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Abstract

Elliptic stochastic partial differential equations (SPDE) with polynomial and
exponential perturbation terms defined in terms of Nelson’s Euclidean free field on
R are studied using results by S. Kusuoka and A.S. Ustiinel and M. Zakai
concerning transformation of measures on abstract Wiener space. SPDEs of this type
arise, in particular, in (Euclidean) quantum field theory with interactions of the
polynomial or exponential type. The probability laws of the solutions of such SPDEs
are given by Girsanov probability measures, that are non-linearly transformed
measures of the probability law of Nelson’s free field defined on subspaces of
Schwartz space of tempered distributions.
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Introduction

In this paper we study elliptic stochastic partial (pseudo)-differential
equations (SPDE) heuristically written as follows:

(—4+ DY) + V)W) = (—4 + 1), xeR, (1)

where 4 is the d-dimensional Laplace operator, V' is a (renormalized)
polynomial or exponential function, and W is an isonormal Gaussian process

on R? (cf. [44], and for precise definition of (—4 + 1)% W see (2)). W is often
referred to as the Gaussian white noise on R (cf. [30]).

The existence problem for the solution i of (1), as a tempered distribution
valued random variable, and the problem of deriving probabilistic proper-
ties for the solution, such as characterizing a class of functionals of the
solution possessing the so-called reflection positivity, will be solved by
reducing these problems to the existence problem of the associated Girsanov
probability measure and the absolutely continuity of the measure with
respect to a reference measure (cf. (11)—(13)).

The investigation of such SPDEs is of importance in stochastic analysis as
well as in Euclidean quantum field theory.

(1) Stochastic analytic interest: In order to give a solution for an
ordinary stochastic differential equation (SDE), defining a stochastic
process on R! taking values in R?, the method of change of variables
is a most powerful tool. By this method one can show the existence of a
solution by showing the existence of a probability measure, called the
associated Girsanov measure, that is the probability law of the solution. In
particular, if the problem is formulated in terms of processes adapted to
some filtration, then the existence of the associated Girsanov measure is
equivalent to the existence of a solution of a corresponding martingale
problem.

Similarly, if an SPDE is formulated on an abstract Wiener space and the
solution is assumed to be a random field on R?, then the existence problem
of the solution can be reduced to the existence problem for the associated
Girsanov measure (cf. [40], [55]). The existence of the Girsanov measures is
investigated by considering a change of variable formula. In [23] an existence
problem for an SPDE defined in a bounded domain DcR?, (d=1,2,3),
with Dirichlet boundary conditions and with a dynamics characterized by
(1) with the RHS replaced by W is considered and solved by showing the
existence of an associated Girsanov measure. These authors also study the
Markov field property. In this work the solution is given as a random
variable taking values in the space of continuous functions on D. For related
work see also, e.g., [34], [7].

The equation given by (1) is an SPDE which belongs to a class of
equations that arises in physical, engineering or economical problems. In
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order to give naturally a Euclidean quantum field theoretic interpretation,

1.
we have to set the RHS of (1) as (=4 + 1)2W (cf. Section 4). Also, in
order to make the equation meaningful, we have to take V in (1) to

be non-linear functions on /(R?). As a consequence, this asks for
new mathematical developments: With such a noise term the solutions
of (1) become random variables which take values in %/(R?), the
Schwartz space of tempered distributions. For the non-linear per-
turbation terms V' one introduces the notions of Wick power and
Wick exponential function of random wvariables (cf. [8,10,11]), which
have to be interpreted as measurable functions from %/(R?) to %'(R%).
We make these notions adaptable to a change of variable formula on an
abstract Wiener space, which is a probability space defined by the

1.
probability law of (=4 + 1) 2W, i.e. of Nelson’s Euclidean free field
measure. The formulation adopted here is an extension of that used in
[11,48].

(1) Euclidean quantum field theoretic interest: Nelson’s Euclidean free field

is a Gaussian random variable ¢, taking values in %'(R?) defined on a
probability space (Q, #, P) such that

B> <0201 = [ (a4 17000 dv

for real ¢, p,e.7(R).

By making use of an isonormal Gaussian process W,, on R, we can give
(@, ¢, 4.4 astochastic integral expression such that

1
CObadorir = [ (a4 17 S0 Wi, @
We may write this by
1.
¢(1) = (_A + 1)751/1/(0,

or we can write this as a linear elliptic SP(pseudo)-DE such that

Ay By = (— A+ D2, 3)

For the convenience of the explanation we now use the notations adopted in
Theorem I1.17 of Simon [52] and Section X.7 of Reed and Simon [47]. It is
possible to define the “time-zero field”” of Nelson’s Euclidean free field ¢,,

on R’ defined by (2) as follows:

(D010, ®f > for feS (R,
where d,1 = 0,;(¢) (the Dirac measure on ¢ = f;). Since of course d;9; ®f
is not in #(RY), { ¢,,, 910y ®f > has to be understood, e.g., in the sense of an
L*(P)-limit of { ¢, iy ®f > with 6%, an F(R) approximation of ;. For
the existence of this limit see, e.g., [8,52]. (Also in the framework of an
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abstract Wiener space, {¢,,,» is defined as an L?(P)-random variable for

heH ' = (-4 + 1)7%L2(Rd) (cf. Remark 1.4 and Definition A.l in the
appendix).

We denote symbolically the time-zero field of the Euclidean free field by
¢,,(0,X%), XeR?'. Let #, be the Hilbert space defined by

L2(P)

Ho= {H (Do 00y ®F) e BRI, i=1, .., neN}
i=1

By making use of the isonormal Gaussian process W on RY"! defined

on some probability space (Q,%’,P') and the Laplace operator A,_;
~ 1,

on R if we set ¢ = (—d4_1+1)4W, then the Hilbert space

= LA(P

{TT, <o.fi> |f}e(7(Rd*1), i=1,...,n, neN} can be identified with

#y. Let Hy be the operator on #y which is the second quantization of the

1
operator (—A4_1 + 1)2 (cf. [52, Section 1.4]):
1
HO = dF((—Ad,l + 1)2)
For e Z(R)(p(1,%), teR',XeR'") let

Do) = [ B0 00y dr

then by Theorem I1.17 of [52] the operator ®@(¢) defined e.g. on the domain
of analytic vectors for Hj acting in ' is the “free Hermitian scalar field of
mass 17’ (the free Hermitian scalar field can also be constructed through the
Segal quantization, cf. [47, Section X7; also 17, Problem 8, Chapter 7,
p. 206]. The operator valued distribution denoted heuristically by ®@¢(z, X) =
el (0, X¥)e~Ho! satisfies the following functional equation (on a dense
domain in ) (cf. [47, Theorem X42]):

2
(——Ad—l)@(H-‘I’o =0. @

We have to notice that @y(¢) is an operator on ;. It commutes with
Do(n), ne S(RY), only when the supports of ¢ and 5 are space like separated
in the sense of the Minkowski space, ie. |t—s]>—|X—F*<0,
Y(t,X) € supple], V(s,¥) € supp[yl, {¢,,013 ®f ) is a random variable in
L*(Q, P) (ie. it is a multiplication operator), we have thus to strictly
distinguish between @(z,X) and <{¢,,dy ®f . In a sense which can be
made precise @o(#,X) is an analytic continuation of ¢, (¢,X), which is a
solution of (3), at the point ¢ = 0 taking the boundary value ¢,(0,X) =
®y(0,X) (cf. [41,42,52] for precise Euclidean and Markov field strategies in
the constructive quantum field theory). Also we should notice that the
differential operator on the left-hand side of (4) formally comes from the
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differential operator which appeared on the left-hand side of (3) by

exchanging its time component ¢ by \/:‘1 .

Correspondingly (cf. [47, (X.89)]), a scalar quantum field ¢; with a self-
interaction V¥ is supposed to satisfy, in the sense of operator-valued
distribution, on a dense domain of the relevant Hilbert space #; (cf. #
defined above),

2
(% — Ad—l) O+ &+ V(D)) =0. %)
By (3)(5) we may naturally have an interest to the consideration of the
SPDE (1).

Baez et al. [18] give a definition for functional equations of operator-
valued distributions in the algebraic framework and call them “non-linear
quantized equations” (cf. [18, Section 8.8]). In this note we restrict our
considerations mainly to the analysis of Euclidean random fields. The study
of the time-zero field and the non-linear quantized equations, as well as the
discussions of the relations between our present results and the ones in [18§],
will essentially be postponed to future work except for a remark in Section 4.

In the framework of Euclidean quantum field theory various SDEs have
been considered. Albeverio et al. [3,4] define a Euclidean random field by a
solution of an elliptic SPDE (without non-linear perturbation term) driven
by general white noise processes (including the Poisson noises) on R?. In the
same note it has been shown that the constructed Euclidean field
corresponds to an indefinite metric quantum field with a non-trivial
interaction (of ‘“‘non-polynomial type”) (cf. [5,6,15,27] and references
therein). For other considerations about SDE taking values in the space
of distributions related to quantum fields see e.g. [9,14,19,22,33,43,49,50]
and references therein.

The organization of this paper is as follows:

In Section 1, we firstly define the Nelson’s Euclidean free field ¢, on R,
its Wick powers and Wick exponential functions by making use of multiple
stochastic integrals with respect to the isonormal Gaussian process W, on
R as follows (we use formal notations here: rigorous definition will be given
in Section 1)

bl = [T =0 dW(3) = P,

W = [T ) W W),
p=23,...,

, &
Dot (x) = E = Pl (%) xeR!, weQ,
- P '
p=0
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where J* is the integral kernel of the pseudo-differential operator (—4 +
1)™ on R « and & are some real numbers. Briefly, on a complete
probability space (Q, #, P), W,, is defined as a generalized random field on
RY such that dW,, = W, is Euclidean-invariant Gaussian white noise
random field (or random measure) in the sense of, e.g. [30].

In Theorem 1.1 it is shown that the above quantities are well defined as

random variables which take values in some subspace of the space &'(R?) of
tempered distributions for suitably chosen « and ¢. More precisely, it is
shown that the Nelson’s free field satisfies

(f)weﬂ ﬂ BZ’Z’ a.s., (6)

bd 22

and for example if o = ¢ then
:qﬁiw = ﬂ ﬂ B;’,’b a.s., (7)
b>d a>0
if in addition |¢| <ay(d), then

LR ﬂ ﬂ Bf,’b a.s, 8)

b>d P &2d
4(a(d))*

Srd
where B’ = {(x + DiJ~f /e P(RY)}, and a(d) = —d(4n)22r(2). We

remark that for d =2 these Wick powers, resp. Wick exponential, e.g.,
coincide with those discussed in [1,8,52].
Then, letting u be the probability law of Nelson’s free field ¢, that is a

Borel probability measure on the topological vector space Bj’b (in fact a
Hilbert space), we define measurable functions 7(, ) and 7(,.) from B‘;’b to
Bf,”[’, which are random variables on (Bg’b,,%’(BZ,’b), ), satisfying

T(a,p)(¢0)) = %,w 5 I“;@’;(d)w) = ez:qﬁ,m > u-a.s.,

where a and « satisfy the conditions for a in (6) and(7) (or (8)), respectively.

Next, we note that the Gaussian probability measure u possesses the
structure of an abstract Wiener space, namely (Bf,’b ,J' o, 1) is an abstract
Wiener space, where # = H ' = {h:h = Jf%f, feL*(R%)}, which is the
index set of Nelson’s free field. J# is identified, via Riesz theorem, with the
Cameron—Martin space H! by J'2# = H'. (The definitions, notions and
notations associated with the analysis on an abstract Wiener space, which

are used here, are found in Definitions A.1-A.3 and Remark A.l in the
Appendix (also cf. Remark 1.4).)

As a consequence, on the abstract Wiener space (B“’b,J ', 1) for a non-
negative “‘space-cut-off function™ n;, e Cg® (RY) such that g ux)=1 for
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1

|x|<M and #n,,(x) = 0 for |x|>2M, the maps u,(¥) = J* 2(1] 3, 7(xp)(¥)) and
1

ue(Y) = J* 2(1 3T (e () are well defined as measurable maps. Theorem 1.3

gives a sufficient condition for o, p and ¢ under which u, and u, become
H — C" maps on this abstract Wiener space (cf. Definition A.3 and Remark
1.4).

In Section 2, we shall state some of the main results. For #;, as above and
420 on the abstract Wiener space (Bf,’h,J ', 1) we define the shift

T3(¥) = ¥ + 2 (73 (W) )
In Theorem 2.3 by making use of general results given by Kusuoka [37-39],
Shigekawa [51] and Ustiinel and Zakai [55] we show the existence of a
probability measure v on (Bf’[’b ,%’(Bfl’b)), called the Girsanov probability
measure associated with u and 73, such that

E'[f-T5] = E*[f]. ¥f e Co(By"), (10)
where E' and E* denote the expectation with respect to the probability
measures v and y, respectively. Since p is the probability law of Nelson’s free

1.

field ¢, = J2W,, (9) and (10) say that there exists an isonormal Gaussian
process W on R? such that

U+ 2T s W) = W,

where  is a random variable with probability law v. This equation can be
written, similarly to (1), as

1.
(=4 + DY + 2yt () = (=4 + 12 W. an
In the same theorem we derive the explicit form of d—;, the Radon—
Nikodym density of the Girsanov measure v with respect to Nelson’s free

field measure u. In the case d = 2 it is possible to take o = %, then the

dv
du

functional) on (B‘Zl’b,J Yo, 1), is given by
d
() = g (@A (DA @exp {i JRECRAE dx},
n R?

Radon—Nikodym density 4%(¢), which is a random variable (Wiener

where ¢(T3(¢)), A1(¢) and A,(¢p) are non-linear (also non-local) functionals

of q’)eB‘g’b such that ¢(T3(¢)) = is the reciprocal of the

1
HT (T5(9))

cardinality of the elements that are mapped to the common point 75(¢) by

the map 73 (multiplicity), Aj(¢) = |deta(Zy1 + 341,,(x) 1 (%) : Sy (1))
is the absolute value of Carleman Fredholm determinant of the Hilbert

Schmidt operator appeared in the parentheses and Ax(¢) =

) 1
exp{—% Jre(J2(nyy ¢ )(x)* dx} (more precisely see Theorem 2.3 and
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Remark 2.3). On the other hand, the (¢*), Euclidean field with the space-

cut-off 1, is defined as the random field on R? with the probability measure
v,,, such that (cf., e.g., Definition in Section V.1 of [52, pp. 141], [28]):

1
vy, ($) = Zexp{—z [RICRE dx} du(@),

with the normalization contact Zy = E"[exp{—/1 [ 1,(x) : ¢t (x) dx}].
Then there is a similarity between v and v,,, in the sense that their Radon—

. o dy dvy,,
Nikodym densities aw Tesp.

¢* : dx}. But because of the existence of the non-linear term K(¢) in

, have the common term exp{—1 [ 1, :

dv
dw

we
have to distinguish v from v,, (see Remark 2.3).

In Theorem 2.4, it is shown that the shift 7, defined by T.(y) =
W+ AJ (u.()) is a strongly monotone shift on the abstract Wiener space, a
result which has an interest in its own, because 7, is a non-linear
transformation on a space of distributions. In the same theorem by making
use of the general results for monotone shifts developed by Ustiinel and
Zakai [55] in an abstract Wiener space setting and through the consideration
of the associated Girsanov probability measure we prove the existence of a
solution ¥ such that

(=4 + DY + Mnytae) () = (=4 + 1)%W. (12)

In Corollary 2.5 the space-cut-off function #,, (or “infrared cut-off”, in
physicist’s terminology) will be removed.

In Section 3, we derive a partial result for SPDEs of form (11) with 7,3
replaced by 7, p#3.

Section 4, contains two discussions concerning the problem of Euclidean
quantum field theory. One of them is a consideration of the so-called
reflection positivity property. In Theorem 4.1 for the probability measure v,
giving the distributions of the solutions of (11) or (12), and for the
corresponding shifts 7= T3 or T,, respectively, we see that

(H {9, T(ew») (H {9, T(¢>>>] >0 (13)
i=1 i=1

holds for any neN and (pieV(Rd) (i=1,...,n) such that
supplo;]<={(t, X)eR?: 1> 0}, where 0 is the time reflection operator on
RY: 0f(1,%) = f(—1,%), (t,X)eR x R‘"'. In order to conclude that the
Euclidean random field  with the probability measure v has the reflection
positivity property introduced in axiomatic Euclidean quantum field theory
(Hegerfeldt T-positivity, cf. [29]), we have to show that for the same

E’
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¢;€ S (RY) as above the following holds:

(H <wi,9lﬁ>> (H <%W>>] >0.
=1 i=1

Hence, (13) characterizes a sub-space of random variables on (Bfl’b, V)
consisting of elements which satisfy the reflection positivity property
(cf. Remark 4.1(i)).

In the same section, the consideration of the time-zero field corresponding
to Y (2, X) we investigate whether the random field (7, X¥) can be analytically
continued to a solution of the non-linear quantized equation (5) (cf. Remark
4.2(1)) or not.

The appendix contains the explanations of some fundamental notions and
notations associated with an abstract Wiener space and the proofs of
theorems and lemmas which were omitted in the main text.

EY

1. Construction of non-linear 7 — C' maps on Nelson’s free field

We shall first recall the definition of a stochastic process on a parameter
space Z and its equivalent class.

(1) Let @ be a locally convex topological vector space (TVS) which is
separable, and (Q, F , P) be a complete probability space. A family of complex-
valued random variables {¥(¢p, )} ,cq on (Q, F, P) is called as a stochastic
process with parameter space .

(ii) Two stochastic processes {¥ (¢, )} ,cq and {(¥(o, 0)}yeq on (Q, 7, P)
are said to be equivalent if

Voe2, P({ol¥(p,0)=P(p,0)}) =1

(iif) Two stochastic processes {¥ (¢, w)} ,c4 and (¥ (o, )} peq on(Q, 7, P)
are said to be strongly equivalent if

Pl{olVoe, ¥(p,0)=P(p,0)}) =1

Let (R be the Schwartz space of rapidly decreasing test functions
equipped with usual topology. #(R“) is a nuclear space. Let %'(R?) be its
topological dual.

Let 4 be the d-dimensional Laplacian, and set J* = (—4 + m?*)™* for some
fixed m > 0. Precisely J* is the pseudo-differential operator with the symbol
(€7 + m») ™, Ee R?. We denote the kernel representation of J* by J*(x — y) :
(J*@)(x) = erI J*(x — y)o(y)dy, for pe.&. This is defined by the Fourier
inverse transform such that

J(x) = @2mn) ! /R ) eV I (ER 4 ) dEe LI (R 1),
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An integral representation of this Green kernel by means of a modified
Bessel function, which also puts into evidence its regularity, will be described
in the appendix.

For each a,b,d > 0 let Bg’b be the linear subspace of .#/(RY) defined by
b 2, \Eroap 2 pd. 5d
By” = {(IxI" + D47 1 fe LY(R"; 1)}, (14)

where . denotes the Lebesgue measure on R?. Bf,’b is a separable Hilbert
space with the scalar product

a 2 b a 2 _b b
Culp) = /er JUUXI + D74 u(x)) J(x” + 1) 4u(x) dx,  u,veBy". (15)

Note that if a,b,d >0, then Co(Rd)CB;’b. From the consideration of
cylinder sets constructed from Cy(R“) and Bfl’b it is easy to see that

B(Co(R - R)) = {Am Co(RY > R): AE?/Z(BZ‘/I’)}, (16)

where 2(Co(R? - R)) and .@(Bfl’b) are the Borel o-fields of Co(R?) and B%,
respectively (this is obvious because the Borel ¢ field of a locally convex
topological vector space which is separable is generated by its cylinder sets,
cf. [54], [56)).

We use the same terminology and notations concerning multiple
stochastic integrals, abstract Wiener spaces and transformations between
abstract Wiener spaces which are used in [44,55].

Let (Q, 7, P) be a complete probability space and consider an isonormal
Gaussian process W = {W(h),heLfeal(Rd :A%)), where ¢ denotes the
Lebesgue measure on R and L2, is the real L? space: W is a centered
Gaussian family of random variables on (Q2, %, P) such that

E[W(hW(g)] = /R h() g2 (), b, ge L (R A7),

where E denotes the expectation with respect to the probability measure P.
Q can be taken to be the complete separable metric space R* equipped with
the metric

0
d(xvy) = Z 27” min {|xl’l _yﬂ|9 1}9 X = (x19x29x33 )5

n=1

y=00uy,Y3...),
P= N a7)

and Z to be the completion of the Borel g-field of Q with respect to P.
For AeZ(R") such that 2%(4)< oo we set

W(A) = Wy,

where y , is the indicator function of the set 4.
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Then, for he L2 (R?; /%) the random variable W (k) can be regarded as a

real
stochastic integral, and is denoted by

W(h) = /R Chdw.

In the sequel we sometimes use the notation W(¢) = { @, W> g9 forped.
The multiple stochastic integrals, such as (24), are defined in the usual way.
Namely a multiple stochastic integral is the limit of a sequence of multiple
sums of Gaussian random variables such that 7,

,,,,,,,,,,,

W(A,;,), where a;, ..., = 0 if i; = i for some j#k (i.e. by taking sums with
elimination of all diagonal parts), for a precise definition of multiple
stochastic integral, cf. [44, Section 1.1.2].

We denote the Fourier and Fourier inverse transform of a function ¢,

respectively, by Z[¢] and Z ~![¢], which are defined by
Aol = [ eV o a
Rd

7 el¢) = 2m) / eV dx for ge #(RY).
Rtl
We sometimes denote #[¢] = @. Let n, € Cy° (R?) be such that n(x) =n,(»)
for |x| = |y| and

I |xI<1,

< < =
Osm) <L, mx) {0 x>2, (18)

and let n,(x) = e CE(RY), k=1,2,3,.... Also define pe CF(RY) as
follows:

1
Cexp (—7> |x| <1,
p(x) = 1= |xf?
0 Ix|>1,
where the constant C is taken to satisfy
/ p(x)dx = 1. (19)
RLI
Let
pr(x) = kKlp(kx), k=1,2,3,... .
For o> 0 we define J,‘ﬁe&”(Rd), k=1,2,3,... by
5= [ PO 20)

Also
FiOsyt, oo yp) = ()Y (e — y1) - JH(x = ), (1)



276  S. Albeverio, M. W. Yoshida | Journal of Functional Analysis 196 (2002) 265-322

and
FOspyn, 0y =Jx —y1).. . J"(x—pp), p=1,23, ... (22)

Then we see that the function F¥ and F* are symmetric in the last p variables
01, -..,¥p) and

Fre Z(RYTY,  Fx;y1,...,y,) =0 for |x|>2k. (23)

For each «>0,p>1 and k>1 we define the random variable :x ¢ , : as a
multiple stochastic integral such that

W 0= [ R ) W)W (4)

Remark 1. (i) Using the relationship between Hermite polynomials of
Gaussian random variables and multiple stochastic integrals (cf. [44,
Theorem 1.1.2]) we see that the following equality holds (in the sense of
two equivalent processes on R%):

D
[

e @, 0 () = plo ()Y Y
n=0

(_%cac,k)n

o3y Kb Y,

where
Cak = / (JE()) dy.
Rd

In Theorem 1.1 it is shown that limy_, ., : ¢}, : exists as a Bf,’b-valued
random variable (for suitable o,a,b and p). In particular, when d = 2,
limgo, o % @) =1 @] :exists forall p=1,2,3,... . Moreover by (27) we

20 70

see that the following holds:
E[<¢%>hl> <¢%7hp>< : (;b[_) :7g>]
2

P
=t [ 1T o - g dry,
(RY xR G5
for hj,gey(Rz), j=1,2,3,...,p, where we denote : ¢] : by ¢1. Hence :
2 2
¢/ satisfies the definition of (Euclidean) Wick power of Nelson’s free field
2:®
on R? introduced, e.g., in the Definition in Section V.1 of Simon [52, p. 135].
We have to distinguish strictly the Fuclidean Wick power : ¢* : defined
here, which we considered throughout the paper, from : @) :, the Wick
power (renormalized product) of the free Hermitian scalar field operator @,
on the physical Hilbert space (&, is the operator-valued distribution
satisfying (4), which has been reviewed in the Introduction, and is an
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analytic continuation of the Nelson’s free field ¢; by taking its boundary
2

value, cf., e.g., [17,35] and in the book [18], also Section 4 in this paper).

(ii) The reason we adopt the expression of : ¢” : by means of the multiple
stochastic integral is that by this expression the random variables : ¢” : can
be studied on a same probability space (2, #, P) and also their support
(path) properties are easily established (cf. Theorem 1.1).

Remark 1.2 (Continuous version of i ¢ :). For each fixed keN it is easy
to see that {:; ¢§,w 1 (%)} .o ge satisfies the Kolmogorov’s continuity criterion

for processes on R? (cf., e.g., [44, Section A.3]), and has an equivalent
process {: Jsi,w 2 (%)}, cge Which is a Co(R? - R)-valued random variable:

Pl 0 () = @, i (x) =1, VxeR9,
P(i ¢yt € Co(R'>R)) = 1.

We always take {: ¢}, 1 (X)}, g as its continuous modification {: qNS{: o

(x)} .. g¢ and drop the tilde in the following. Then by (16) {:x ¢, 1 (X)} o e

oL,

is understood as a Bfl’b (a,b>=0) valued random variable on (Q, #, P).

In the next Theorem 1.1 we give multiple stochastic integral expressions to
Wick power and the Albeverio Heoegh—-Krohn Wick exponential (cf.
[8,10,11]) of Nelson’s Euclidean free field, which are %’-valued random
variables on (Q, %, P). (For the consideration of the Albeverio Hoegh—
Krohn trigonometric functions see Remark 1.5 in this section and Theorem
3.1 in Section 3).

Theorem 1.1. (i) Suppose that the positive integer p and the positive real
numbers a,b and o satisfy

4 4
min (1, 22) 4+ pxmin (1, 2)>p, b>d. (25)

d d
Then {:x ¢, :}ken is a Cauchy sequence in Lz(Q—>B‘;’b; P) (¢f Remark 1.2)
: e L2(Q— B%", P) such

and there exists a Bg’h-valued random variable : ¢, ,

that
lim A e @l = Pl ||§Z,bP(dw) =0, (26)
Pl 00> 00 = hol@) =1, YoeF (R, 27)
where

b= [ ([ oty a)
dAWe,(y1)-- dWe(yp).
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d
g d
. d(4m)2T (5
(i) Let 2% and lg|<ap(d), where ay(d) = (n)2 2D For

o
Fri(;p1, oo, ¥p) = ()Y JE(x — y1) - JE(X — yp), set

k,l (b];,w : ()C) = /(RZ)F Fk,l(x;yls "‘,J/p) dI/Vw(yl)”'dI/Vw(yp),

and define : ¢ = >0 ;—'; dd Pl oo Then {: €190 3y is a Cauchy

sequence in LZ(Q—>BZ’Z’;P) and there exists a Bfl’b-valued random variable
2 €0t such that

lim lim / || 2 e %0 — 2 a0 |12, P(dw) = 0, (28)
Q

a,b
k—>ow - w B,

where b is an arbitrary positive number such that b > d and a is any positive
number such that

e2d

Haodyy?

The proof of Theorem 1.1 will be given in the appendix. By Remark 1.2
and (16), since the Co(R?— R)-valued random variable :; q’>§w : can be
understood as a B‘:,’b (a,b > 0)-valued random variable by making use of its
multiple stochastic integral expression, it is easy to see that this random
variable is in L*(Q— Bfl’b; P). Then by making use of a Fubini type theorem

concerning the stochastic integral, resp. Lebesgue integral, on R, the
theorem follows.

In the sequel we shall denote i qf)i,w: and 3(/);,(03 by x$,, and ¢,
respectively. In particular when o = %, then for each given d the ¥'(R%)-
valued random variable (cf. Theorem 1.1) ¢; is a stochastic integral

70

expression for Nelson’ s free Euclidean field, we denote it simply by ¢, and
we write

|
b, = J2 W,.

Now, by making use of the above results and notations let us study non-
linear shifts on Nelson’s free field in the context of abstract Wiener spaces.

is a Bf,’b-
valued random variable (a > %,b > d by Theorem 1.1) on (Q, #,P), uis a

probability measure on BZ,’[’:

(0]

For given d, let u be the probability law of ¢, = ¢ . Since ¢
50

wA) = P(lolp,ed}), AeRB(BY) (a U ; 2,b > d). (29)
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We remark that for the complete probability space (Q, %, P) defined by
(17), the following holds (cf. for e.g. [31]): If we let

B = {A{wldp,eA}e T},
then the probability space (BZ’b,Q“, 1) is a complete probability space, i.c.
B = Wﬂ = the completion of %(ijb) with respect to u. (30)
Hence, the map t; defined by (33) below is a Bj,’b-valued random variable

on (By", A", ).

Theorem 1.2. (i) Suppose that a,f8,d’,p and b satisfy

min(l,%) +min(l,§> >1, (31)

min(l,%) +p x min(l,%) >p, b>d. (32)

!

For each k let ty =t be the measurable map from B4 to B4’
defined by

1_7
2
) =) S o L
(TP = KT )2 for e B, (33)
where
Cpx = /R TN dy.
Then
P({o | ti(,)(x) =% ¢, - (x) VxeR‘}) =1, (34)

the BZ,’b-valued measurable functions {t;.(y)} on (B b g, u) form a
Cauchy sequence in the Banach space LZ(B“b—>B“ b)), and  there
exists a %(Bj’b)/%’“-measurable function t = 1, € L*(B —>B‘[’1”b;,u) such
that

klinclb /Bj-” el — T(‘//)H;!,bﬂ(dlp) =0, (35)
or equivalently
Jim [ 66, = 2@y Pd) 0. 6

Moreover one has
©(¢,,) =: ’,;)’w ;, P-as., weQ. (37)
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(1) For = and le| < ag(d) (with ay(d) defined in Theorem 1.1) and for each
k, I let

o0

Tfﬁ o) = Z Tkt (W),

0

where 1, i1 Is defined by (33) in which n,_is replaced by v,. Then by Theorem
1.1 there exists a B(BY")/B"-measurable function t(g e L*(B4" — BY"; 1)
such that

lim ~ lim / et 0) = sy siec) = 0, (38)

k—>ow |-

and the following holds:
TBeny(Py,) =: o P-as., weQ, (39)

where a satisfies (31) and d' is any number satisfying 4(;2—(‘;))2< d <% and b>d.
0

By the definition of Wick power and multiple stochastic integral (34) can
easily be proved. The existence of 7 is proved by using Theorem 1.1 and (34),
these proofs will be given in the appendix.

Remark 1.3. By Theorem 1.2 we have the following identifications: The
random variable T(Ll)(‘/’) on the probability space (Bf,’b,,@”, 1) can be
27

identified with the random variable ¢, on the probability space (2, #, P). u

is then Nelson’s free field measure, 7:(1 1)(xp) is Nelson’s free field (cf. [41,52],

also cf. (40) and Remark 1.4). Similarly (for d = 2) the random variable:
¢ : on (Q,7,P) can be identified with Nelson’s free field Wick power

5.0
T p)(xp) on the probability space (Bf,’b, B, .
27

Next, we shall see that Nelson’s Euclidean free field possesses
the structure of an abstract Wiener space, and then show that the
maps (3, and t@pe) on the abstract Wiener space have sufficient
regularities. Definitions of the notations and terminologies concerning an
abstract Wiener space (e.g., definitions of an abstract Wiener space, Gross—
Sobolev derivative V, divergence operator 6, the Sobolev space D,; and
H — C" maps) can be found in Definitions A.1-A.3 and Remark A.1 in the
appendix.

As usual let H' = H'(R?) be the Sobolev space on R such that

H'(RY) = {¢>ey'(Rd>

/ F PO + xPY dx< o0 }
Rd
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In order to make the notations simple, we equip H’(RY) with the inner
product

oy =0 [ F0eE 0@ + 1y ds

for a given constant m > 0 (interpreted as “‘mass parameter’).
Then by Theorem 1.1 for a>%—% we see that (BZ,J’,,u) is an abstract
Wiener space and one has, for ¢ e #(R%):

e\/——1< V0> g9 wWdy)

Bfl['h
/ exp[\/—l / ( / P2 (x — y)dx)dWw(y)]P(dw)
Q R \JR?

1 1
= exp (—Enwnzl) — exp (—EuJ‘wnzl). (40)
The inclusion map i: H™! —>BZ’b defined by
i(hy=J'h, heH™! (41)

is continuous and i(H~') = H' is dense in B%’. By this we can identify H~"
with H', and we have the following continuous injection (cf. Definition A.1
in the appendix):

B H '=H'< B
Setting

H=H"

we will consider the abstract Wiener space (Bf/’,i(%), u) with Cameron—
Martin space

i(#)=J'H'=H" (42)

We then apply the results given by [55] concerning the (non-linear) shifts on
Wiener spaces to the maps 7 defined above.

Remark 1.4. Nelson’s Euclidean free field is defined originally as a Gaussian
process indexed by # = H~' (cf. [41]), i.e. Gaussian process with the index
set H~! of which characteristic function is

1
eXP(_EH(PH%{l), peH " (cf. (40)).

By this, here we prefer to denote the Cameron—Martin space by (), and
denote the abstract Wiener space by (B“’b, i(), ). Then our calculus on the
abstract Wiener space will be performed through .

By remarking that the Cameron—Martin space H (in the present case
H = H") is identified with its dual space denoting H*, and not explicitly
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denoting the identity map i, then the general statements concerning an
abstract Wiener space will be simplified and clarified. For e.g., if a shift 7 on
an abstract Wiener space is defined by T(¥) = + v(), where v is a
Cameron—Martin space-valued random variable (i.e. in the present case it is
an H'-valued random variable), then the properties of T, the corresponding
Girsanov measure (cf. Section 2), and the Radon—Nikodym densities can be
expressed without complicated notations. We will formulate a shift 7" on the
abstract Wiener space (Bfi’h, (), p) as follows: T(Y) =y + i(u(yy)), where u
is a random variable that takes values in the dual space of the Cameron—
Martin space (i.e. it is an # = H~'-valued random variable, and then i(u) =
J'uis an H'-valued random variable). By introducing explicitly the identity
map [ we can interpret the shift 7" as an inverse operator of a differen-
tial operator with a non-linear perturbation term: 7T(Y) =y + (-4 +
m?) " 'u(p). Accordingly, we can consider the SPDEs on Nelson’s Euclidean
free field through such shift 7'

Since, the identity map 7 plays the crucial role in the present study on
the SPDEs on the abstract Wiener space, we give the definitions and
notions corresponding to the abstract Wiener space by denoting ex-
plicitly the identity map 7 in Definitions A.1-A.3 and Remark A.l in the
appendix.

We should also notice that the essential elements in the abstract Wiener
space are the Banach space Bfl’b , the Gaussian measure p on it and the
Cameron—Martin space H' (or its continuous dual Hilbert space # = H~!
with the continuous injection 7). Then, the Hilbert space, on which the
calculus are performed, can be taken rather flexibly, as far as the continuous
injection i is specified (cf. [44, Section 4.1], where by giving a continuous
injection i from L2(R?,2%) to the Cameron—Martin space of an abstract
Wiener space, calculus on the abstract Wiener space is carried out on
L*(R?, 7).

In order to make the subsequent discussions clear we shall fix nice
representatives for the random variables 73, and 7).

Definition 1.1 (Representatives for 7.+ and 7). (i) By (38) there exists a
%(B;’,/’b)/,%"-measurable function r(,;,eﬁ)eLz(BZ’b —>BZ/’b; 1), a subsequence
{Tfléﬁ,-,)} of {‘ci"[;{e;;)} and a set B(f,e)e %" satisfying u(B(f, e)) = 1 such that

Kl
(

lgnm lilirrgo It [}:(jl")(lp) - T(B,e*)(‘ﬁ)”%ﬁb =0, YyeB(p,e).

J
Denote by B(fB,e) the set consisting of all lpeB;’b such that the limit
limy, o limy - <555 () exists in BY for some a'<d”. Then B(B,e) is
#"-measurable. In the sequel we fix a representative 7. of 7z, defined
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as follows:

. . ki _
_ _ 11mk,»—> 0 llml; -0 T([/g’es)(‘//), yebB(p,e),
T(B.er) =

0 elsewhere.

T(p.e) Will be simply denoted by 7z )
(ii) For each p by (35) we can take subsequences {t(g 1)k} ---> {T(gp)k }
and a set B(f, p)e #* satistying u(B(f,p)) = 1 such that

Jm 1z (W) — T([f,q)(lp)”é‘;.b =0, YyeB(B,p), g=1,...,p.

We denote by B(f,p) the set of all 1//ij’}’ such that the limits
limy, -, o, Tk, (W) exist, ¢ =1, ...,p, in Bjﬁ’b for some a<a”. Then B(B,p)
is #"-measurable. In the sequel we fix a representative () of 73, defined
as follows:

I limy, o (a0, (W), W eB(B,p),
@2 0 elsewhere.

7(p,p) Will be simply denoted by 7(5,).

Theorem 1.3 (Polynomial and exponential H — C! maps). Let b>d and a
be a number such that a > % — % Let (Bfl’b,i(% ), 1) be the abstract Wiener
space defined above, and denote the ‘Gross—Sobolev derivative” and
“divergence” operators on (B“’b,i(%), w) by ¥V and 6, respectively (cf.
Definition A.2). For M =0 let n,, be the space-cut-off such that n,,(x) =
n1Gp) (cf. (18)).

(1.1°) Let the integer p and the real number > 0 satisfy
. dp+1

et 3

1
Then the map u,(y) = Jb 2yt p (W) (H-valued Wiener functional) is an
element of D, () (Vk=1) (cf. Definition A.2), and the following holds:

1

Vit (D)) = p s Ty GIOTP 2 — ) TP 2 — M g

e LH A QA ).

Let B(p, p) be as in Definition 1.1-(ii) for these p and f, then w(B(f,p)) = 1 and

B(B,p) + H' = B(B,p).
The divergence of uy, is given by

Sup() = Mpps gy W) > gy peas., YeBY (44)



284  S. Albeverio, M. W. Yoshida | Journal of Functional Analysis 196 (2002) 265-322

(i.2°) If
4 2 2
0= ) )
(which is a particular case of i. 1°)), then
V(W + i(h))(x, y)
SEER PN
=p )y, , ) <02 T (D)
q=0
X I g VWEB(Bp), VheH,  (46)

u, is an H — C' map on (B4, i(#), p) (cf. Definition A.3):
H3h—NVu,(f + i(h) e @A is continuous for all yeB(B,p). (47)

1
(ii) Let f=4 and set usp) = I* 301570 (0).
(1i.1°) Suppose that |e|<ao(d), then the map u, is an element of D (H)

(¢f- Definition A.2):

Viteh) =& g O 2y DT 26— 00T 2 = )5 o e L2

X (H QA ;). (43)
The divergence of u, is given by
o0 &P
5”6(‘//) = <’/’M3 Z p'r(ﬂaﬂ+1)(l//)> > p-a.s., l// EBZ’b' (49)
p=0"" s

(11.2°) Suppose that
el <a0(d)'
V2
Let B(B,e) be as in Definition 1.1(i). Then B(B,e) + H' = B(B, e) and u, is an
H — C map on (Bfl’b,i(%), w) (cf. Definition A.3):
H O h—>u,(f + i(h))e A is continuous for Ve B(f,e).

(50)

(11.3°) Suppose that
d
|8|<ao( )’
V3
then u, is an H — C' map on (Bf,’b, i(), ) (cf. Definition A.3):
HS5h—Vu, (Y + i(h)e # QA is continuous for all e B(f,e),

(1)

Vute) + i) = £y (s Oy )OI 2 — P2 = )3
Yy eB(B,e), Vh= Jﬁ’%(i(h)) with he .
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1
In the case f = % we take Jﬁfi(x) = d40y(x) (with 640y the Dirac point measure

at {0}).

This theorem can be proved by a simple application of Fourier transforms
and Young’s inequality, see the proof in the Appendix and Remark A.1.

Remark 1.5 (Measurable maps corresponding to the Wick trigonometric
functions). Suppose that the numbers f and ¢ satisfy the assumptions of
Theorem 1.3.(ii.1°) (i.e. ﬁ/4, le| <ao(d) with ag(d) defined in Theorem
1.1(i1)). Then similarly as in Theorem 1.2(ii) it is possible to define
measurable maps (g sin) and 7(s.cos) 0N B%” such that

1)1782p+1

@) = lim | Z iy o s

/—>JJ

1P

Z( o) Tkl (W),

where for given ﬁ)% the map 7, «,() appearing on the right-hand side is
defined by (33) in which 7, is replaced by #,.

These are, respectively, the expression of the Albeverio Haegh—Krohn sin
and cos perturbations (cf. [10]) by means of random variables on the Wiener

T(B,cos)(lp) = lem

o0 la\o

space (Bf,’b ,i(A), ). Moreover it is possible to show that (cf. the proof
1
of Theorem 1.3) the maps u, () =J" 2y mTpsin(W)) resp. u(Y) =

|
Jﬁff(n M T(Beos)(Y)) are elements of Dy 1(#'), H — C, resp. H — C' continuous
(cf. Definitions A.2 and A.3) under the same assumptions of 7. given in
Theorem 1.3(ii).

Definition 1.2. For ue D, () and 1€ R we define
: 2
Au(W) = deta(Ly + 2Vu(y)) exp (—iéu(lP) - flu(lﬁ)lif), (52)
where dety(I + AVu()) denotes the Carleman—Fredholm determinant of

the Hilbert—Schmidt operator AVu(y)e # ® # (cf. Definition A.2) and
| |, denotes the norm of the Hilbert space 7.

2. Main results for SPDEs with cubic and exponential perturbations

In this section we shall consider elliptic SPDEs on R’ formally given by

(= + W) + iy () () = (=4 + P W(x), xeR%,  (53)
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resp.
(= A + mPW(x) + Ay (x) eV (x) == (=4 + mz)% W(x), xeR? (54

where 1,,(x) = 1,(37) is the “space-cut-off”” defined by (18), and W is an
isonormal Gaussian process on R?. Using the measurable maps defined by
Theorem 1.2 and Definition 1.1, the above SPDEs can be written in the
following form:

(A4 W) + AT ) = (—4 + P2 W), xeR?, (55)

33)
resp.

(= A+ M) + a2 (D) = (=4 + pRWx), xeRC. (56)

We reduce the existence problem of the solution of (55), resp. (56), to the
existence of corresponding Girsanov measures. We shall adopt the notion of
“Girsanov measure’ given in Section 1.3 of [55] for our problem as follows.
Let S be a topological space and #(S) be its Borel o-field. Let u be a
complete probability measure on (S, %(S)#), and let 7 be a measurable map
such that T: (S, Z(S)")— (S, 4(S)), where Z(S)" =*“the completion of %(S)
with respect to u”’. A signed measure v on (S, WS)”) will be called as a

“Girsanov measure on (S, %’(S)u) associated with p and T” if and only if it
satisfies

/f(TqS) dv(¢p) = /f(qS) du(¢) for any bounded measurable
s s
1 (S, 8(5)— (R, Z(R)). (57)

In particular if such a signed measure v is a probability measure on
(S, .@(S)#), then this will be called the “Girsanov probability measure on
(S, %(S)#) associated with u and T .

Remark 2.1. (i) If a “Girsanov probability measure v on (S, %(S)#) associated
with p and T exists, then by (57) the probability law of T¢ under v is u. In
other words, for a random variable ¢ taking values in S with probability law
v there exists a random variable y with probability law u, and the following
holds:

T$ =y

In case v is not a probability measure but a signed Girsanov measure on
(S, mu) associated with u and T, if we set B7 = {T'A|Ae #(S)}, and
restrict v to #r, then v|,, is a probability measure on (S,#7) and the
probability law of T'¢ under v is u. Such signed measures may be important

to be considered in relation with the indefinite metric quantum field theory
(cf. [3,4] and Remark 4.1 in Section 4).



S. Albeverio, M. W. Yoshida | Journal of Functional Analysis 196 (2002) 265-322 287

Let u be the probability law of Nelson’s free field ¢ on RY, then u is a
complete probability measure on (BZ’}’,,%’“) (cf. (30)). Let T be the map
defined on BZ”’ such that

TW) =+ Unyty, (W), weBy.

33
We may set S = Bj’h and 4(S) = %’(Bf,’b ) in the above general discussion. If
there exists v which is a “Girsanov probability measure on (BZ’}’,,@”)
associated with p and T, then for a Bf,’b—valued random variable y with

probability law v there exists a Nelson’s free field ¢ on R? and the following
holds:

o+ Oty () = ¢

33)

1.

Since ¢ can be expressed by ¢ = J2W for some isonormal Gaussian process
W on R?, in the sense of distribution-valued random variables this equation
means that

(A4 W) + M) ()0 = (-4 + PR, xeRL. (59)

By this way we can reduce the existence problem of the solution of the
SPDE (58) to the existence problem of the corresponding Girsanov
probability measure.

In general we give the following definition

Definition 2.1 (Solution of SPDE). For given d let (B“’b,i(,%”), ) be the
abstract Wiener space, which is Nelson’s Euclidean free field, defined in
Section 1. For an & valued #"-measurable function u: Bfi’b — A and for
some AeR (note that by Theorem 1.3 u(y) = yytp, W) and u(y) =
NaT(pe (W) satisfy this measurability condition) set

TGp) =y + AT (), yeBY.

We say that a probability measure v on (BZ’I’,,%’“) gives a solution of the
SPDE

(=4 4+ mW(x) + Au@p)(x) = (=4 + mz)% W(x), xeR’,

where W is an isonormal Gaussian process on R?, if and only if v is a
Girsanov probability measure on (B;’b,%”) associated with u and T.

Remark 2.2 (Inverse shift). From the projection theorem (cf. [21, Theorem
111.23] [55, Theorem 4.2.1]) for a #* measurable shift 7)) = v + J'(u(}))
with a 2" measurable H' = J'(#)-valued function J'u, we see that T(A4) is
in the universally completed ¢ algebra of #* for all 4 € #*. But, by (30) since
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(Bf,’b, #*, 1) is already a complete probability space, we have T(A4)e %" for
all Ae%". Hence, if there exists a measurable map S such that

S:(By o) (B, #Y),  STW) =y, pas. yeBi,
where o7 = {T(A4): A€ %"}, then S is a #* /%"-measurable left inverse of T.
And the probability measure v on (B”’b ,#") defined by v(A)=

w(S~Y(A)), Ae#" is a Girsanov probability measure on (B;’b,,@")
associated with u and T.

Lemma 2.1 (Key lemma for the cubic power perturbation). Let d=2 be
given, and suppose that the assumptions of Theorem 1.3(1.1°) hold for p = 3.
Also take the numbers )>0 and ¢>0 to satisfy (1 + &)<, where L =

5L
[t (TP (x))* dx. Then for

1
u) = us(h) = I 20 755(h))
defined by Theorem 1.3(1.1°), the following holds:

1+e¢
exp{ —\ou + % /12||vu||§} e [ Lw. (59)

g<

where || ||, denotes the Hilbert—Schmidt norm || || g »-

By making use of the fact that du and Vu are the 4th and 2nd Wick power
of 1, respectively, this lemma can be proved by applying Nelson’s
exponential bounds. The proof will be given in the appendix.

Let A,,(y) be the random variable given in Definition 1.2. Then from
Theorem 1.3(i.1°), for u# as in Lemma 2.1 the following holds:

Aiu(lp)
= deta(Ty1 + 34Ot DT 26— DI = 1) 4 0)

2
}. (60)
H-!

. 2 .1
X eXp{ =AW g9 =517 P30 W)

Lemma 2.2. Let a>§—% and b>d. Under the assumptions of Theorem
1.3(1.2°) the following holds:
Awe () L',  E"[4]=1. (61)
g< oo
Let

D = {ye By |deta(Iy + AV u(y))#0},

and let N(y,D) denote the cardinality of the set T~'{y}nD for
TW) =y + i(Au(y)), then N(@p,D) is a measurable function and the
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following holds:
p{Y 1SN, D)< o}) = 1. (62)

Proof. First of all we recall a crucial result for H — C' maps on abstract
Wiener spaces derived by Kusuoka [37] (cf. also [55, Proposition 3.5.1]): For
amap u thatis H — C' let T be the shift defined by Definition 2.1, then there
exists a sequence of measurable sets G, < Bfl’b, neN, such that {J, G, = D,
and there exists a sequence of shifts 7, ne N, such that 7, = T a.s. on G,
T, is bijective and the inverse 7, ! is measurable.

Under the assumptions of Theorem 1.3(1.2°) since u3 is an H — C'
map, by this fundamental observation we can consider the properties
of such measurable functions N(),D) and ZyeTfl(w) sign(A4,,(»)).
Namely, in Theorem 9.3.2 and Remark 9.3.3 of [55] it is shown that
if u satisfies (59) then (61) holds. On the other hand, in Theorem 9.2.4 of [55]
it is shown that (59) is also a sufficient condition for u# under which the
following holds:

E'An)= ) sign(An(),  pas. yeBy. (63)

yeT-1(¥)

Since A;,(y) = 0 and sign(A,,(y)) = 0 for y¢ D, by (61) and (63) we see that
Yo sign(u0) = Y sign(u() =1 pas.peBy.

yeT')n yeT-1()
By this we have
1< Y SenuODl= > 1=N@.D),
yeT-'(y)nD yeT-'(Y)nD
u-a.s., lpij‘;b.
On the other hand, by (61) since E*[|4,,]]< o0, and by Theorem 3.5.2
of [55] since EM[|A;,]] = E*[N(-, D)] (cf. also Theorem 3.1 in the next

section: in Theorem 3.1 if we set f = g = 1, then this equality follows),
we have

NGy, D)< oo u-a.s., l//eBZ,’b.

Combining these facts we have (62).

Theorem 2.3 (Solution for the space-cut-off cubic perturbation case). For
given d and p =3 take the positive numbers a, d and [ to satisfy the
assumptions of Theorem 1.3(1.2°). Also take number .=0 to satisfy 2<£,
where L is the number defined in Lemma 2.1. For some fixed positive number
M let ny(x) = n,(5p) (cf. (18)), and define

Tsh) = ¥ + G, usth) = P25 (64)
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and
dvy = qoTs| A, | du  for q such that

g if N, D)#0,
q(h) = .
0 otherwise,
where A, is given by (60), and the measurable function N(\, D) is defined in
Lemma 2.2. Then A, p is a (signed) Girsanov measure and vy is a Girsanov
probability measure on (Bf’b,,%”) associated with p and Tj:
(@)
E'[f-TsAu) = E'[f],  E'[f~Ts] = E'[f] Vf e Cy(BS"). (65)
(1) v3 gives a solution of (66) below in the following sense: if  is a Bfl’b-
valued random variable with probability law v, then the following holds for
some isonormal Gaussian process W on R’:

(A + m) DY) + Iy (s @) = (4 + 2V W), (66)

Proof of Theorem 2.3. First of all we note that g(73())|4,,(¥)| can be
taken as a #"-measurable function: For the #*-measurable shift 75(y) with
the H — C! map u3, since T *(u|D) (the image measure of T3(}/) restricted to
D) is absolutely continuous with respect to u (cf. [55, Theorem 3.5.2]), we
can define the random variable ¢(73(\/))|4,., ()| without ambiguity by using
a Borel measurable ¢(y) which is defined through any Borel measurable
version N(i) of N() such that

N, D) = Ny, D), p-as., yeBs

(cf. the proof of Lemma 2.2).
Noticing this, by (62) we can apply Corollary 3.5.3 of [55] to our shift T3,
which then yields the results. O

Remark 2.3 (Comparison with (q{>4)2 field). When d = 2 we can take § = % a
case of special interest in Euclidean quantum field theory. In this case the
above theorem tells us that the measure v3 gives a solution of (55) with
space-cut-off:

(= + W) + iy () () = (—A + 22 W(), xeR.  (67)

v3 can be written by
va(dp) = q(T)Ideta (T + 30 ,(x) : Y2 (%) : 61y ()]

;LZ
cep{ i [ nunteian =5 [ o0t

(x))* dx}
X dyp),
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1
where we have used the fact that Jﬁfi(x) = 0y (x) for f :% (cf. Theorem
1.3).

On the other hand, the (¢*), Euclidean field with space-cut-off 1, is a
random field on R? with the probability measure v, such that (cf., e.g., [52,
Definition, Section 1, p. 141])

a0 = exo{ = [ v axf i

with the normalization constant Zy = E*[exp{—2 [p 13,(x): Yt (x) 1 dx}].
Then, there is a similarity between v3; and v,, in the sense that their

Radon—Nikodym densities %, resp. d;ﬂ, have the common term
1 [

exp{—7 fRz nM(x):lp4(x):dx}. But, because of the existence of the other

non-linear (also non-local) terms of i in ‘2—‘; such that g(T(y)) = WMD) =

4ﬁ{T*1(T](1//))mD}’ the reciprocal of the cardinality of the set {y'eD|T(})') =

T()} (cf. Lemma 2.2 and Theorem 2.3), A;=|deto({ly1 +
1

3y () W) 5 0] and Ay = exp{—4 [ (20159 )(¥))* dx}, we

have to distinguish v3 from v,  (as far as g(T({)), A1 and A4, do not cancel
each other).

1

We also remark that (J2(y,, : ¥ :)(x))*, which is the integrand of A,

1 1
is non-local in the sense that (J2(ny Y (X)) = ([ J2(x —
YN () > (¥) : dy)? is not measurable with respect to the o-field generated
by the random variable (i(-),d},, > with ¢°a Ci (R?) approximation of the
Dirac measure at the point x.
1

Moreover, since [4(J2(n,, : ¢’ (x))? dx = Jeewr2 I O = Y (0)
G )G YY) ) dydy and J'(p) on R? diverges like “—log [y|” (near 0)
(cf. (A.S) in the appendix), it is possible to say that the exponent of A,
contains a term of higher order than :y*:.

Theorem 2.4 (Solution for the exponential perturbation case). For given
d=2 take f and ¢ to satisfy

d d
p=d <D (68)
4 V2
let a and b be any numbers such that a > % — %, b >d. For some given 2=0 and
M =0 define
1
TeW) = + iCauh)),  u) = I3 7p) ). (69)

Then the following holds:
() The shift T, on the abstract Wiener space (B’ i(A),p) is
strongly monotone in the sense of [55] (c¢f. Definition A.3). There
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exists an i(J)-invariant set A of Bz,’b with w(A) =1 and T, is a bijection
on A.
(it) Let S be the inverse map of T., then S is a %"/%"-measurable

function, S :(B;’b,%”)»—»(BZ’b,Q@”). A probability measure v, on (BZ’}’,,@?”)
defined by

Ve(A) = W(S7'4), AeR*
is a Girsanov probability measure on (Bf,’b, B") associated with p and T,:
E“[f-T] = E'[f]. Vf e Cy(By"), (70)
ve solves the following SPDE in the sense of Definition 2.1:

(A + m) DY) + Iy ()T () = (A + m2Y W),

where \ is a B‘;’b-valued random variable with probability law v, and W is an
isonormal Gaussian process on R®.
(i) In the case d =2 it is possible to take :% and 0<e< \/ﬂ The
probability measure v, gives then a solution of (54) with space-cut-off 1.
(iv) If in particular 0<e<®D  thep Ay, defined by (48), (49) and (52)

NG

satisfies Aj,, =0, a.s., E*[A;, ] =1 and v, satisfies v, = Ay, 1.

Remark 2.4 (Why 0<£<&\/d) in Theorem 2.4). In order to apply a change
2

of variable formula concerning the monotone shifts to our exponential shift
case, in Theorem 2.4 we had to assume condition (68) (i.c. 0<8<&\/d—)) under
2

which T, becomes an H — C continuous map (cf. the proof of Theorem 2.4).

By this, in case d = 2 if we take f = %, then ¢ should satisfy 0<e< \/ﬁ

On the other hand, by Theorem 1.3(ii.1°) we have u,e€ D, (#) when
0<&<ay(d), i.e. 0<e<2y/mincase d =2 and f =1

However, generally speaking if a shift 7(¢) = ¢ +u(¢) on an
abstract Wiener space admits an application of some change of
variable formula, then u(¢) should satisfy not only the differentiability
condition such that ueD,;(H) (H being the Cameron-Martin space)
but also an H-regularity (e.g., H — C and H — C'). The property
that ueD,;(H) is characterized by means of the integrability of the
Gross—Sobolev derivative Vu, which is rather an element that connects
to the algebraic structure of the Wiener space (cf. Definition A.2). On the
other hand, H-regularities are the properties that come from the
topological structure of the Wiener space (cf. Definition A.3 and the proof
of Theorem 1.3). (Note that in our formulation we identify the Cameron—
Martin space H' with # = H' by H'=i(#), cf. Remark 1.4 and
Definitions A.1-A.3)
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Proof of Theorem 2.4. For simplicity we write the detailed proof of

Theorem 2.4 only for the case that d =2 and f :%, the other cgses
o]
are similar. From Theorems (}.1 and 1.2 we see that r(leg)(qﬁw) =1e 2":
i P1 L 2 .
and limk],l,._,w e 20 i=re 2% P-as., weQ. For the Wick ex-
el

ponential: e © 2°: the following equality in the sense of equivalent processes
holds:

e
e 27 (x) = exp{g(,{,,(f)%w(x))} exp{—e’cr ()}, P-as., we,

1
where iy () =) [ JE(x =) dWo(y) and s = Elldy,(0)] =

1
(1)) [ U7(x = ) dy (cf. [52, L16]).

Noticing that the right-hand side of the above equality is non-negative, by
Definition 1.1 and Theorem 1.3(ii.1°), for Vu,(y)e L*(# ® #; p) it is easy
to see that

(-1 + ANVu)h, h) g
— WPh e [ OO

R*x
X A= PO =y Oy (0 o

ZHh”%]—], u-a.s., gbeBg’b’ VheH ' = w7

This proves that the shift 7, defined by (69) satisfies the definition of
strongly monotone shift (cf. [55, Lemma 6.2.1]).

In addition, by Theorem 1.3(ii.2°) since u(y) is H — C, by applying [55,
Theorem 6.4.1] we see that T, is a bijection on some A4 such that u(A4) = 1.
Then by Remark 2.2 for the measurable inverse S we can define a Girsanov
probability measure, and assertion (ii) follows.

In particular if ¢ satisfies (iv), then from Theorem 1.3 (ii.3°) we see that u,
is H— C'. Now by [55, Theorem 4.5.1] we have E*[|4;,[] =1 and v, =
|44, |1 But, for the monotone shift 7, the Carleman—Fredholm determinant
obviously satisfies deto(1y + AVu.()) =0, p-a.s., and the non-negativity of
A;y, follows. This proves (iv). O

Remark 2.5 (Crucial difference between v, and the Albeverio Heegh-Krohn
model). From Theorem 2.4(iv), if 0<8<M\/d), then the Girsanov probability
3

measure v, associated with the monotone shift 7, has the expression v, =
Ay, u. But if we compare A4,,, with the multiplier considered in Albeverio
and Heegh—Krohn [8,10] we find a crucial difference between them. Namely
in [8,10] an Euclidean quantum field is defined through a probability
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measure such that

Lexp{/l / Nar(X): e (x) dx},
Zy R
where Zs is a normalizing constant. But A4,,, defined by (48), (49) and (52)

has no term of the form [ 17,,(x): e™ 1 (x) dx.

Remark 2.6 (Regularities of 75, and 7. as Wiener functions). (i) In
Theorem 2.3 we have assumed that (43) holds for given d and f (precisely
the stronger condition (45) is assumed). This implies that if we take f = %,
we have to restrict ourselves to d = 2. Restriction (43) for f = % andp=3is
just the assumption under which the “Sobolev divergence” of uz(y) =
Mty (DA s given by dush) = a7y () € LB 0. Tn
other words this is a condition under which Jdus; becomes a Skorohod
integral (cf. Remark A.1). For d>3 if we take 8 :% and p>3, then the
divergence given by (44) cannot be defined any longer in the L2(u) sense.
However, also in this case, when d = 3 there still exists a possibility that

one can define duz(yy) = <17M,r(l4)(tp)>ﬁ(/,(¢/eL’(u) for some 1<r<2. The
2’

study of this object and its relations to existing constructions, by different
means, of a ((;54)3 space-cut-off renormalized perturbation of Nelson’s free
field (see, e.g., [25]) will be pursued in forthcoming work.

(i1) In [38] the following statement is proven: Let d = 2, and consider the
exponential perturbation, that is equivalent (as a consequence) to the

random variable Td o defined in Theorem 1.2 of the present paper.
2¢

If &2<4n, then #nyt; eLl?>(S(R*);u), and if &*e[4n,87) then

(%,e*‘)

Nt €L (S (R, re(1,EHA2).
2¢ ’

By the same reason mentioned in (i), for d = 2 we have restricted our
considerations to the case that &> <4n. But it would be interesting to
reinterpret in the present framework the results of Albeverio and Heegh-
Krohn [8,11], resp. Kusuoka [38], for the case &’>e[4m,8n). Then for
¢” e[4n, 87) it may hold that nMv:(% ea)eD,.,l(H’S) for some 1 <r<2and 1<s.

Remark 2.7 (Poincaré-Brascamp-Lieb and Log Sobolev inequalities).
After finishing a preliminary version of this work, the authors were
informed by Prof. A. S. Ustiinel about the results of Feyel and Ustiinel [24].
By applying the general results concerning the Poincaré—Brascamp-Lieb
and Log Sobolev inequalities corresponding to (Gibbs type) measures
defined through monotone shifts (concave function on Wiener spaces) given
in Theorems 6.1 and 6.3 of [24], we immediately have the following: Suppose
that the assumptions of Theorem 1.3(ii.1°) hold and that 7. is the
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exponential perturbation defined there. Let v, be the probability measure
on (Bf,’b, u) of the Albeverio Hoegh-Krohn model with the space-cut-off #,,
such that

1
vu(dg) = 7 exp{—2<{Myp T(per(P) > u(d ),

where 4>0 is some given constant and Z), is a normalizing constant. Then
for any smooth cylindrical Wiener functional G, we have

E™[|G — E[GIF<E™[((Ly + AVu,) 'VG,VG) ],

E""”[Gz{log G? — logIIGlliz(‘,M)}] <2EVM[|VG|,2}!/]’

where E"[-] denotes the expectation with respect to the probability measure
vy and Vu, is given by (48).

When d =2 the assumptions of Theorem 1.3(ii.1°,2° and 3°) are
le| <24/, lel<v/2n and |¢|< 4z respectively. In [8] there exists the
considerations of the mass gaps corresponding to a class of Euclidean
fields defined by the probability measures including the above vy
as its special case. Definitely, in Theorem 7.1 of [8] (for the positivity
of the corresponding Schwinger functions cf. Theorem A.l) the existence
of the mass gap of the Hamiltonian corresponding to the model defined
by vy has been proved under the assumption that |s|<i\/. It may
be interesting to consider this Sobolev inequality in the framework
of [8].

In [13] there are other considerations and applications of the log-concave
property of the sharp time field measure of the Albeverio Heoegh-Krohn
model.

Next, let us try to remove the space-cut-off n,, from Theorems 2.3 and
2.4. The following Corollary 2.5 gives a first result in this direction, in which
the probability measure is only constructed on a restricted o-field.

Corollary 2.5 (Removing of the space-cut-off). Let f = @ for some
k=0,1,....

(1) Suppose that the assumptions of Theorem 2.3 hold. In order to put in
evidence the dependence on M we rewrite (64) as TM()) = W + i(Zur () and

1
uy () = Jﬁ’i(nMr(/;,g)(x//)). For each M we define a sub-o-field F y; ofe%’(BZ,’b)
such that
F y = sub-a — field of %(B;’b) generated by a family of
random variables { ¢, T3M(lﬁ) >, 0ePg iy, (71)
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where
Dp i = {pe S | there exists ¢pye Cy)° such that ¢ = Jf(ﬁ%)(po,
suppleol = {xe R’ | |x| < M}}.
Let F ., be the smallest o-field that includes all F y, M = 1,2, ...:

F o, = \/ F .
M>=1

Then there exists a probability measure v*° on (B‘:l’b, F &) such that
v (B) = E"[1pq° T | syl for BeF y, MeN, (72)
and the following holds:

© (g4t ) _(pak
E [F(por ™2 4 dapy @)D+ oes {0 ™2 - Apy ()]
= EPLF(L 01, d "Wo s oy oI P W )] (73)
1
for @ueCy, i=1,...,n, that satisfies J P =, for some

;€ Uy Ppum and for Fe Cy(R").
(i) Suppose that (68) holds. We rewrite (69) by TM () = + i(Zun ()

and uy () =J b 7%(17 uTBe W), to underline the dependence on M. Let
Su be the inverse map of TM. Replacing T by TM in (71) we define the o-
fields F r and F ,. Then there exists a probability measure v*° on (BZ’]’ , T )
such that

v (B) = (S} (B)) for BeF y, MeN.
The equation obtained by replacing t3) by (e in (73) holds.

Proof. For notational simplicity we denote T3/ by T simply. By (18) and
(64), if M <M’ then for ¢ € Pp ) we see that

(o, TYW)> = <o, TV (0)>,  n—as.
Hence by (65) for ¢,ePppr, i=1,...,n, FECy(R"), neN and M <M,

E'FC @i TYW) Y, oo <@ T D) D) qarr o TY | Az, ]
= E'F(o, T W), ooos < T W) ))qar o T | A, 1]
= E'F(@i ¥, s <@t )]
= E'F( o T ), ooy <@ TY W) D)) qar o TY [ Ay, I,
(g 1s the g defined by Theorem 2.3). By this for each M if we define a

probability measure v on (Bf,’b, F u) by

vM(B) = E"ypqueT™|As,[] for BeZ y,
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then we remark that % <% )y (M < M’) we have

vW'(B)y=vM(B) for BeF y, M<M' (74)
Hence, (Bg’b,fM,vM), M e N, forms an inverse system of measures (cf. for
e.g. [20, Section 9.4]), where for each M we assume that Bfi’b is a topological

space equipped with the weakest topology by which T is a continuous map

on it. Then, we have the existence of a probability measure v* on (Bg’b , F )
which satisfies (72).

By (65) and (72), for ¢,ePppr, i =1, ...,n and Fe Cy(R"), (M eN, neN)
we have

© _pi L A ol
E" [F({@op, I P2 4+ 2153 (0) s ooy oy I~ P20 4 Jrp3) () D)
o0 S l "
= E" [F({@op, P2 + Inyeipny ) >, .o,
1
X <(p0n’ Jﬁ(ﬁJﬁZ)lp + }nMT(ﬁ,'ﬁ)(W)>)]
M pa L _pa L
= EV[F(I P20y, TY(d)), ..., T P2y, TY(9)))]
1 1 . 1 1 .
= EF[F(T Py, J2Wy, >, ., KT Py, J2W, )],
and (73) is proved. This completes the proof of (i).
Moreover using S/ = TM and (18), (69) and (70), for ¢p'e®gy, i =
1,....,n, FeCy(R"), ne N and M < M’', we obtain
WSy weBsy tF(o, TXW)Y, ... {0, T (W) >)eA})
= WSy (W eBY  F(Co, TYW)), ...,
x (o TM () Y)eA}), YAeBR).

The proof of assertion (ii) is then similar to the one of (i).

3. Case of trigonometric and general polynomial perturbations

For general p>2, p#3, we do not have Lemma 2.1, which is a key lemma
for the case p =3, nor for the shifts with the Albeverio Heegh-Krohn
trigonometric perturbation term (cf. Remark 1.5) have we the monotonicity,
which is satisfied by the exponential shift. Hence we cannot show in the
above way the existence of a Girsanov probability measure associated with u
and T(Y) = ¥ + Jl(/lJﬁ_%(nMr([;,é)(tp))) (¢ = p,s,c). The following Theorem
3.1 gives a partial substitute for these statements.

Let C;(Bf,’b) be the space of all non-negative-valued bounded continuous

functions on Bf,’b.

Theorem 3.1 (Trigonometric or : Y/ : perturbations with p#3). (i) Suppose
that the assumptions of Theorem 1.3(1.2°) hold, and let u,() =
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|
Jﬁfi(nM‘E(/;J,)(lp)) be the H — C" map considered there. For /.€R let
T(W) = v + iCGup(P)).
Then for any f,g€ C;(Bf,’b) the following holds:

E'feTIANg) = E* |/ > g,

yeT-'{y}nD

where

D = {yeBY |deta(Ly + Vu,())#0}.

(i1) Suppose that the assumptions of Theorem 1.3(1.3°) hold, and let u;(yy) =

1 1
Jﬁ_f(nM‘c([;J)(tl/)) and u.(Y) = Jﬁ_i(nMr(/;’c)(lp)) be the H — C' trigonometric
maps considered in Remark 1.5. Then the assertion obtained by replacing u, by
ug or u. in (i) holds.

Proof. By Theorem 1.3(i.2°) and Remark 1.5 it has been proved that u,({),

ug and u, are H — C' maps on (Bfl’b,i(f%), w). Then Theorem 3.1 follows
from Theorem 3.5.2 in [55]. O

4. A note on the reflection positivity and the time-zero field

This section contains two considerations in relation with constructive
quantum field theory: We firstly discuss a restricted reflection positivity
property of the random field defined by the solutions of the SPDEs
considered in the previous sections, and secondly we establish a relation
between the solutions of the Euclidean SPDEs and that of quantized non-
linear equations (cf. [18,47]), by observing the corresponding time-zero fields.

Let T: B‘L}’b - Bfl’b be the shift 73, resp. T, considered in Theorems 2.3 and
2.4, and let v = v3, resp. v = v,.. In this section we will only consider such 7.
Let 6 be the time reflection operator on R’:

0f (1.%) = f(=1.X), (75)

for a complex-valued function f on R? with (1,X)eR x R‘"'. For

Yye S (RY), we define Oy as the tempered distribution 0 e #'(RY) that
satisfies

P00 g g = 0P 5 gr, Ype S (RY). (76)
Note that for each ¢ e #(RY)
(o, TC)) g B> Lo, TOY) Y 4. €R
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defines a non-linear measurable functional on (B;’,’b,%"). We regard this
functional as a “non-linear test functional” on 9.
We observe that for T = T3 or T = T, satisfying 0<3<m\/d_) the following
3

holds:
(o O0TW)Y g0 = L. TOY)> g, v-as., YeB. (77)

This can be shown as follows: Since (—4 + m?)~* is translation invariant, in

fact its kernel as x, ye R? is given by J*(x — y), and by definition we have
ne(t, X) = n,(—t,X), moreover the inclusion map i is defined by (41), from
(20), (33), (35), (38), (64) and (69) we have

(o 0T g0 = P, TOY) > gy p-as., YeBs. (78)

By Theorems 2.3 and 2.4(iv) since the probability measure v is absolutely
continuous with respect to p, from (78) we obtain (77).

Theorem 4.1 (Subspace of reflection positive random variables). For
given d let T=T;, v=v3 or T=T,, v=v, where Ts and vs, resp. T,
and v, are the shifts and measures defined in Theorem 2.3, resp. Theorem

2.4(iv). Let p be the probability law of Nelson’s Euclidean free field on R‘
defined in Section 1. Let Fr be a linear subspace of the random variables on

(BZJ’, B",v) such that

Fr. =TT eFy ",
where
Fy = linear hull of {f|3neN,3f;e C;°(R)
satisfying f;(0) =0, d¢p;e Cy° (R‘i), i=1,..,n,
such that f(-) = fi({ @1, > v.9) - Jal({ s D 7.9}
where
R! = {(,¥)eR? : 1> 0}.
Then, on Fr_ the reflection positivity holds
E'[F(OY)FW)]=0 for FeFr,. (79)

Proof. By (65), (70) and (77) for f € F, the following holds:

E'[f<T(0)f - T(W)] = E'[fOT)f (Ty)]
= EX[f (0y)f ()] =0.
The last inequality is the reflection positivity property of Nelson’s free field

(cf. for e.g. [3, Remark 5.2]), that comes from its Markov field property.
This proves (79). O
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Remark 4.1. (i) In order to conclude that the random fields ¥ considered in
Theorems 2.3 and 2.4(iv) possess the property of reflection positivity
(Hegerfeldt T positivity given in [29]), we have to show that (79) holds for
FeF ., where

F.o={f(\)|feF}

Thus, Theorem 4.1 characterizes a sub-space of L?*(v)-random variables on
which the reflection positivity holds. Nevertheless, Fr_ and F, have non-
empty intersection: e.g., in case d = 2, if we take f = %, then for T'= T3 and
v = v3 we have

L*(v)

—— ()
FronF . o{f<TW)|feF:} )
where F, is a subset of F, defined by restricting ¢,e Cy (Rfi) in the
definition of F, to ¢, Cy° (R‘i) such that

Q=4+ m?)g; for some gie Cy° (R‘i).

(i) Let T,, resp. v., be the exponential shift, resp. the corresponding

Girsanov probability measure, defined in Theorem 2.4 for m\/d)<£<m,
3 2

then we cannot conclude in general that v, is absolutely continuous with
respect to u, and (77) does not follow from (78). But from (70) we can still
deduce the following:

E'[f0T())f-TW)]=>0 for feF,.

Also for the signed measure A;,,u defined in (65) we have
[ ST T i a2 for

This can be seen as a weaker substitute for (79).

(iii) For discussions of the reflection-positivity property in axiomatic
Euclidean quantum field theory see, e.g., [25,29,45,46,52] (and references
therein). For the proof in models see, e.g., [2,10,12,16,25,32,52] (the latter
references also contains a proof of the global Markov property of
interacting (Euclidean) quantum fields).

Next, we give a short discussion on the time-zero fields of the Euclidean
random fields which are defined by the solution of SPDEs considered in
Section 2.

Let s be the solution of the (Euclidean) SPDE with cubic perturbation on
R?, namely  is the Euclidean random field with the probability law v3
defined by Theorem 2.3 for d =2 and f = % Then under vs; the random

variable T5() is a Nelson’s Euclidean free field on R, and by the definition
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of T3 (cf. (64)) the following holds:
? & * o
( ———+m2>lk + oy Y = (——— —+m2> T3().

o ox? o2 ox2

Since, at the point # = 0 by taking the boundary-value Nelson’s Euclidean
free field it is analytically continued to @, which is a solution of (4) reviewed
in the Introduction, we find that i satisfies

dZ

_E Ev}[<lp(ta )’f>u]

t=0

2
+ E" K<W(0, ), (—% - m2>f> + 2P0, 1y 0, ')f>>u]
2

d
=— ES[T5(0)(t, ), f D ull,—o

LB [<T3(¢)(z, ), (f—; + ’"2>f >“}

for real f € #(R) and ue ¥, where

=0 (80)

t=0

n
9 = linear hull of {H<T3(1//),5{0}®g1->|g,-ey(R), i=1,...,n, neN}.

i=1

Thus, if % is dense in the (time-zero) Hilbert space #; given by
L2(v3)

Hy = {H Y0, ), i Ifies(RY, i=1,...,n, neN} (81)
i=1

then the Euclidean field ¥ on R?> with the probability measure v;
may be analytically continued to a solution @; (assuming its existence) of
the non-linear quantized equation such that &; is an operator-valued
distribution on the physical Hilbert space #; with a dense domain and
satisfies

& | PN
ﬁ‘pl(é{t} ®f) + <I>1<5{,} ® (—@—&—m )f)

+ 2 (@) 10y @y (0, ) ()> =0 for feS(R), teR,
(82)

where : (@(1,x))’ : is a renormalization of (®,(z, x))*, and it is also a (linear)
operator-valued distribution.

However, since % is a linear space spanned by the products of random
variables such that { T53()(0, ), g(-) > with

Ts(W) =Y + AT (g o7 2) (83)
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and J! is an integral operator, % may not be dense in #; (cf. Remark
4.1(1)). Hence, we have the following Remark 4.2:

Remark 4.2 (Time-zero fields of the solutions). (i) The Euclidean random
field yy with the probability law v; defined by Theorem 2.3 for the space-time
dimension d =2 and § = % satisfies the functional differential equation (80)

at least for ue. In order that \ can be analytically continued to some
operator @;, that is a solution of the functional equation (82), with a dense

domain in the Hilbert space #°; defined by (81), the set % n#; has to be
dense in #; (% > % is the set on which (80) holds).

We do not know whether % n#; is sufficiently large. We should
accordingly modify 73 and the corresponding measure v; adequately.
Namely, in the definition of 73 given by (83), n,,(¢,X)e Cy° (R?) should be
changed to 7(X)®dy(¢) for some neC(;”(Rl) satisfying #>=0, and then
define a map 75 on (B4, i(A), u) by

)1, %) = (1, X) + E/Rl TN %) = (0, X )n(F) : Y2(0,%') : dX.

Passing through similar arguments as in Theorem 1.3, it is not hard to show
that

/Rl TN %) = (0, X)X : (0, %) : dX e Dox(i(A))  (k=0),

(i.e. n(X)040y () : WA, R) €Dy (). But the H — C! (or H — C) continuity
of T3 is not obvious (cf. Remark 2.4).

However, if everything is completed, and a corresponding Girsanov
probability measure ¥; is defined, then for this modification % (using the
same notation as above) we would have

% = linear hull of {f[(w(o, SN/ ORIV EEIARN (VDY
i=1

BN fe SR, i=1, ..o, neN}c%,

where #; is the Hilbert space defined by (81) by replacing v3 by ¥3. Also %,
the Radon—Nikodym density of 3 with respect to the Nelson’s Euclidean

free field measure p on R?, has then a term such that

exp{—i/ n(x) : ¢*: (0,x) dx}.
R

For further discussions in this relation (cf. [18, Corollary 8.8.1], [17]) we
refer to forthcoming papers.
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(i1)) By Theorem 2.4 analogous discussions as (i) can be performed for the
case of Euclidean random fields that are solutions of the SPDE with an
exponential perturbation.
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Appendix

In the first part of the appendix we shall quickly recall some fundamental
notations and notions associated with the analysis on an abstract Wiener
space. The following explanations on Definitions A.1-A.3 are mainly
borrowed from Section 3.3 and Chapter B in [55], but some of the notations
are changed in order that they are adaptable to the present paper
(cf. Remark 1.4 and Remark A.1).

Definition A.1 (Abstract Wiener space). (i) Let H be a separable Hilbert
space, denote by p, the standard Gaussian cylindrical measure on H whose
characteristic function is given by

exp{—1lAly}, heH.

In the infinite dimensional case, g, is not a sigma-additive measure on H. By
Gross [26] it has been proved that H can be completed under a weaker norm
than the original norm of H to a Banach space W, and , can be extended
to a probability measure u on W.

The triple (W, H, p) is called as an abstract Wiener space, H is called the
Cameron—Martin space and p is called the Wiener measure. The Cameron—
Martin space H is identified with its continuous dual H*, then

WH* G H ~H G W.
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Let i be the continuous injection such that
iH*->W, ie i(H*)=H.

In the sequel we sometimes denote the triple (W, H, ) by (W, i(H*), w).

We notice that in the previous sections H* has been denoted by #.

(i)  Let ae W*, then w— {a,w) is a Gaussian random variable on the
probability space (W, u) whose characteristic function is

exp{—3li(@)l7} = exp{—] lulz ).

If * € H*, then there exists (o, 7€ N) such that «, converges to /#* in H*, and
({ap,w)y, neN) forms a Cauchy sequence in L”(u) for any p>0.
We denote the limit by {/*,w) (h*e H®).

Definition A.2 (Derivative and divergence operators). (i) Let (W, i(H*), 1)
be an abstract Wiener space. A measurable function ¢ : W — R is called as a
cylindrical Wiener functional if it is of the form

ew) = f(KB{,w), oo, KIyw)), B, . e HY, fe S (RY),

for some ne N. For the cylindrical Wiener functional ¢ and an element of
the Cameron—Martin space he H we define

>

e=0

d
Vipw) = T o(w + ¢h)

then

n
Vipw) =Y 1(<h*, W, oy S WD),
= 6xj
where /¥(h) denotes the dualization of /¥ € H* and he H. For each fixed w,
the map hr— V;,¢(w) is continuous and linear on H, it determines an element
of the dual space of H. This element is called the Gross—Sobolev derivative
of ¢ and is denoted by V.

Since Kf(h) = {i(h}),h) g = I}, i~'(h)) y«, wWhere Ci(hy),hy g, resp.
<h;?‘,i‘1(h)>H*, are inner products with respect to the Hilbert spaces H,
resp. H*, depending on the adoption of the inner products the Gross—
Sobolev derivative V¢ can be understood as either H* or H-valued random
variable. In this paper we discuss Vo as an H* (Hilbert space)-valued
random variable.

(i) In this paper we have denoted H* = . The Sobolev space D, is the
set of equivalent class of the real-valued Wiener functionals defined as
follows: ¢ e D, if and only if there exists a sequence of cylindrical random
variables (¢,,neN) converging to ¢ in L”(u) such that (Vo,,neN) is
Cauchy in L?(y; #). In this case lim,_, ., V¢, is denoted by V.

D, is a Banach space with the norm defined by

ol = ll@llrgy + IVl Lrn)-
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This definition of D,; can be extended to the case of Wiener functionals
with values in some separable Hilbert space #. The corresponding Banach
space will be denoted by D, 1(Z).

(iii) Let p>1, k>1, and let 2 be a separable Hilbert space. The space
D, (%) is inductively defined by

(1) FeD,»(Z) if VFeD, (X ® #) and with V>F = V(VF).

(2) FeD,u(2) if VF'FeD, (2@ #®% D), where ® denotes the
completed Hilbert-Schmidt tensor product.

(iv) Let p>1, &: W— # (= H*) be a Wiener functional. ¢eDom,(0) if
and only if for any peDyx, ¢-' =1 — p~!, the following holds:

IE“[(V @, &)1l < Clloll Loy

where C is a constant depending only on ¢ and p.
If £eDom,(9), then there exists an element, denoted by 6&, in LF(u) such
that

E'(V @, Q)] = E'[e - 6.

o¢ 1s called the divergence of &.

(v) Let 4 be a Hilbert—Schmidt operator on the separable Hilbert space
A. The (modified) Carleman—Fredholm determinant of 4, denoted by
dety (I, + A), is defined as

e

deto(Iy + 4) = [ (1 +7e7,

i=1

where (y;,ieN) are the eigenvalues of 4 counted with respect to their
multiplicity.

Remark A.1. Let us examine the concrete actions of the operators V and ¢
on the functionals on Nelson’s Euclidean free field (B%”, i(#), u), which is
an abstract Wiener space defined in Section 1. For this purpose it is
convenient to use the identification of Nelson’s free field (%’ l)(w) with the

stochastic integral || R J%(x — X')dW,(x') (this expression is “formal”, but
the following discussions can be carried out rigorously by making use of this
expression (cf. Theorems 1.1 and 1.2 and Remark 1.3)).

Now, let d = 2. Consider a cylindrical Wiener functional ¢ such that

p+1 1
® :/ (H (J2h*)(xj)> AWy (x1)--dWe(xp1) for Wew — HL
R2XP+D

j=1

This is identified with : {A*, r(ll)(tp)>”+l :, which is the (p + 1)th Wick
27

product of the random variable <h*,r(ll)(lp)> (cf., e.g., [52, Section I-1]).
23
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Then by Definition A.l, it is easy to see that the derivative
of: (h*, r(l 1)(tﬂ)}p+1 is given by

R T 1)(l//)>’”l = DI g (@))7
L

This can be identified with the following stochastic integral:

4 1
Vo = (p+ D) /R . (H (ﬁh*)(x») AW o(x1)++ AW ()€ A
j=1

Also, t 1 (1//) is identified with

/R ., (H J2(x — x])> AW, (x1) - AW, (x,).

Hence, the map u,, which is an #-valued functional, defined by u,(}) =
Pyt (W) is identified with (in case f = 1)

P
= ey ) [ (H P - x;)) AW 01)-dWo ().
=1

If we set

ptl
0% = /szn (/ nM(x)H J_(xf X;) dx) dWe(x1) - dWe(Xpi1).

Jj=1

Then, for ¢, Vo, u, and 6= defined above by the properties of expectations
with respect to (multiple) stochastic integrals (cf., e.g., [44, Section 1]), we
obviously have

E[{NVo,up) 4] = Elg - 6F].
Since 0F is identified with {;,,t 1 1) > by this we have relation (44):

>

57/[17 - <’7M’T 11]+1)

Definition A.3 (H-regularity and monotone shifts). Let (W, i(H*), u) be an
abstract Wiener space.

(i) Let u(w) be a random variable taking values in a separable Hilbert
space Z'.

(1) w(w) is said to be an H — C map if, for almost all we W,
H*3h* —u(w + i(h*)) is a continuous function of /#*e H*.

(2) u(w) is said to be an H — C! map if it is H — C, and for almost all
we W, H*sI*—u(w + i(h*)) is continuously Fréchet differentiable on H*
and this Fréchet derivative is an H — C as a mapping from H* into 4 ® H*
when the latter is equipped with the Hilbert—Schmidt topology.
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(ii) Let u(w) be an H*-valued random variable. The shift 7: W — W
defined by Tw = w + i(u(w)) is called strongly monotone if there exists some
o> 0 such that

(TOw -+ i) = T(w), i7*) gy = oliCh*);,

almost surely for all 7*e H*.
By Lemma 6.2.1 of [55], this condition is equivalent to (cf. Definition
A.1(1))

((Ts + Vu)h*, 1) g = ol H* 2

almost surely for all 7*e H*.

The following Proposition A.1 gives some evaluations for the
functions that have been used in this paper, and they are well known or
obvious.

Proposition A.1. (i) Let pe Cy°(R?) be such that
pr(&) = ﬁ(%, 1pOI<1, p0)=1 (A.1)

(with ~ denoting Fourier transform), then p,(E) converges to 1 uni-
formly on compact sets: For any M < oo and any ¢>0 there exists an
N < oo such that

0<1—p,(&)<e for any & satisfying |E|<M and any n=N. (A.2)

(1)) J*(x) has the following integral representation (cf. [53, V-3.1],
or [48]):

‘ 2 —d-2+2
J*(x) = exp{—%—mzs}s 2 ads, xeR?.

——,
@m)? ()7
By this there exist some constants Cy, Cy > 0 such that the following holds: if
0<2a<d, then
Cilx|™"  for x|<1,
J (x)< (A.3)
Cie M for |x|>1;
if 0<d<?2a, then
JH(x)< Cre @M for xeRY; (A.4)
if 0<20 = d, then

C— 12 dlog x| for |x|<1
J“(X) < (4m)2 ') (AS)
Cie~CH for |x|=1.
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Proposition A.2 (Fubini type lemma for multiple stochastic integrals). Let
ge L2 (R?) and K e L*(R)"*). Suppose that K satisfies the following:
K(x;3p1, ..., ¥p) is symmetric in the last p variables (y, ...,yp)eR”d
(for all xeR?);

there exists a compact set DcR? such that K(x;yi, . Yp) =0 for
(X, y1, ..., ¥p)ED X (RN?; and the map R'sx+— K(x;-)e L2(RY) is con-
tinuous.

Then,  the  stochastic — process I,(K)(w) = f(Rlz)p Kyt ..0p)

dW,(y1)---dWy(yp) on R has an equivalent process which is measurable
with respect to the two variables (w,x), we simply denote this by 1,(K.)(w).
The following Fubini type formula holds:

[ oK o) dx

-/ ( / g(x)K(x;yl,...,yp>dx)dWw(yl)---dWw(yp),
'y \JRI
P-as., weQ. (A.6)

Proof. For each x we denote K(x;yi,...,y,) by K.(y1,...,yp), and
the multiple stochastic integrals with order p by 1, Since for

cach xeR’, (KO0, = PUIKON iy e, and since RIoxi—
K(x;-)e L2 (RY)?; )fd) is assumed to be continuous, by Bochner Von
Neumann measurability theorem /,(K,)(w) has an equivalent process that is
measurable with respect to (w, x). Moreover from the assumption of K it is
easy to see that || rt I(Ky) dW (x) is well defined (1,(K,) is a process that is

Skorohod integrable). Since E[(I(g))’ fRd(lp(Kx))2 dx]<oo for any

ge L*(R?), we can apply formula (1.49) in [44] (the Skorohod integral of a
process multiplied by a random variable) to I,(g)I,(Ky), then

| @k awe

=I1i(g) /R‘/ I,(Ky) dW(x) — /R‘/ g, (Ky) dx, P-as., weQ. (A7)

On the other hand, from the definition of multiple stochastic integrals the
following equality holds in the sense of equivalent processes on R%:

I (Q)Ip(Kx) = p+1(Kx(')g(’)) +pl, (/R" K.(y1, ~-ayp)g(yl) dy )

Moreover, if we let
R(X,J/l, --'9yp) :}m{Kx(Vlg ---9yp) + Kyl(XsJ’L -'~5y[J)

+ o Ky (V1 s Vpe1, X))
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(the symmetrization of K(x;yi,...,»,)), then since [pi I,(K\)dW(x) =
I,+1(R), we have

o) [ &) a0 = hatRo) + 0 0, ([ R d ).

P-as., weQ.

Substituting these two equalities for the integrand on the left-
hand side, resp. for the first term on the right-hand side, of (A.7), we
obtain (A.6). O

Lemma A.1. Let peN, a,b,0> 0. For each fixed k let
b
Ho.2) = | ( [ = a0 P R ) dx)
(RH? \JR!
X dI/Vw(yl)"'dI/Vw(yp)a

then I(w,z) has an equivalent process which is measurable with respect to
(w, z), we simply denote this by I(w,z). The following holds:

b
P(I(a),z) = / JUx — 2)(1 + |x) 4 5 ¢, (%) dx) =1,
Rd
VzeRY, (A.8)

where i @ 0 is  the Co(R? > R)-valued random variable given in
Remark 1.2.

Proof. Since the process {:x ¢, , : (x)} . ge defined by Remark 1.2 (cf. (24))

satisfies the assumption for /,(K,)(w) in Proposition A.2, for each zeR? we
have

/ Jy(x —z)(1 + |x|2)7§ K P, 1 (x)dx
RL]

b
:/ (/ Jﬁ’(x—ZXIHXIz)4Fz(x;y1,...,yp)dx>
&%) \JR?
XdWw(yl)"‘dWw(yp), a.s., we, Vn.

But for each fixed k we have :; qﬁi’w 1 ()€ Cy(RY > R), so if we let n— oo
in the above equation then by Lebesgue convergence theorem we
obtain (A.8).

The fact that I(w,z) has an equivalent process that is measurable with
respect to (w, z) follows from Bochner Von Neumann measurability theorem
(cf. the proof of Proposition A.2). [

Proof of Theorem 1.1. Since the proof of Theorem 1.1(i) is similar and
simpler than that of Theorem 1.1(ii), we only give the proof of (ii). Also

since the proof of (28) for d>3, o =4, |e|<ay(d), d{4(ay(d))*} ' <a<?
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and b>d can be done by exchanging the corresponding subscripts and
superscripts in the proof of (28) for d =2, a =1, |e|]<2/7, &<a<l and
b > 2, we give the proof only for the latter case. The other cases considered
in Theorem 1.1(i1) (i.e. o > %) are easy and omitted.

Let d =2, o = { and [¢g/<2y/7, and define

g P (x) = /(RZ)I’ Fie (1, ., pp) dWo(01) - dWo (),

1 1
where Fii(xiyi, ....3p) = (1/(x)"J3(x — y1)-+-J2(x — y,). Then by virtue
of Lemma A.l (with a slight modification) we see that for ¢ >0 and
b>2

Elll kg @ 1 — uep ¢ : ||?3171.b]

= /Q/RZ /R:Z(l + |x|2)7%J“(x 72)(:1{7/ (j)ﬁ) : (x)f K % . ()C)) dx
x dzP(de)

= (2n) 2 Dp) / /
R? (RZ)])

)4
< [T (&P +mD (&) déy - dé,pdé
Jj=1

2

2
p
Jrr (Z ¢+ 5)‘ (1P + 1D

=

<Qm) 2P plm =) (Ipll)” / (14 |xP) 2 dx, (A9)

|x|=min(Z,l")
where
2 b )4 )4 r
g1r(x) = (14 ) 4((n, () ? = (np(x) Ve () L,
r=1

and we have used Young’s inequality repeatedly.
For

o0

s explex, ) = Z

p=

| %

ok ¢

S

by making use of inequality (A.9) we can show that there
exists: exp(ex, o, @) : € L2(Q— BS”; P) such that

Jim E[| s exp(er, e §) : — : exp(ersd) : [l = 0, (A.10)
where a and b are any real numbers such that a >0 and b > 2. Indeed by
(A.9) we have

Elll: exp(es$) : — = explecr ) Ilpus]

201 4
- (exp (%) _ 1)(2@2 / (1 + )3 .
m-r |x|=min(Z,I")
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By this {: exp(er ¢) :},cn forms a Cauchy sequence in LZ(Q—>B‘2”}"; P), for
each fixed k, and (A.3) is proved.

Now, by (A.10) for any ¢> 0,k and k' there exists L(s, k, k"), and the
following holds for all /> L(e, k, k'):

(BT exp(ete )t~ explete ) - [l
(Bl expid) : — : explsd) s G2+ (A1)

Also, again from Lemma A.1

E[ll : explexs) : — : explex ) : |[j]

2a 22 28
= [ P LP) Ak )
R>xR?
—2A(; kK x1, x0) + ALK K5 x1, x2)) dxy dxa, (A.12)

where

Al kK x1, x0) = exp(san(xl)nl(xz)Jk,kr(xl —x))—1

with Jip(x1 — x2) = [, g2 PP (@) ((x1 — x2) — (z — 2')) dz dZ’. Hence,
for a>0 and b > 2 if we let /1 oo on the right-hand side of (A.11), then by
(A.12) and the Lebesgue convergence theorem we have

E[ll - explek.oe §) 1 — 1 explerr, e ) * [ljr]
b b
S / Ty = 2)(1+ paP) 41+ o) et — 1)
R*xR*

_ Z(essz(xl—n)) — 1)+ (eﬁka',k/(M—Xz)) — )] dx; dxo. (A.13)

Let us evaluate the right-hand side of (A.13), using an argument for Wick
exponentials developed by [8] (a simple application of Fourier transform
and Young’s inequality would not give such a nice estimation). From
Proposition A.1(ii) for d =2 since J'(x) =3 Ko(mlx]), for |x|<1 the
function J'(x) + 5 log|x| is bounded, and for |x|>1, J'(x) is a bounded
function that decays exponentially to 0 as |x|— co. Thus, if |.9|<2\/E and
a>E, then J¥(x)(exp(e/'(x) — NeL'. Let Cyy= [q J2x)(exp(e] (x))
—1) dx, then by Young’s inequality, for b > 2 we have

b b
/z 2 J20xr — x)(1+ i P) 731+ P 4@ ) - 1) dxy dxs
R* xR

2 o
< Ceall(Ix” + 1) 2l

In addition since limy o _, ,, " /k@1—x2) = 27" (01=32) g e x| x,, we can apply
Fatou’s lemma to each term on the right-hand side of (A.13), and then
conclude that {:exp(er @) }xo1n forms a Cauchy sequence in

yees

LX(Q— B%"). This proves Theorem 1.1(ii): [
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Proof of Theorem 1.2. Since the map R?sx+—J. ,f (x — -)e ¥ is continuous, 7%
defined by (33) maps ' (R?) to Co(R?) and by (16) this defines a
%(BZ/’Z’)/,%(BZ’Z’) measurable map.

1
For each xe R if we set ¢(-) = in(Jf(x — ) then from (27) for p = 1 we
have

)T — . T 290)() > .
= ) T2 = ). bo() D

=0 [ I D AWL0) = By, Pas., 0e0

Hence, by (33) for each xe R’

n'(p 2n)!
= qﬁg’w: x), P-as., weQ,

6]
w0 =p1 o N (o)

where the last equality follows from the well-known Wiener chaos
expression of multiple stochastic integrals. But both sides of the above
formula are continuous processes, hence we have (34).

By means of (16) Eq. (34) can be understood as an equality with respect to
two Bfl/’b-valued random variables: 14(¢,) =« ¢ o P-as., weQ. Hence
from (26)

I = a0 Eyontc) = [ 100, = 2oy )
-0 as k,m- 0.

Thus, {tx};.y forms a Cauchy sequence in L2(Bf,’b—>Bf,’b/; w), and (35) is
proved.
The Proof of Theorem 1.2(ii) is similar and will therefore be omitted. [

Proof of Theorem 1.3. By the discussion made in Remark A.l, we
can see that Vu,, ou,, Vu, and du, have the expressions given in this
theorem.

Before proving Theorem 1.3(i), we shall prove Theorem 1.3(ii). In order to
simplify the notations we prove this theorem only for the case d =2, f =5
Since the proofs for the other cases are similar, we will only point out the
differences between the former case and the other cases at the end of this
proof.

The D, () property of u, has been essentially proven by Albeverio
and Heegh-Krohn [8], namely, if f and ¢ satisfy the assumptions of



S. Albeverio, M. W. Yoshida | Journal of Functional Analysis 196 (2002) 265-322 313

Theorem 1.3(ii-1°), by Proposition A.1(ii) (cf. also the proof of Theorem 1.1)

By ] =2 [ (0 G = ) expled (x - )
R xR~
X Ny(¥)dxdy< 0.

Moreover by Theorem 1.1(ii) and Theorem 1.2(ii) it has been proved that
u(W)e A (for p-as., ye B2

Next, we shall prove the # -regularity of u,. For this purpose we firstly
note that for 1e H'(R*) and ¢€ R the following holds:

e —1eH'?, Jim (e — 1) — (& — D)||is =0, ¥6>0, (A.14)
— 0

where

1 1
hie(x) = {TR(x = ), T 2h) 4 g0

Indeed, by a simple application of Fourier transform and Young’s
inequality it is easy to see that there exists a constant C and for any ¢
and ¢ satisfying 0<¢' <é<1 the following hold:

p—1-¢
9 p—1-0 2
109+ o711+ 1) 1 5 (PP =0)
L
VYheH'. (A.15)

Using this and a simple calculation we obtain

o0
ch 1 < & h P .
[l = lpp-s < Z;H() -2
p=1

RTT: 0\ Il
< -5 r 2 H!

L p=1
VYhe HY(R?) for any 0<e<¢/, (A.16)

where C is a constant which does not depend on 4, ¢, d, §' and p.
From this, (A.14) follows immediately.
Next by Theorem 1.2(ii) (cf. definition of 7(,x;) we have

o W=t @), vheBs’, VheH'.
5,6“ Z’ez:

If we assume that ¢ satisfies the assumption of Theorem 1.3(ii2°):

ao(2)

vk

le| <
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then by (38), (A.14) and Definition 1.1 for some &” such that a’<a”<% the
following holds:

lim  lim ||e‘h"r (w)

j >0 ;>0 ( é)

vy eBl e), erHl.

Wl =0,

Again, from Definition 1.1 this equation tells us that

B,e)+ H' = B(,e) and 2 Wt h) = PREO)
vyeBle), VheH'. (A.17)
Now, by (A.14), (A.16) and (A.17) by passing through a similar (and easier)

discussion as in the proof of the H — C' property of u, given below, it can be
shown that for each tpeB(%, e) the map

H =H" 9h|—>nMrl (lﬁ-i—l(h))eH‘

is continuous.
Next, we shall show that u, is H — C' when ¢ satisfies the stronger
assumption:

ay(d)

V3

For this purpose and for later use we remark the following (A.19):
Let d=2 and f = %, and suppose that b and M are any non-negative
numbers. Then for any non-negative ¢ and § satisfying

le] <

o 1
- A.18
a+6<6 ( )

there exists K = K(a, d; b, M) such that

1 1
| (=00 = 0 OHOO0 2. e dy
R*xR*
<KWlGp-sll@l s, Yh, Yoe S (RP). (A.19)
2
This inequality also follows easily from a standard argument by means of

Fourier transforms and the theory of pseudo-differential operators (cf. for
e.g. [36]). Actually this can be derived directly as follows: For i, p € %, let hy

1-9 b
and ¢, be such that A(x) = (JToho)(x), o(x) = (x> + DA @) (x). If we
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set 17,,(x) = 1, () (x* + 1)%, then we have
T3 = VT30 = My OO > 1
=0 [ e ) i)
X (&4 &+ &+ &I+ m) Po(—&) — & — &4 — &)
X (a2 + ) (5 + ) TemV eV Z1% GE, G, a8, ds,

where d_éj = (2n)? d¢;. Hence, by making use of the elementary inequality

2
n

PIE

J=1

n
+L2<nL DT (P + L),
j=1

and setting #7},(¢) = (&% + m*)“1i,,(£), we have
| =050 = 000 o dy
<Cn'm P [N + 2
(R%)

X (4 + m2) ™ 2 ool )
X Po(=&) — & — Ea — E)Po(=&) — & — &4 — &5)
X (4P + m?) R ESPP + m?) T dE dE, dE | dEy dEy diEs

1-0
<) @m O iy I NEP +m?) 2
x 107 + m®) "2 Lol 2ol 2},

where the latter inequality holds under the condition that there exist ¢ and s
such that
1 1

1-6
(EP+m») 2 *eld, (&P +m’) " el’, 1<q, s<w, sttt

If @ and o satisfy (A.18), then there exist such g and s. Hence, under

condition (A.18) we can take K(a,0;b, M) = (271)4(477ft‘6)2“(|Iri'j(,IIIU||(|€|2 +
ﬁ - a :

m?) "2 L IEP + m?) L)%, and since |lholl2 = [Whll-s and [lgllz. =

||(p||324‘b, for h, pe ¥, we obtain (A.19).

Now, since . is dense in H'~% and B%’, from (A.14), (A.17) and (A.19)
we see that

IVue(y + i(h) = Vuellr o

<K(d,0:b, M)ty (Dllgeslle™ = Ulgr-s, VY eB, VheH™,
2:3) 2

(A.20)
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where from Theorem 1.1(ii) ¢’ must satisfy
& {4(aop(d))’} ' <d.

For d = 2 this means that
&2
Z <d. (A.21)
8n
If || <2\/§ = &\/2)’ then we can take & satisfying both (A.18) (replacing a by
: 3

a') and (A.21) (6 can be taken arbitrarily small cf. (A.14)). Hence, from
(A.20) and(A.16) the H — C' property of u, follows.

For general d if we take f§ = %, then the corresponding condition of (A.18)
becomes

d+ é<i
6 12
If we combine this with the condition that ¢2d{4(ao(d))*} ' <d’ (coming
from Theorem 1.1(ii)), then we have a sufficient condition under which
1
JB’Z(nMv:(B,eE)(qﬁ)) becomes an H — C' map. In other words |s|<m\/d_) is a
3
sufficient condition for the H — C' property of u,.
The other parts of Theorem 1.3(ii) are obvious.
Next, we shall prove Theorem 1.3(i). Under the assumptions of Theorem
1.3(1-1°) from Theorem 1.1(i), Theorem 1.2(1) and Proposition A.1(ii) it is
easy to see that the following holds:

u,(Y)eA for p-as., Bfl’b and

E'[IV ulPyed = p* - (p — 1+ 1)*(p — 1)!

/R" R" ﬂM(x)(Jzﬁ(X—y))pHﬂM(y) dxdy<oo, 1<r<p.

This proves the D, () property of u,.

Next, we write the detailed proof of the H — C' property of u, only for
d =2, =1%and p = 3 (proofs for the cases where d>3, f =4 and p = 3 are
essentially the same as in the former case and the other cases can be proved
in a similar manner (cf. (A.15),(A.19) and (46))).

Let B(%, 3) be the measurable set introduced in Definition 1.1(ii) for d = 2,
B = % and p = 3, then similar to (A.17), by noting (33) and (A.15) it is seen
that

BL,3)+ H'<B(,3) and T, ) =11, () + 20y + n?,
2 2

vyeB(l3), heH'.
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Hence, from (A.15) and the fact that r(lp)(db)e Mo B‘z”b, r=12,...) by
27

Theorem 1.2, the H — C! property of u3 can be proved in the same manner
as in the proof for this property of u, given above.
The proofs of the other assertions in Theorem 1.4(i) are obvious. [

Proof of Lemma 2.1 (Key lemma for the map with cubic power). Here we
will prove (59):

1
exp{—/wu3 + %ﬂ?nvmng} € ﬂ L9(u). (A.22)

g< oo

For simplicity we will give a proof only for the case d =2 and f = %
The proof will be performed by following a strategy given by Nelson [42].
Namely, let

1+e¢
2

I +e¢ ,
V= —Adus + Tﬂ?IIWaII% and  Vj = —Adusy + 22|Vl 3,

where

w31 0) = T 200153 ().

Suppose that we can show that there exist x1, x; and « that do not depend
on k such that

Vi) <ri(er)’, Yk, pas., yeBs’, (A.23)

1
(E' IV = VDI <ialg = K%, g=2, (A.24)

1
where ¢ = ¢1 T /, Rz(.l,f(y))2 dy, defined in Theorem 1.2. Then through the
25

same discussion as Lemma V.5 of [52], we see that there exist o/ >0 and
p >0, independent of k, such that

WV = plogk)*y <e ™ for all large .

Eq. (A.22) easily follows from this inequality (cf. [52, Theorem V.7]).
Hence, it suffices to show that (A.23) and (A.24) hold for our exponent.

1
Eq. (A.23) can be shown as follows. For weB‘ZI’b let Y (z) = (JHz — ),
1
(/" 2%)() ) 4.9, then by (33)

IMUCE 2!(nk(z>>2{21, W) — %ck},
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by this we see that

LG 0. e DOTC=1C =0

1 +8)(34)°
SCEE [ @mE@P G — i)y
R* xR

AW — e} — 2N d=d
j. 2
_%/ OO Y -
R xR
— G ENHW () = e P = 2) dzde
M / P () — e} de,
WGB?ba (A.25)

where L = [42(J'(2))* dz.
On the other hand, from (33)

AU ) = — At (0

=4 / () [4'(11 (z))“{i(w ()" —%ﬁ(w (2)°
Prhad el VTR 2t Mk

1.2
+(2;‘) Hdz, Ve B, (A.26)

Since the first term of the right-hand side of (A.25) cannot be positive, from
(A.25) and (A.26) we have the evaluation

+e,
T IV g0

<4 / N @)@ { ~ W ()" + 6ck (Wi (2)* — 3(ck)
32(1 +)

— Aoui () + !

AL () = 2e(P, () + (Ck)z)}dz, VW eBs.
(A.27)

Since 0<#,,(2)<1, if ¢ and 4 satisfy 32LZJFS)/1L<1, then the term in the
bracket of the right-hand side of (A.27), the biquadratic formula of ¥,
cannot be greater than x| (cx)?, where K’ is a constant which is independent
of z and k. Hence, we can take x| = Ax| [p 113,(2) dz, and obtain (A.23).
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Next, (A.24) can be proved as follows. By Hoélder’s inequality we see that
1
(E"IVusll3 = IVusl314]
1 1
SE IV D E IV usk — Va5

1 1
+ (E"[IVus 1529 E || Vs . — Vus|[37])%. (A.28)

But each term in the above expectation such as ||Vu3||§, [[Vuz o — Vu3||§ and

||Vu3,k||§ has an expression by means of multiple stochastic integrals, for
example

IVus3(,,)II3
32

- / ( / U = D@D — x) I — x2)
R® R*xR?
X J%(z’ - x'l)J%(z' —x5)dz dz’)

X dI/Vw(xl) dVVw(XZ) dVVw(xll) dWw(x/2)

* 4/4 (/z 7(‘]1(2* Z/))3’7M(Z)’7M(ZI)J%
R R°xR*

1
X (z = x1)J2(Z — X)) dz dz’)

X W) W) + 2 [

R x

- 'z = 2N @y (2) dz dz,
P-as., weQ. (A.29)

Using (A.1) and (A.2) and passing to a standard argument concerning the
calculation of the expectation of multiple stochastic integrals (cf. [52,56,
Section V.1]) by (A.29) and the corresponding expressions through multiple
stochastic integrals for the other terms, it is easy to see that there exists C)
which depends only on M such that

i 252 1
EIVus|l) D2 < G,

1
(E"[(IVusl 2 < €,
also for each o > 0 there exists C, which depends only on M such that
1
(E'(IVus e = Vus|3Y12 < Cok ™,

Since for random variables having multiple stochastic integral representa-
tion we can apply Nelson’s Hypercontractive bound (cf. [52, Theorem
1.22]), from the above inequalities we can deduce the following:

1
(E'(IVus|B) < (g — 1)*Cy, (A.30)
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1
EM(IVus DM < (g — 1> C, (A31)

1
(E'(IVus — Vs DI <(g = POk, g =2,3, ... (A.32)

Then, by (A.28), (A.30-A.32)(we conclude that there exists some C’ that
depends only on M such that

1
(E'IVus o3 = IVuslla)e < (g — P C'k™.

Moreover using that dusx(¢,,) and duz(¢,,) have expressions by means of
multiple stochastic integral we easily see that

1
(EM[|ouz e — dus3|"))a<(g — 1)*C'k*.

Combining these evaluations we obtain (A.24). [
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