}{T} \int_{0}^{T} y_{i}(t+\theta) z_{j}(t) d t\right| d \eta_{i,}^{(k)}(\theta) \\
& \leqslant \sum_{k=1}^{2} \sum_{i, j=1}^{n} \int_{-r}^{0}\left[\frac{1}{T} \int_{0}^{T} y_{i}^{2}(t+\theta) d t\right]^{1 / 2}\left[\frac{1}{T} \int_{0} z_{j}^{2}(t) d t\right]^{1 / 2} d \eta_{i j}^{(k)}(\theta) \\
& \leqslant \sum_{i, j=1}^{n} \sum_{i=1}^{2}\left[\eta_{i j}^{(k)}(0)-\eta_{i j}^{(k)}(-r)\right]\left[\frac{1}{T} \int_{0}^{T} y_{i}^{2}(t) d t\right]^{1 / 2}\left[\frac{1}{T} \int_{0}^{T} z_{j}^{2}(t) d t\right]^{1 / 2}
\end{aligned}
$$

which gives (7.4) if we take

$$
N=\max _{i, j=1,2, \ldots, n}\left\{\sum_{k=1}^{2}\left[\eta_{i j}^{(k)}(0)-\eta_{i j}^{(k)}(-r)\right]_{\}}^{\}}\right.
$$

Proof of Theorem 6. Let us write (7.1) in the normal form

$$
\begin{aligned}
y^{\prime}(t) & =w(t) \\
w^{\prime}(t) & =-\frac{d}{d t}\{\operatorname{grad} \Phi[y(t)]\}-\int_{-r}^{0} d \eta(\theta) y(t+\theta)+e(t),
\end{aligned}
$$

and introduce the auxiliary equation

$$
\begin{align*}
& y^{\prime}(t)=\lambda w(t) \\
& w^{\prime}(t)=-\lambda \frac{d}{d t}\left\{\operatorname{grad} \Phi[y(t)] ;-\lambda \int_{-r}^{\prime \prime} d \eta(\theta) y(t+\theta)+\lambda e(t),\right. \\
& \lambda \in] 0,1], \tag{7.5}
\end{align*}
$$

or, equivalently,
$\left.\left.y^{\prime \prime}(t)+\lambda^{2} \frac{d}{d t}\{\operatorname{grad} \Phi[y(t)]\}+\lambda^{2} \int_{-r}^{0} d \eta(\theta) y(t+\theta)=\lambda^{2} e(t), \quad \lambda \in\right] 0,1\right]$.

Let $y(t)$ be a possible T-periodic solution of (7.6). Then we have

$$
\int_{0}^{T} \int_{-r}^{0} d \eta(\theta) y(t+\theta) d t=0
$$

and hence, using Fubini-Lebesgue theorem [36],

$$
M(P y)=0
$$

i.e.,

$$
P y=0
$$

Therefore, there will exist an unique T-periodic application $z=H y$ such that

$$
P z=0, \quad z^{\prime}(t)=y(t), \quad t \in R,
$$

and, using Parseval formula, it is easy to see that if $\omega=2 \pi / T$,

$$
\frac{\omega^{2}}{T} \int_{0}^{T}\|z(t)\|^{2} d t \leqslant \frac{1}{T} \int_{0}^{T}\|y(t)\|^{2} d t
$$

We deduce then from (7.6) the relation

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T}\left\langle y^{\prime \prime}(t), z(t)\right\rangle d t+\frac{\lambda^{2}}{T} \int_{0}^{T}\left\langle\frac{d}{d t}\{\operatorname{grad} \Phi[y(t)]\}, z(t)\right\rangle d t \\
& \quad+\frac{\lambda^{2}}{T} \int_{0}^{T} \int_{--r}^{0}\langle d \eta(\theta) y(t+\theta), z(t)\rangle d t=\frac{\lambda^{2}}{T} \int_{0}^{T}\langle e(t), z(t)\rangle d t
\end{aligned}
$$

or, integrating by parts and using the properties of Φ,

$$
\begin{aligned}
\frac{2 p}{T} \int_{0}^{T} \Phi_{1}[y(t)] d t= & -\frac{1}{T} \int_{0}^{T}\left\langle\operatorname{grad} \Phi_{2}[y(t)], y(t)\right\rangle d t \\
& +\frac{1}{T} \int_{0}^{T} \int_{-r}^{0}\langle d \eta(\theta) y(t+\theta), z(t)\rangle d t \\
& -\frac{1}{T} \int_{0}^{T}\langle e(t), z(t)\rangle d t
\end{aligned}
$$

Φ_{1} being an homogeneous function of degree $2 p \geqslant 2$ and of definite sign, there exists a $C_{1}>0$ such that

$$
\begin{equation*}
\left|\Phi_{1}(y)\right| \geqslant C_{1}\|y\|^{2 p} \tag{7.3}
\end{equation*}
$$

for every $y \in R^{n}$ and then, by virtue of (7.2), (7.3), Hölder inequality and Lemma 3, we obtain

$$
\begin{aligned}
\frac{2 p C_{1}}{T} \int_{0}^{T}\|y(t)\|^{2 p} d t \leqslant & C_{2}\left[-\frac{1}{T} \int_{0}^{T}\|y(t)\|^{2 p} d t\right]^{(2 p-1) / 2 p} \\
& +\omega^{-1} N\left[\frac{1}{T} \int_{0}^{T}\|y(t)\|^{2 p} d t\right]^{2 / 2 p} \\
& +\left(C_{3}+E\right)\left[\frac{1}{T} \int_{0}^{T}\|y(t)\|^{2 p} d t\right]^{1 / 2 p}
\end{aligned}
$$

with

$$
\omega E=\left[\frac{1}{T} \int_{0}^{T}\|e(t)\|^{2} d t\right]^{1 / 2}
$$

and hence

$$
\begin{equation*}
\left[\frac{1}{T} \int_{0}^{T}\|y(t)\|^{2} d t\right]^{1 / 2} \leqslant\left[\frac{1}{T} \int_{0}^{T}\|y(t)\|^{2 x} d t\right]^{1 / 2 p} \leqslant \rho_{1} \tag{7.7}
\end{equation*}
$$

with ρ_{1} the (unique) positive ront of the equation

$$
2 p C_{1} \rho^{2 p-1}-C_{2} \rho^{2 p-2}-\omega^{-1} N \rho-\left(C_{3}+E\right)=0
$$

From (7.6) we can also obtain after integration by parts

$$
\begin{aligned}
& -\frac{1}{T} \int_{0}^{T}\left\|y^{\prime}(t)\right\|^{2} d t+\frac{\lambda^{2}}{T} \int_{0}^{T} \int_{-r}^{0}\langle d \eta(\theta) y(t+\theta), y(t)\rangle d t \\
& \quad=\frac{\lambda^{2}}{T} \int_{0}^{T}\langle e(t), y(t)\rangle d t
\end{aligned}
$$

and hence

$$
\begin{align*}
& \lambda^{2} \rho_{1}\left(N \rho_{1}+E\right)=\lambda \lambda^{2} \rho_{2}{ }^{2}, \tag{7.8}
\end{align*}
$$

or，cquivalently，

$$
\begin{equation*}
\left[\left.\frac{1}{T}\right|_{n} ^{T} w(t) \|^{2} d t\right]^{1 / 2} \leqslant \rho: \tag{7.9}
\end{equation*}
$$

It follows from（7．7）and（7．8）［10，Chap．1］that

$$
\begin{equation*}
\sup _{:=[0, T]} y(r)<\rho_{1}+3^{-1 / 2}\left(\frac{T}{2}\right) \rho_{2}=\rho_{3} \tag{7.10}
\end{equation*}
$$

for every possible T－periodic solution of（7．6）．Lastly，we deduce still from （7．6）

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} y^{\prime \prime}(t){ }_{3}^{2} d t-\left.\frac{\lambda^{2}}{T}\right|_{0} ^{T}\left\langle\frac{d}{d t} \operatorname{grad} \Phi[y(t)], y^{\prime \prime}(t)\right\rangle d t \\
& \quad \div \frac{\lambda^{\prime}}{T} \int_{0}^{T} \int_{-r}^{\prime 3}\left\langle d \eta(\theta) y(t \cdots \theta), y^{\prime \prime}(t)\right\rangle d t=\frac{\lambda^{2}}{T} \int_{0}^{T}\left\langle e(t), y^{\prime \prime}(t)\right\rangle d t
\end{aligned}
$$

and，using（7．4），（7．8），and（7．10），it is easy to see chat

$$
\frac{1}{T} \int_{0}^{T} y^{\prime \prime}(t) t^{2} d t \quad \lambda^{2} \rho_{4}\left[-\frac{1}{T} \int_{0}^{T} y^{\prime \prime}(t) \|^{2} d t\right]^{1 / 2}
$$

with ρ_{s} a positive constant，and hence

$$
\left.\left.\left[-\frac{1}{4}-\right]_{0}^{T} ; w^{\prime}(t)\right)_{1}^{2} d t\right]^{1 / 2} \leq f_{4}
$$

Therefore，

$$
\sup _{T \in\{0, T\}} \| w(t) \leqslant \rho_{2} \div 3^{-1 / 2}\left(\frac{T}{2}\right) \rho_{4}=\rho_{5}
$$

for every T－periodic solution $[y(t), w(t)]$ of（7．5）．
If we write now $x=(y, z)$ and

$$
\|x\|\left\|_{R^{2 n}}^{2}=\right\| y\left\|^{2}+\right\| w \|^{2},
$$

and if we adopt the notations of Theorem 4 (with $2 n$ instead of n), it is easy to see that, if $a=(b, c), b, c \in R^{n}$,

$$
g_{0}(a) \equiv\left(\begin{array}{cc}
0 & I \\
-M & 0
\end{array}\right)\binom{b}{c}
$$

has the unique solution $a=0$ and that

$$
d\left[g_{0}(a), B_{p}, 0\right]=\operatorname{sgn} \operatorname{det} M= \pm 1
$$

for every $\rho>0$. If we take $\rho>\left(\rho_{3}{ }^{2}+\rho_{5}^{2}\right)^{1 / 2}$, the conditions of Theorem 4 are satisfied and Theorem 6 is proved.

As an example, it is easy to check that the forced van der Pol equation with retardation

$$
y^{\prime \prime}(t)+k\left[x^{2}(t)-1\right] x^{\prime}(t)+v^{2} x(t-\tau)=e(t)
$$

with $k \neq 0, \nu^{2}>0, \tau \geqslant 0$, and $e(t)$ an arbitrary continuous T-periodic function of mean value zero verifies the conditions of Theorem 6 . The same remains true if $k\left(x^{2}-1\right)$ is replaced by any polynomial of even order.

References

1. A. Halanay, "Differential Equations: Stability, Oscillations, Time Lags," Academic Press, New York, 1966.
2. J. K. Hale, Geometric theory of functional-differential equations, in "Differential Equations and Dynamic Systems," Academic Press, pp. 247-266, New York, 1967.
3. C. Perello, A note on periodic solutions of nonlinear differential equations with time lags, in "Differential Equations and Dynamic Systems," pp. 185-187, Academic Press, New York, 1967.
4. J. Mawhin, Equations intégrales et solutions périodiques des systèmes différentiels non linéaires, Bull. Acad. R. Belgique, Cl. Sci. (5) 55 (1969), 934-947.
5. J. Leray and J. Schauder, Topologic et équations fonctionnelles, Amn. Ec. Norm. Sup. (3) 51 (1934), 45-78.
6. J. Cronin, "Fixed Points and Topological Degree in Nonlinear Analysis," American Mathematical Society, Providence, R. I., 1964.
7. J. T. Schwartz, "Nonlinear Functional Analysis," New York University Lecture Notes, New York, 1965.
8. G. Güssefeldt, Der topologische Abbildungsgrad für vollstetige Vektorfelder zum Nachweis von periodische Lösungen, Math. Nachr. 36 (1968), 231-233.
9. R. Reissig, G. Sansone, and R. Conti, "Nichtlineare Differentialgleichungen höherer Ordnung," Cremonese, Roma, 1969.
10. J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Soc. R. Sci. Liège 38 (1969), 308-398.
11. M. A. Krasnosel'skir and A. I. Perov, On a existence principle for bounded, periodic and almost periodic solutions of systems of ordinary differential equations (Russian), Dokl. Akad. Nauk SSSR 123 (1958), 235-238.
12. M. A. Krasnosel'skil and A. I. Perov, Some criteria for existence of periodic solutions of systems of ordinary differential equations, Proc. Intern. Sympos. Nonlinear Oscill. Kiev 2 (1963), 202-211 (Russian, Engl. Summ.).
13. M. A. Krasnosel'skir, An alternative principle for establishing the existence of periodic solutions of differential equations with a lagging argument, Soviet Math. Dokl. 4 (1963), 1412-1415.
14. M. A. Krasnosel'skil and V. V. Strygin, Certain tests for the existence of periodic solutions for ordinary differential equations, Soviet Math. Dokl. 5 (1964), 763-766.
15. V. V. Strygin, On the dependence of an integral operator on a parameter, Soziet Math. Dokl. 5 (1964), 1433-1436.
16. M. A. Krasnosel'skir, "The Operator of Translation along the Trajectories of Differential Equations," American Mathematical Society Providence, R. 1., 1968.
17. M. A. Krasnosel'skit, The theory of periodic solutions of non-autonomous differential equations, Russian Math. Surveys 21 (1966), 53-74.
18. J. Chonin, Periodic solutions of some nonlinear differential equations, J. Differential Equations 3 (1967), 31-46.
19. J. Mawhin, Periodic solutions of strongly nonlinear differential systems, Proc. Fifth Intern. Sympos. Nonlinear Oscill. Kiev, 1969, to appear.
20. Yu. G. Borisovich, The Poincaré-Andronoy method in the problem of periodic solutions of differential equations with a lag, Soviet Math. Dokl. 4 (1963), 13881391.
21. Yu. G. Bombovich and V. F. Subbotin, The shift operator over trajectories of equations of evolution and periodic solutions, Soziet Math. Dokl. 8 (1967), 781-785.
22. K. I. Cooke, Forced periodic solutions of a stable non-linear differential-difference equation, Ann. of Math. 61 (1955), 381-387.
23. R. Fande, Sur l'existence de certaines solutions périodiques et méthodes de LeraySchauder: excitation paramétrique et équations différentielles aux différences, in "Les vibrations forcées dans les systèmes non-linéaires," pp. 26I-266, Éditions du C.N.R.S., Paris, 1965.
24. J. K. Hale, Periodic and almost periodic solutions of functional-differential equations, Arch. Rational Mech. Anal. 15 (1964), 289-304.
25. G. S. Jones, Asymptotic fixed point theorems and periodic systems of functionaldifferential equations, Contr. Diff. Equ. 2 (1963), 385-405.
26. Yu. A. Mitropolsky and D. I. Martiniuk, "Lectures on the Theory of Oscillating Systems with Lags" (Russian), Akad. Nauk. Ukr. SSR, Kiev, 1969.
27. T. Yoshizawa, Ultimate boundedness of solutions and periodic solutions of functional-differential equations, in "Les vibrations forcées dans les systèmes non-linéaires," pp. 167-179, Editions du C.N.R.S., Paris, 1965.
28. H. J. Ziegler, Sur une note de M. C. Perello sur des solutions périodiques d'équations fonctionnelles différentielles, C.R. Acad. Sci. Paris Ser. A 267 (1968), 783-785.
29. L. Cesarr, Functional analysis and periodic solutions of non-linear differential equations, Contr. Diff. Equ. 1 (1963), 149-187.
30. J. K. Hale, "Ordinary Differential Equations," Interscience, New York, 1969.
31. M. A. Krasnosel'skir, "Topological Methods in the Theory of Nonlinear Integral Equations," Pergamon, Oxford, 1963.
32. V. I. Zubov, "Methods of A. M. Lyapunov and their Application," Noordhoff, Groningen, 1964.
33. S. Lefschetz, The critical case in differential equations, Bol. Soc. Mat. Mexicana (2) 6 (1961), 5-18.
34. J. Mawhin, Existence of periodic solutions for higher-order differential systems that are not of class D, J. Differential Equations, to appear.
35. J. Mawhin, An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Anal. Appl., to appear.
36. L. M. Graves, "The Theory of Functions of Real Variables," McGraw-Hill, New York, 1946.

[^0]: * Present address: Institut de Mathématique pure et appliquée, Université Catholique de Louvain, B-3030 Heverlé, Belgium.

