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Abstract

Staphylococcus epidermidis is a leading cause of hospital-acquired infections, mostly associated with the use of medical devices in
seriously ill or immunocompromised patients. Currently, the characteristics of methicillin-resistant S. epidermidis (MRSE) isolates from Rio
de Janeiro hospitals are unknown. In this study, staphylococcal chromosomal cassette mec (SCCmec) types, antimicrobial susceptibility
profiles, biofilm formation genes, and multilocus sequence types (MLST) were investigated in 35 MRSE clinical isolates. The collection of
isolates was previously well characterized by pulsed-field gel electrophoresis (PFGE) into 2 main genotypes (A and B, 22 isolates) and 10
sporadic genotypes (13 isolates). MLST revealed a total of 8 different sequence types (STs), but ST2 and ST23, which were icadB-positive,
represented the majority (71.4%) of MRSE isolates tested. Almost all isolates (91.4%) belonged to clonal complex 2. SCCmec types III and
IV were identified among 71.4% of the isolates, while the remaining was nontypeable. The predominant MRSE genotypes were defined as
SCCmec type III/ST2 (PFGE type A) and SCCmec type IV/ST23 (PFGE type B) isolates, which were both associated with high antimicrobial

resistance and presence of biofilm-related genes.
© 2012 Elsevier Inc. Open access under the Elsevier OA license,
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1. Introduction

Staphylococcus epidermidis is a ubiquitous coagulase-
negative staphylococci (CNS) of the human skin and
mucosal surfaces and a major cause of indwelling medical
device infections (Otto, 2009). Biofilm formation is an
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important factor for the establishment of S. epidermidis as a
nosocomial pathogen (Gotz, 2002). Although De Araujo
et al. (2006) had reported that biofilm production capacity
was common among commensal isolates, the biofilm and
associated genes have been suggested as markers for clinical
significance (lorio et al., 2011a; Rizicka et al., 2004). The
process of biofilm production has not been completely
clarified yet, but it seems to occur in 2 steps: i) adherence to
an inert surface and ii) biofilm accumulation. The ica
operon, constituted by the icaR (regulatory gene) and
icaADBC genes, encodes the synthesis of the polysaccharide
intercellular adhesin (PIA) (Gotz, 2002).

In addition, 2 proteins involved in PIA-independent
biofilm formation have been identified in S. epidermidis: the
accumulation-associated protein (Aap) (Hussain et al., 1997)
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and the Bap homologue protein (Bhp) (Gill et al., 2005;
Tormo et al., 2005). The Aap, encoded by the aap gene, is a
140-kDa intercellular adhesin that leads to biofilm accumu-
lation. It has been proposed also that Aap plays a role in
anchoring PIA to the S. epidermidis cell surface since a
mutant, reportedly deficient in Aap expression, reduced
biofilm formation (Hussain et al., 1997). The Bhp, encoded
by the bhp gene, is a cell wall surface anchor protein, also
named S. epidermidis surface D (SesD) protein (Gill et al.,
2005). It was first posted by Tormo et al. (2005) as the
Staphylococcus aureus Bap (biofilm associated protein)
homologue from S. epidermidis RP62A, proposed to
promote primary attachment to abiotic surfaces, as well as
intercellular adhesion during biofilm formation (Cucarella
etal., 2001). Aap and Bhp were found to be important during
biofilm formation, suggesting that these proteins probably
mediate cellular accumulation and intercellular adhesion by
association with the PIA (Bowden et al., 2005).

Methicillin resistance is an additional important factor in
the establishment of S. epidermidis as a nosocomial pathogen.
The mecA gene, which encodes a penicillin-binding protein
with low affinity for beta-lactam antibiotics (PBP2A), is
carried by a genetic mobile element called the staphylococcal
chromosomal cassette mec (SCCmec) (Chambers, 1997).
Eleven types (I to XI) of SCCmec have been assigned for S.
aureus based on the classes of the mec gene complex and the
types of the ccr gene complex (IWG-SCC, 2011). In CNS,
these elements are diverse and many isolates are defined as
nontypeable (Garza-Gonzalez et al., 2010; Mombach Pinheiro
Machado et al., 2007; Ruppé et al., 2009). However, the most
frequently detected SCCmec types in MRSE isolates have
been IV (Jamaluddin et al., 2008; 29) and III (Li et al., 2009;
Mombach Pinheiro Machado et al., 2007; Ruppé et al., 2009).

Although S. epidermidis has a high genetic diversity, a few
major methicillin-resistant S. epidermidis (MRSE) genotypes
have been defined by PFGE (Miragaia et al., 2002; Nunes
et al., 2005; Widerstrom et al., 2009). The success of these
PFGE types could be explained by colonization advantages,
such as biofilm production and synthesis of extracellular
proteins, or by factors involved in interactions with host
defense mechanisms (Otto, 2009). However, it is not clear
whether these genotypes disseminate clonally or whether
virulence genes are transferred horizontally among the strains.
Multilocus sequence typing (MLST) has been used success-
fully to infer a population structure for S. epidermidis
(Miragaia et al., 2007). By using MLST (Thomas et al.,
2007), some authors verified that sequence type (ST) 2 was
the most found in nosocomial S. epidermidis isolates (Li
et al., 2009; Miragaia et al., 2007). Indeed, Otto (2009) pro-
posed that strains from this ST are potentially most invasive.

Characteristics associated with biofilm formation, anti-
microbial resistance, and clonal lineages of MRSE isolates
from hospitals in Rio de Janeiro have not been described yet.
Moreover, studies that characterize widespread MRSE
genotypes in hospitals are rare. The present study aimed to
analyze in a deeper level 35 MRSE isolates that were

previously distinguished into PFGE profiles by our group
(Nunes et al., 2005).

2. Materials and methods

2.1. MRSE Strains

A collection of 35 MRSE isolates, which were previously
well characterized by PFGE (Nunes et al., 2005) in 2
dominant genotypes (A and B, 22 isolates) and 10 sporadic
(C to M, 13 isolates), were analyzed in order to understand
the reasons for their spread in Rio de Janeiro hospitals. The
35 MRSE isolates were isolated from blood (14 isolates),
nares (7), surgical site (4), catheter tip (2), and throat (2), and
1 isolate of each source as follows: umbilical secretion,
tracheal aspirate, ocular secretion, liquor, sputum, and
peritoneal fluid. All isolates were confirmed as S. epidermidis
by phenotypic tests (Torio et al, 2007) and by polymerase
chain reaction (PCR) for recN gene (Torio et al, 201 1b) and as
methicillin resistant by the proofs described below.

2.2. Disk diffusion test

The susceptibilities of the isolates to 15 antimicrobial agents
were determined by the disk diffusion method, according to the
guidelines of the Clinical and Laboratory Standards Institute
(CLSI, 2009a, 2010), except for mupirocin (Fuchs et al., 1990)
and tigecycline (EUCAST, 2011). The antimicrobial agents
tested included ciprofloxacin, clindamycin, chloramphenicol,
erythromycin, gentamicin, oxacillin, rifampin, trimethoprim-
sulfamethoxazole, teicoplanin, tetracycline, vancomycin
(CECON, Sao Paulo, Brazil), cefoxitin, linezolid, mupirocin,
and tigecycline (Oxoid, Basingstoke, England).

2.3. MIC of oxacillin and vancomycin

The MICs of oxacillin and vancomycin (Sigma, St. Louis,
MO, USA) were determined by the agar dilution method
(CLSI, 2009b, 2010). Briefly, bacterial suspensions were
adjusted to a 0.5 McFarland standard, diluted 1:10, and
inoculated (10* colony-forming units) onto Mueller-Hinton
agar (Difco Laboratories, Detroit, MI, USA) plates. For
oxacillin, 2% (wt/vol) NaCl was added to the medium. The
concentrations ranged from 0.5 to 256 ug/mL for oxacillin
and from 0.25 to 32 pg/mL for vancomycin. The plates were
incubated at 35 °C for 24 h.

2.4. Screening of vancomycin heteroresistance

Vancomycin heteroresistance was determined by the
vancomycin agar screen method, according to Nunes et al.
(2007). Bacterial inoculum was prepared from a suspension in
saline adjusted to 0.5 McFarland standard (~10® CFU/mL).
Isolates were inoculated onto Brain Heart Infusion agar
(Becton, Dickinson and Company, Sparks, MD, USA) plates
containing 4 pg/mL of vancomycin. Cultures were incubated at
35 °C for 48 h, and the cell growth was inspected at 24 and 48 h.
If at least 2 colonies were apparent within 48 h, the isolate was
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designated as a possible vancomycin heteroresistant isolate.
S. aureus Mu50 (donated K. Hiramatsu, Juntendo University,
Tokyo, Japan) and ATCC 29213 were used as control strains.

2.5. SCCmec typing

S. epidermidis isolates were characterized for the 2 central
elements of the staphylococcal cassette chromosome mec
(SCCmec), namely, the ccr complex encoding for recombi-
nases and the mec complex encoding for broad-spectrum beta-
lactam resistance. The multiplex PCR strategy, M-PCR 1, was
used to identify the 5 types of ccr gene complex, and M-PCR 2
to identify class A to class C mec complex, as previously
described (Kondo et al., 2007). The following S. aureus
reference strains and clinical isolates were used as positive
controls for SCCmec typing: S. aureus Mu50 (SCCmec 1I)
(Hiramatsu et al., 1997), HU25 (SCCmec III) (Vivoni et al.,
2006), and 527 (SCCmec 1V) (Schuenck et al., 2009).

2.6. Phenotypic detection of biofilm formation and
related genes

Biofilm formation was detected according to Stepanovié¢
et al. (2001), with modifications. Isolates were cultured
onto blood agar (Plast Labor, Rio de Janeiro, Brazil) and
incubated aerobically at 35 °C for 24 h. The grown cultures
were used for preparation of bacterial suspensions in sterile
distilled water with densities adjusted to 0.5 McFarland
standard. The wells of a sterile 96-well flat-bottomed
plastic tissue culture plate with a lid (TPP, Trasadingen,
Switzerland) were filled with 180 pL of tryptic soy broth
(Becton, Dickinson and Company). Aliquots of 20 puL of
bacterial suspension were added into each well. Isolates
were tested in triplicate, at least 2 times. The plates were
incubated aerobically for 24 h at 35 °C; the content of each
well was then removed and the wells washed 4 times with

200 pL of sterile distilled water. The plates were emptied,
let to air dry at room temperature for 15 min, and stained
with 200 pL per well of 2% crystal violet for 5 min.
Overload stain was rinsed off under running tap water.
After air drying, the dye was resolubilized with 200 pL of
95% ethanol. The optical density (OD) of each well was
measured at 570 nm with an ELISA Auto Reader (model
550, Bio-Rad Microplate Reader, Bio-Rad Laboratories,
Hercules, CA, USA). S. epidermidis RP62A strain and its
mutant HAM 892, which lacks the ability to produce
biofilm (Christensen et al., 1990) (donated by L. Baldas-
sarri, Instituto Superiore di Sanita, Rome, Italy) were used
as positive and negative controls, respectively. All isolates
were classified into the following categories: strong (+++),
moderate (++), weak (+), and nonproducer of biofilm (—).
The comparative analyses were performed based upon the
ODs of bacterial films according to Stepanovi¢ et al.
(2000), using the wells inoculated with the HAM 892 strain
as negative controls.

The icadB (Frebourg et al., 2000), aap (Vandecasteele
et al., 2003), and bhp (Bowden et al, 2005) genes were
detected by PCR. S. epidermidis ATCC 35984 was used as
positive control and S. epidermidis ATCC 12228 as
negative control to both genes, icadB and bhp.

2.7. Multilocus sequence typing

MLST was performed using previously published primer
sequences and conditions for the PCR amplification of the 7
housekeeping genes arcC, aroE, gtr, mutS, pyr, tpi, and
yqil. (Thomas et al., 2007). The PCR products were
sequenced bi-directionally at the Multidisciplinary Genomic
Unit of Carlos Chagas Filho Biophysics Institute of the
Federal University of Rio de Janeiro. STs were determined
using the MLST database (http://www.mlst.net) and charac-
terized as singletons or members of a clonal complex (CC)
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Fig. 1. Antimicrobial resistance patterns of MRSE isolates clustered according to predominant and sporadic genotypes. #*, Significant differences (P < 0.05)
between PFGE type A or PFGE type B in relation to sporadic PFGE types; Chl = chloramphenicol; Cip = ciprofloxacin; Cli = clindamycin; Ery = erythromycin;
Gen = gentamicin; Mup = mupirocin; Rif = rifampin; SxT = trimethoprim—sulfamethoxazole; Tet = tetracycline. All strains were susceptible to the following
4 antibiotics: linezolid, teicoplanin, tigecycline and vancomycin. (Resistance data are represented as percentages of PFGE type A, PFGE type B, and sporadic

PFGE types).
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Table 1

Characteristics of 35 MRSE isolates clustered according to prevalent and sporadic PFGE types

Isolate Isolation source Hospital® PFGE Complex SCCmec MLST MIC (pg/mL) Resistance profile other than
ccr mec Types Allelic profile ST cc Oxacillin Vancomycin beta-lactam
Predominant PFGE types
13 Surgical site H2 Al 3 A 1 7-1-2-2-4-1-1 2 2 64 1 Chl, Cip, Cli, Ery, Gen, SxT
25 Catheter tip Ho6 Al 3 A 1 7-1-2-2-4-1-1 2 2 64 1 Chl, Cip, Cli, Ery, Gen, Mup, SxT
27 Blood H2 Al 3 A I 7-1-2-2-4-1-1 2 2 64 1 Chl, Cip, Cli, Ery, Gen, Mup, SxT
29 Blood H2 Al 3 A 11 7-1-2-2-4-1-1 2 2 64 1 Chl, Cip, Cli, Ery, Gen, Mup, SxT
117 Nares H3 A2 3 A 111 7-1-2-2-4-1-1 2 2 64 1 Chl, Cip, Cli, Ery, Gen, Mup, SxT
63 Throat H5 A2 3 A 1T 7-1-2-2-4-1-1 2 2 128 1 Cip, Cli, Ery, Gen, Mup, Rif, ST
161 Tracheal aspirate H7 A3 3 A 1 7-1-2-2-4-1-1 2 2 256 1 Cip, Gen, Mup, Rif, SxT
181 Surgical site H2 A3 3 A 111 7-1-2-2-4-1-1 2 2 256 1 Chl, Cip, Gen, Mup, Rif, SxT
142 Umbilical secretion H1 A4 3 A I 7-1-2-2-4-1-1 2 2 256 0.5 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
214 Throat H5 A5 3 A 111 7-1-2-2-4-1-1 2 2 256 1 Chl, Cip, Gen, Mup, Rif, SxT
24 Surgical site H2 A6 3 A 111 7-1-2-2-4-1-1 2 2 32 1 Chl, Cip, Cli, Ery, Gen, SxT
72 Blood H1 A7 2-3 A nt 7-1-2-2-4-1-1 2 2 64 1 Cip, Cli, Ery, Gen, Mup, SxT
16 Surgical site H2 A8 3-4-5 A nt 7-1-2-2-4-1-1 2 2 64 1 Chl, Cli, Ery, Gen, Mup, SxT
127 Nares H3 B1 2 B v 7-1-2-1-3-3-1 23 2 32 0.5 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
147 Blood Hl Bl 2 B v 7-1-2-1-3-3-1 23 2 16 1 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
162 Nares H4 Bl 2 B v 7-1-2-1-3-3-1 23 2 16 1 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
172 Nares H4 Bl 2 B v 7-1-2-1-3-3-1 23 2 8 1 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
86 Blood H1 Bl 2 B v 7-1-2-1-3-3-1 23 2 16 1 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SxT
94 Blood H1 B2 2 B v 7-1-2-26-3-3-1 231 2 8 0.5 Chl, Cip, Cli, Ery, Gen, Rif, SXT
54 Blood H3 B3 2 - nt 7-1-2-1-3-3-1 23 2 32 0.5 Chl, Cip, Cli, Ery, Gen, Mup, Rif, SXxT
20 Ocular secretion H6 B4 2-5 C nt 7-1-2-1-3-3-1 23 2 32 1 Cli, Ery, Gen, Rif, SxT
32 Blood H2 BS 2 B v 7-1-2-1-3-3-1 23 2 64 1 Chl, Cli, Ery, Gen, Rif, SxT
Sporadic PFGE types
148 Blood H1 C1 2-4-5 nt 2-1-1-1-2-1-1 59 2 2 0.5 Ery, Gen, Mup, Tet
96 Blood H1 C2 2-4 B nt 2-1-1-1-2-1-1 59 2 2 0.5 Chl, Gen, Tet
140 Peritoneal secretion H1 D1 2-4 B nt 2-17-1-1-2-1-1 81 2 2 0.5 Gen, Tet
65 Sputum HS D2 2-4 B nt 2-17-1-1-2-1-1 81 2 4 0.5 Ery, Gen, Tet
165 Nares H4 E 2 B v 7-1-2-1-3-3-1 23 2 16 0.5 Chl, Cip, Cli, Ery, Mup, Rif, SxT
169 Nares H4 F1 3 A 11 7-1-2-2-4-7-1 22 2 64 1 Cli, Cip, Ery, Gen, Mup
28 Liquor H2 F2 3 A 11T 7-1-2-2-4-16-1 237 2 128 1 Cli, Cip, Ery, Gen, Mup, Rif, SXxT
4 Nares H2 G 3 A 11 7-1-2-2-4-1-1 2 2 0.5 1 Chl, Cip, Rif, SxT
81 Blood H1 H 5 - nt 7-1-2-2-4-1-1 2 2 256 1 Chl, Gen, Rif, SXxT
56 Blood H3 1 3-4-5 A nt 7-1-2-2-4-1-1 2 2 >256 0.5 Chl, Cip, Cli, Ery, Gen, Mup, SxT
103 Catheter tip H1 J 2 B v 3-1-16-5-11-4-4 263 NPF 2 0.5 Ery, SxT
228 Blood H1 K 2 B v 3-1-5-5-11-4-11 53 11 32 0.5 Rif, SXT
189 Blood H2 L 2 B v 3-1-5-5-11-4-11 53 11 32 0.5 SxT, Tet

PFGE = Pulsed-field gel electrophoresis; SCCmec = staphylococcal chromosomal cassette mec; MLST = multilocus sequence typing; ST = sequence type; CC = clonal complex.
? HI = Hospital Naval Marcilio Dias; H2 = Hospital Universitario Clementino Fraga Filho; H3 = Hospital Beneficéncia Portuguesa; H4 = Clinica Bambina; H5 = Hospital Cardoso Rodrigues; H6 = Hospital

Universitario Antonio Pedro; H7 = Policlinica de Botafogo.

b — = No detectable mec complex.

¢ nt = Nontypeable.
4 NPF = No predicted founder.

¢ Chl = chloramphenicol; Cip = ciprofloxacin; Cli = clindamycin; Ery = erythromycin; Gen = gentamicin; Mup = mupirocin; Rif = rifampin; SxT = trimethoprim-sulfamethoxazole; Tet = tetracycline. All
strains were susceptible to the following 4 antibiotics: linezolid, teicoplanin, tigecycline, and vancomycin.
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by the eBURST algorithm (accessible at http://eburst.mlst.
net). Numbers for new alleles and STs reported here were
assigned by the S. epidermidis MLST database curator.

2.8. Statistical methods

All comparisons were performed using the % test or the
Fischer’s exact test. Differences were considered statistically
significant when values of P < 0.05 were obtained.

3. Results

All 35 isolates were confirmed as MRSE. Isolates of the
main PFGE types were resistant to a mean of 7 of the 13
non—beta-lactam antimicrobial agents tested, while isolates
of the sporadic genotypes were resistant to only 4 agents.
The resistance rates to ciprofloxacin, chloramphenicol,
clindamycin, gentamicin, mupirocin, rifampin, and trimeth-
oprim—sulfamethoxazole were higher in predominant geno-
types than in sporadic ones (P < 0.05) (Fig. 1). All MRSE
isolates were susceptible to linezolid, teicoplanin, tigecy-
cline, and vancomycin.

Oxacillin MICs ranged from 0.5 to >256 pg/mL for the 35
MRSE isolates (Table 1). The isolates from PFGE types A and
B showed higher MICs (100%, MIC >8 ng/mL) than sporadic
isolates (53.8%, MIC >8 pg/mL) (P < 0.05). For vancomycin,
all isolates had MICs <1 pg/mL. SCCmec type III was
detected in 85% of genotype A isolates, while 78% of isolates
from genotype B harbored the SCCmec type IV. Almost 50%
of sporadic genotypes were nontypeable, which possessed
more than 1 ccr allotype or were mecA positive with no mec
complex detectable. Isolates carrying SCCmec I and
nontypeable (complex A to mec gene associated with ccr 3)
presented higher oxacillin MICs and were more resistant to
ciprofloxacin, gentamicin, and mupirocin (P < 0.05).

All isolates from the main genotypes carried ica4B genes,
whereas only 6 (46.1%) isolates from sporadic genotypes
harbored these genes (P < 0.05) (Fig. 2). The aap gene was
detected in the majority (84.6%) of the isolates from PFGE
type A, while only 2 (22.2%) isolates of type B were positive
for this gene. On the other hand, the bAp gene was mainly
found in isolates from PFGE type B. Thus, a significant
correlation between the main genotypes and detection of at
least 2 biofilm-related genes was observed (P < 0.05). The
microtiter-plate adherence technique to detect biofilm
formation showed 13 MRSE-positive isolates, 5 from
PFGE type A, 2 from type B, and 6 from sporadic genotypes.
Biofilm production was not observed in isolates without any
biofilm-related genes. No significant difference (P > 0.05)
was observed for biofilm formation between isolates from
predominant and sporadic genotypes.

MLST revealed a total of 9 different STs among the 35
MRSE isolates, but the majority of them were clustered in
ST2 (45.7%) and ST23 (25.7%) (Table 1). A total of 4 of
these 9 STs corresponded to single isolates, while 3 STs
included 2 isolates each. The majority of ST2 isolates

(87.5%) had oxacillin MICs >64 pg/mL and almost all
(93.8%) harboured the SCCmec III or were nontypeable. The
biofilm-related genes, icaAB and aap, were detected
respectively in 100% and 87.5% from ST2 isolates. The
ST23 isolates showed that oxacillin MICs ranged from 8 to
64 ng/mL and that the majority of them (77.8%) harboured
the SCCmec IV. Although only 2 isolates carried the aap
gene, 100% and 88.9% were icadB and bhp gene positive.

Isolates from PFGE types A and B, classified as ST2 and
ST23, were included into CC2, the major CC of S. epidermidis
(Table 1). One isolate from genotype B was classified as
ST231/CC2, anew ST described in the present study (Fig. 3),
which differs from ST2 by a single nucleotide into mutS allele.
Sequencing of the mutS allele (isolate 94) was repeated 2 times
bidirectionally to ensure reproducibility, and a new mutS allele
type 26 and ST231 were assigned (http://www.mlst.net).
Sporadic genotypes were included into 8 STs (2,22, 23, 53, 59,
81, 237, and 263) and 2 CCs (2 and 11). The CC2 was
associated with the majority (76.9%) of them. For another new
ST assigned in this study, (ST263, isolate 103) (http://www.
mlst.net), there is no predicted founder for the CC.

4. Discussion

Well-characterized studies in S. epidermidis have been
limited historically, due to the fact that CNS isolates are
often considered to be contaminants. In this study, we
evaluated 35 MRSE isolates obtained previously by our
group (Nunes et al., 2005) to understand why some
genotypes were spread in Rio de Janeiro hospitals. We
observed that the 2 most prevalent PFGE types were
associated with 2 STs, high antimicrobial resistance, and
presence of biofilm-related genes.

A few studies have shown the predominant genotypes of
MRSE as a common cause of infections in hospitals
(Klingenberg et al., 2007; Miragaia et al., 2002; Widerstrom
et al., 2009). Miragaia et al. (2002) analyzed 230 European
clinical MRSE isolates, being 94 from an Icelandic hospital
and 136 from 5 Danish hospitals in greater Copenhagen.
Considering both collections, 5 predominant MRSE geno-
types, comprising 58.3% of isolates, were spread in different
services of a single hospital and among different hospitals.
The authors emphasized the importance of the spread of a
few genotypes in those countries and a multidrug resistance
for these specific PFGE types, but they did not evaluate other
characteristics associated with these genotypes to explain
their prevalence. In another study, a collection of 173 MRSE
isolates from patients in 11 hospitals in northern Europe
revealed 2 dominating PFGE types, which included 54.3%
of isolates. The majority were resistant to 4 antimicrobials
tested, while only 19% of isolates from 3 minor PFGE types
and 47% of “noncluster” isolates were resistant to these
drugs. The authors detected ST2 in 59.1% of randomly
selected isolates. Although there was agreement with our
susceptibility and ST data, here the authors did not perform,
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Fig. 2. Dendrogram of the pulsed-field gel electrophoresis (PFGE) profile of Smal-digested genomic DNA of 35 MRSE isolates and their associated
characteristics. Similarities percentage is identified on a dendrogram derived from the unweighted pair group method using arithmetic averages and based on
Dice coefficients. Isolates showing a similarity coefficient >80% were considered genetically PFGE related. SCCmec = Staphylococcal chromosomal cassette
mec; ST = sequence type; MPA = microtiter-plate adherence; H1 = Hospital Naval Marcilio Dias; H2 = Hospital Universitario Clementino Fraga Filho; H3 =
Hospital Beneficéncia Portuguesa; H4 = Clinica Bambina; H5 = Hospital Cardoso Rodrigues; H6 = Hospital Universitario Anténio Pedro; H7 = Policlinica
de Botafogo; nt = nontypeable; (+++) = strong; (++) = moderate; (+) = weak, and (—) = nonproducer of biofilm producer; + = positive; — = negative.

however, a more accurate analysis of the MRSE lineages
(Widerstrom et al., 2009).

In 2007, Klingenberg et al. (2007) analyzed aspects
related to biofilm formation and antimicrobial resistance in
128 S. epidermidis isolates from a neonatal intensive care
unit in Norway and detected 45 PFGE types among them.
The main genotypes showed higher rates of resistance to
methicillin, gentamicin, and macrolides. Biofilm formation
and ica operon genes were also more detected among them,
although the other biofilm-related genes, like aap and bhp,
were shown in similar rates for all isolates.

Our study showed that the majority of MRSE isolates
comprising 2 PFGE types that spread in 7 Rio de Janeiro
hospitals carried mainly SCCmec types III (84.6% of
genotype A) and IV (77.8% of genotype B) and presented
resistance rates higher than sporadic genotypes (P < 0.05),
which were nontypeable in almost 50%. Moreover,
although the oxacillin MICs for type B isolates were

lower than type A isolates, these predominant types showed
higher oxacillin MICs than sporadic isolates (P < 0.05),
suggesting that these high MICs can be associated with its
prevalence in the hospitals evaluated. Additionally, the ica
genes were detected preferentially in predominant geno-
types (P < 0.05). Moreover, the aap gene was detected in
the majority of type A isolates, while the bhp gene was
found in type B isolates. Thus, although we did not find any
difference in the “in vitro” biofilm expression between the
MRSE groups analyzed (dominant and sporadic genotypes
isolates), the presence of biofilm-related genes might
represent a benefit for particular S. epidermidis genotypes,
enabling the bacteria to colonize inert surfaces of medical
devices and to resist a wide range of external conditions
(Ziebuhr et al., 2006).

An international MLST database has been established for
S. epidermidis by using a set of genes, some of which were
different from those used for S. aureus, chosen for their
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represents a new ST described in this work.

random genomic distribution (Thomas et al., 2007). In this
study, the MLST results showed that the most found ST was
ST2. To our knowledge, this is the first report that evaluates
the PFGE types of MRSE isolates by MLST in Brazilian
S. epidermidis isolates. The ST2 and ST23 lineages were
associated with genotypes A and B, respectively, and were
spread in hospitals from Rio de Janeiro. eBURST analysis
found all these isolates into the highly CC2 group. Among
all analyzed isolates, 91.4% fell into this CC, as had been
reported previously by Li et al. (2009), who found the
majority of ST within CC2.

ST2 has been reported to be the most widely disseminated
hospital-associated ST type (Li et al, 2009; Miragaia et al.,
2007; Widerstrom et al., 2009). A study using 217
S. epidermidis isolates from 17 countries around the world
revealed 30.9% of the isolates as ST2, while ST23 was the
second most disease-associated ST (Miragaia et al., 2007).
The same occurred in a study performed by Li et al.
(2009), who detected the ST2 in 31.3% of S. epidermidis
isolates from a teaching hospital in Shanghai, China. This
ST was also described for 4 of the 5 most frequent MRSE

genotype isolates from patients in 11 hospitals in northern
Europe (Widerstrom et al., 2009). According to Li et al.
(2009), the successful spread of ST2 may be associated
with the fact that all ST2 isolates analyzed by their group
carried biofilm formation—related sequences (ica and
[S256). They hypothesized that, by recombination, ST2
generates novel phenotypic and genotypic variants, such as
ica genes and IS256-positive isolates, which makes ST2
isolates easily able to spread in the hospital environment.

In the present study, we observed 10 nontypeable isolates
that had mec—ccr combinations, which did not fit into the
current classification of the International Working Group on
the Classification of Staphylococcal Cassette Chromosome
Elements IWG-SCC, 2011). Some of them had already been
observed for this CNS species (Garza-Gonzalez et al., 2010;
Ruppé et al., 2009). Among them, we found 5 isolates
harboring 2 distinct ccr allotypes and 3 isolates with 3 ccr
allotypes. No class mec complex was detected in 3 mecA
gene—positive isolates. According to Ruppé et al. (2009), the
presence of mec complex combined with 1, 2, or 3 different
ccr allotypes shows that mec—ccr combinations are much
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more diverse than was previously thought, confirming the
ability of the CNS isolates to act as an important reservoir of
resistance genes.

In summary, we showed here that the occurrence of 2
genotypes of MRSE that spread in hospitals located in Rio
de Janeiro may be associated with advantage and/or
evolutionary factors, which permits its persistence and
potential dissemination. PFGE types A and B, which were
identified as SCCmec type II/ST2 and SCCmec type IV/
ST23, from CC2 represented the majority of the evaluated
isolates and were associated with high antimicrobial
resistance and presence of icadB and aap or bhp genes,
characteristics that can make easy their survival and spread
in a nosocomial environment.
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