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Abstract

Elliptic stochastic partial differential equations (SPDE) with polynomial and

exponential perturbation terms defined in terms of Nelson’s Euclidean free field on

Rd are studied using results by S. Kusuoka and A.S. Üstünel and M. Zakai

concerning transformation of measures on abstract Wiener space. SPDEs of this type

arise, in particular, in (Euclidean) quantum field theory with interactions of the

polynomial or exponential type. The probability laws of the solutions of such SPDEs

are given by Girsanov probability measures, that are non-linearly transformed

measures of the probability law of Nelson’s free field defined on subspaces of

Schwartz space of tempered distributions.
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Introduction

In this paper we study elliptic stochastic partial (pseudo)-differential
equations (SPDE) heuristically written as follows:

ð�Dþ 1ÞcðxÞ þ V ðcÞðxÞ ¼ ð�Dþ 1Þ
1
2 ’WðxÞ; xARd ; ð1Þ

where D is the d-dimensional Laplace operator, V is a (renormalized)
polynomial or exponential function, andW is an isonormal Gaussian process

on Rd (cf. [44], and for precise definition of ð�Dþ 1Þ
1
2 ’W see (2)). ’W is often

referred to as the Gaussian white noise on Rd (cf. [30]).
The existence problem for the solution c of (1), as a tempered distribution

valued random variable, and the problem of deriving probabilistic proper-
ties for the solution, such as characterizing a class of functionals of the
solution possessing the so-called reflection positivity, will be solved by
reducing these problems to the existence problem of the associated Girsanov
probability measure and the absolutely continuity of the measure with
respect to a reference measure (cf. (11)–(13)).
The investigation of such SPDEs is of importance in stochastic analysis as

well as in Euclidean quantum field theory.
(i) Stochastic analytic interest: In order to give a solution for an

ordinary stochastic differential equation (SDE), defining a stochastic

process on R1 taking values in Rd ; the method of change of variables

is a most powerful tool. By this method one can show the existence of a
solution by showing the existence of a probability measure, called the
associated Girsanov measure, that is the probability law of the solution. In
particular, if the problem is formulated in terms of processes adapted to
some filtration, then the existence of the associated Girsanov measure is
equivalent to the existence of a solution of a corresponding martingale

problem.
Similarly, if an SPDE is formulated on an abstract Wiener space and the

solution is assumed to be a random field on Rd ; then the existence problem
of the solution can be reduced to the existence problem for the associated
Girsanov measure (cf. [40], [55]). The existence of the Girsanov measures is
investigated by considering a change of variable formula. In [23] an existence

problem for an SPDE defined in a bounded domain DCRd ; ðd ¼ 1; 2; 3Þ;
with Dirichlet boundary conditions and with a dynamics characterized by

(1) with the RHS replaced by ’W is considered and solved by showing the
existence of an associated Girsanov measure. These authors also study the
Markov field property. In this work the solution is given as a random
variable taking values in the space of continuous functions on D: For related
work see also, e.g., [34], [7].
The equation given by (1) is an SPDE which belongs to a class of

equations that arises in physical, engineering or economical problems. In
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order to give naturally a Euclidean quantum field theoretic interpretation,

we have to set the RHS of (1) as ð�Dþ 1Þ
1
2 ’W (cf. Section 4). Also, in

order to make the equation meaningful, we have to take V in (1) to

be non-linear functions on S0ðRd Þ: As a consequence, this asks for
new mathematical developments: With such a noise term the solutions

of (1) become random variables which take values in S0ðRdÞ; the
Schwartz space of tempered distributions. For the non-linear per-
turbation terms V one introduces the notions of Wick power and
Wick exponential function of random variables (cf. [8,10,11]), which

have to be interpreted as measurable functions from S0ðRdÞ to S0ðRdÞ:
We make these notions adaptable to a change of variable formula on an
abstract Wiener space, which is a probability space defined by the

probability law of ð�Dþ 1Þ�
1
2 ’W; i.e. of Nelson’s Euclidean free field

measure. The formulation adopted here is an extension of that used in
[11,48].
(ii) Euclidean quantum field theoretic interest: Nelson’s Euclidean free field

is a Gaussian random variable fo taking values in S0ðRdÞ defined on a
probability space ðO;F;PÞ such that

E½/j1;f:S/j2;f:S� ¼
Z

Rd

ðð�Dþ 1Þ�1j1ÞðxÞj2ðxÞ dx

for real j1;j2ASðRdÞ:

By making use of an isonormal Gaussian process Wo on Rd ; we can give
/j;foSS;S0 a stochastic integral expression such that

/j;foSS;S0 ¼
Z

Rd

ðð�Dþ 1Þ�
1
2jÞðxÞ dWoðxÞ: ð2Þ

We may write this by

fo ¼ ð�Dþ 1Þ�
1
2 ’Wo;

or we can write this as a linear elliptic SP(pseudo)-DE such that

�Dfo þ fo ¼ ð�Dþ 1Þ
1
2 ’Wo: ð3Þ

For the convenience of the explanation we now use the notations adopted in
Theorem II.17 of Simon [52] and Section X.7 of Reed and Simon [47]. It is
possible to define the ‘‘time-zero field’’ of Nelson’s Euclidean free field fo

on Rd defined by (2) as follows:

/fo; df0g#fS for fASðRd�1Þ;

where dft0g ¼ dft0gðtÞ (the Dirac measure on t ¼ t0). Since of course df0g#f

is not inSðRdÞ; /fo; df0g#fS has to be understood, e.g., in the sense of an
L2ðPÞ-limit of /fo; d

e
f0g#fS with def0g an SðRÞ approximation of df0g: For

the existence of this limit see, e.g., [8,52]. (Also in the framework of an
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abstract Wiener space, /fo; hS is defined as an L2ðPÞ-random variable for

hAH�1 ¼ ð�Dþ 1Þ�
1
2L2ðRd Þ (cf. Remark 1.4 and Definition A.1 in the

appendix).
We denote symbolically the time-zero field of the Euclidean free field by

foð0; ~xxÞ; ~xxARd�1: Let H0 be the Hilbert space defined by

H0 �
Yn

i¼1

/fo; df0g#fiS j fiASðRd�1Þ; i ¼ 1;y; n; nAN

( )L2ðPÞ

:

By making use of the isonormal Gaussian process ’W on Rd�1 defined

on some probability space ðO0;F0;P0Þ and the Laplace operator Dd�1

on Rd�1; if we set *f ¼ ð�Dd�1 þ 1Þ
�1
4 ’W; then the Hilbert space

f
Qn

i¼1/ *f; fiS j fiASðRd�1Þ; i ¼ 1;y; n; nANg
L2ðP0Þ

can be identified with

H0: Let H0 be the operator onH0 which is the second quantization of the

operator ð�Dd�1 þ 1Þ
1
2 (cf. [52, Section I.4]):

H0 � dGðð�Dd�1 þ 1Þ
1
2Þ:

For jASðRdÞðjðt; ~xxÞ; tAR1; ~xxARd�1Þ let

F0ðjÞ ¼
Z

R1
eiH0t/fð0; 
Þ;jðt; 
ÞSe�iH0t dt;

then by Theorem II.17 of [52] the operator F0ðjÞ defined e.g. on the domain
of analytic vectors for H0 acting inH0 is the ‘‘free Hermitian scalar field of
mass 1’’ (the free Hermitian scalar field can also be constructed through the
Segal quantization, cf. [47, Section X7; also 17, Problem 8, Chapter 7,

p. 206]. The operator valued distribution denoted heuristically by F0ðt; ~xxÞ ¼
eiH0tfð0; ~xxÞe�iH0t satisfies the following functional equation (on a dense
domain in H0) (cf. [47, Theorem X42]):

@2

@t2
� Dd�1

� �
F0 þ F0 ¼ 0: ð4Þ

We have to notice that F0ðjÞ is an operator on H0: It commutes with

F0ðZÞ; ZASðRdÞ; only when the supports of j and Z are space like separated
in the sense of the Minkowski space, i.e. jt � sj2 � j~xx �~yyj2o0;
8ðt; ~xxÞ A supp½j�;8ðs;~yyÞ A supp½Z�; /fo; dftg#fS is a random variable in

L2ðO;PÞ (i.e. it is a multiplication operator), we have thus to strictly
distinguish between F0ðt; ~xxÞ and /fo; dftg#fS: In a sense which can be
made precise F0ðt; ~xxÞ is an analytic continuation of foðt; ~xxÞ; which is a
solution of (3), at the point t ¼ 0 taking the boundary value foð0; ~xxÞ ¼
F0ð0; ~xxÞ (cf. [41,42,52] for precise Euclidean and Markov field strategies in
the constructive quantum field theory). Also we should notice that the
differential operator on the left-hand side of (4) formally comes from the
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differential operator which appeared on the left-hand side of (3) by

exchanging its time component t by
ffiffiffiffiffiffiffi
�1

p
t:

Correspondingly (cf. [47, (X.89)]), a scalar quantum field fI with a self-
interaction V is supposed to satisfy, in the sense of operator-valued
distribution, on a dense domain of the relevant Hilbert space HI (cf. H0

defined above),

@2

@t2
� Dd�1

� �
FI þ FI þ V ðFI Þ ¼ 0: ð5Þ

By (3)–(5) we may naturally have an interest to the consideration of the
SPDE (1).
Baez et al. [18] give a definition for functional equations of operator-

valued distributions in the algebraic framework and call them ‘‘non-linear
quantized equations’’ (cf. [18, Section 8.8]). In this note we restrict our
considerations mainly to the analysis of Euclidean random fields. The study
of the time-zero field and the non-linear quantized equations, as well as the
discussions of the relations between our present results and the ones in [18],
will essentially be postponed to future work except for a remark in Section 4.
In the framework of Euclidean quantum field theory various SDEs have

been considered. Albeverio et al. [3,4] define a Euclidean random field by a
solution of an elliptic SPDE (without non-linear perturbation term) driven

by general white noise processes (including the Poisson noises) on Rd : In the
same note it has been shown that the constructed Euclidean field
corresponds to an indefinite metric quantum field with a non-trivial

interaction (of ‘‘non-polynomial type’’) (cf. [5,6,15,27] and references
therein). For other considerations about SDE taking values in the space
of distributions related to quantum fields see e.g. [9,14,19,22,33,43,49,50]
and references therein.
The organization of this paper is as follows:

In Section 1, we firstly define the Nelson’s Euclidean free field fo on Rd ;
its Wick powers and Wick exponential functions by making use of multiple
stochastic integrals with respect to the isonormal Gaussian process Wo on

Rd as follows (we use formal notations here: rigorous definition will be given
in Section 1)

foðxÞ ¼
Z

Rd

J
1
2ðx � yÞ dWoðyÞ ¼ ðJ

1
2 ’WoÞðxÞ;

: fp
a;o : ðxÞ ¼

Z
ðRd Þp

Jaðx � y1Þ?Jaðx � ypÞ dWoðy1Þ?dWoðypÞ;

p ¼ 2; 3;y;

: eefa;o : ðxÞ ¼
XN
p¼0

ep

p!
: fp

a;o : ðxÞ; xARd ; oAO;
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where Ja is the integral kernel of the pseudo-differential operator ð�Dþ
1Þ�a on Rd ; a and e are some real numbers. Briefly, on a complete
probability space ðO;F;PÞ; Wo is defined as a generalized random field on

Rd such that dWo ¼ ’Wo is Euclidean-invariant Gaussian white noise
random field (or random measure) in the sense of, e.g. [30].
In Theorem 1.1 it is shown that the above quantities are well defined as

random variables which take values in some subspace of the spaceS0ðRdÞ of
tempered distributions for suitably chosen a and e: More precisely, it is
shown that the Nelson’s free field satisfies

foA
\
b>d

\
a>d�2

4

Ba;b
d a:s:; ð6Þ

and for example if a ¼ d
4
then

: fp
a;o : A

\
b>d

\
a>0

Ba;b
d a:s:; ð7Þ

if in addition jejoa0ðdÞ; then

: eefa;o : A
\
b>d

\
a> e2d
4ða0ðdÞÞ

2

Ba;b
d a:s; ð8Þ

where Ba;b
d ¼ fðjxj2 þ 1Þ

b
4 J�af : fAL2ðRdÞg; and a0ðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð4pÞ

d
2Gðd

2
Þ

2

s
: We

remark that for d ¼ 2 these Wick powers, resp. Wick exponential, e.g.,
coincide with those discussed in [1,8,52].
Then, letting m be the probability law of Nelson’s free field fo; that is a

Borel probability measure on the topological vector space Ba;b
d (in fact a

Hilbert space), we define measurable functions tða;pÞ and tða;eeÞ from Ba;b
d to

Ba0 ;b
d ; which are random variables on ðBa;b

d ;BðBa;b
d Þ;mÞ; satisfying

tða;pÞðfoÞ ¼: fp
a;o :; ta;ee ðfoÞ ¼: eefa;o :; m-a:s:;

where a and a0 satisfy the conditions for a in (6) and(7) (or (8)), respectively.
Next, we note that the Gaussian probability measure m possesses the

structure of an abstract Wiener space, namely ðBa;b
d ; J1H; mÞ is an abstract

Wiener space, where H ¼ H�1 ¼ fh : h ¼ J�1
2f ; fAL2ðRdÞg; which is the

index set of Nelson’s free field.H is identified, via Riesz theorem, with the

Cameron–Martin space H1 by J1H ¼ H1: (The definitions, notions and
notations associated with the analysis on an abstract Wiener space, which
are used here, are found in Definitions A.1–A.3 and Remark A.1 in the
Appendix (also cf. Remark 1.4).)

As a consequence, on the abstract Wiener space ðBa;b
d ; J1H;mÞ for a non-

negative ‘‘space-cut-off function’’ ZMACN

0 ðRd Þ such that ZM ðxÞ ¼ 1 for
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jxjpM and ZMðxÞ ¼ 0 for jxjX2M ; the maps upðcÞ ¼ Ja�1
2ðZMtða;pÞðcÞÞ and

ueðcÞ ¼ Ja�1
2ðZMtða;eeÞðcÞÞ are well defined as measurable maps. Theorem 1.3

gives a sufficient condition for a; p and e under which up and ue become

H � C1 maps on this abstract Wiener space (cf. Definition A.3 and Remark
1.4).
In Section 2, we shall state some of the main results. For ZM as above and

lX0 on the abstract Wiener space ðBa;b
d ; J1H;mÞ we define the shift

T3ðcÞ ¼ cþ lJ1ðZMtða;3ÞðcÞÞ: ð9Þ

In Theorem 2.3 by making use of general results given by Kusuoka [37–39],
Shigekawa [51] and Üstünel and Zakai [55] we show the existence of a

probability measure n on ðBa;b
d ;BðBa;b

d ÞÞ; called the Girsanov probability
measure associated with m and T3; such that

En½f 3T3� ¼ Em½f �; 8fACbðB
a;b
d Þ; ð10Þ

where En and Em denote the expectation with respect to the probability
measures n and m; respectively. Since m is the probability law of Nelson’s free

field fo ¼ J
1
2 ’Wo; (9) and (10) say that there exists an isonormal Gaussian

process W on Rd such that

cþ lJ1ðZMtða;3ÞðcÞÞ ¼ J
1
2 ’W;

where c is a random variable with probability law n: This equation can be
written, similarly to (1), as

ð�Dþ 1Þcþ lZMtða;3ÞðcÞ ¼ ð�Dþ 1Þ
1
2 ’W: ð11Þ

In the same theorem we derive the explicit form of dn
dm; the Radon–

Nikodym density of the Girsanov measure n with respect to Nelson’s free
field measure m: In the case d ¼ 2 it is possible to take a ¼ 1

2
; then the

Radon–Nikodym density dn
dmðfÞ; which is a random variable (Wiener

functional) on ðBa;b
2 ; J1H; mÞ; is given by

dn
dm

ðfÞ ¼ qðT3ðfÞÞL1ðfÞL2ðfÞexp �l
Z

R2
ZMðxÞ : f4 : ðxÞ dx


 �
;

where qðT3ðfÞÞ; L1ðfÞ and L2ðfÞ are non-linear (also non-local) functionals

of fABa;b
2 such that qðT3ðfÞÞ ¼

1

xfT�1
3 ðT3ðfÞÞg

is the reciprocal of the

cardinality of the elements that are mapped to the common point T3ðfÞ by
the map T3 (multiplicity), L1ðfÞ ¼ jdet2ðIH�1 þ 3lZM ðxÞ : f2ðxÞ : dfxgðyÞÞj
is the absolute value of Carleman Fredholm determinant of the Hilbert

Schmidt operator appeared in the parentheses and L2ðfÞ ¼

exp f�l2
2

R
R2 ðJ

1
2ðZM : f3 :ÞðxÞ2 dxg (more precisely see Theorem 2.3 and
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Remark 2.3). On the other hand, the ðf4Þ2 Euclidean field with the space-
cut-off ZM is defined as the random field on R2 with the probability measure
nZM

such that (cf., e.g., Definition in Section V.1 of [52, pp. 141], [28]):

dnZM
ðfÞ ¼

1

ZM

exp �l
Z

R2
ZMðxÞ : f4 : ðxÞ dx


 �
dmðfÞ;

with the normalization contact ZM ¼ Em½expf�l
R

R2 ZM ðxÞ : f4 : ðxÞ dxg�:
Then there is a similarity between n and nZM

in the sense that their Radon–

Nikodym densities dn
dm; resp.

dnZM

dm ; have the common term expf�l
R
ZM :

f4 : dxg: But because of the existence of the non-linear term KðfÞ in dn
dm; we

have to distinguish n from nZM
(see Remark 2.3).

In Theorem 2.4, it is shown that the shift Te defined by TeðcÞ ¼
cþ lJ1ðueðcÞÞ is a strongly monotone shift on the abstract Wiener space, a
result which has an interest in its own, because Te is a non-linear

transformation on a space of distributions. In the same theorem by making
use of the general results for monotone shifts developed by Üstünel and
Zakai [55] in an abstract Wiener space setting and through the consideration
of the associated Girsanov probability measure we prove the existence of a
solution c such that

ð�Dþ 1Þcþ lZMtða;eeÞðcÞ ¼ ð�Dþ 1Þ
1
2 ’W: ð12Þ

In Corollary 2.5 the space-cut-off function ZM (or ‘‘infrared cut-off’’, in
physicist’s terminology) will be removed.
In Section 3, we derive a partial result for SPDEs of form (11) with tða;3Þ

replaced by tða;pÞ; pa3:
Section 4, contains two discussions concerning the problem of Euclidean

quantum field theory. One of them is a consideration of the so-called
reflection positivity property. In Theorem 4.1 for the probability measure n;
giving the distributions of the solutions of (11) or (12), and for the
corresponding shifts T ¼ T3 or Te; respectively, we see that

En
Yn

i¼1

/ji;TðycÞS

 ! Yn

i¼1

/ji;TðcÞS

 !" #
X0 ð13Þ

holds for any nAN and jiASðRdÞ ði ¼ 1;y; nÞ such that

supp½ji�Cfðt; ~xxÞARd : t > 0g; where y is the time reflection operator on
Rd : yf ðt; ~xxÞ ¼ f ð�t; ~xxÞ; ðt; ~xxÞAR � Rd�1: In order to conclude that the
Euclidean random field c with the probability measure n has the reflection
positivity property introduced in axiomatic Euclidean quantum field theory
(Hegerfeldt T-positivity, cf. [29]), we have to show that for the same
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jiASðRdÞ as above the following holds:

En
Yn

i¼1

/ji; ycS

 ! Yn

i¼1

/ji;cS

 !" #
X0:

Hence, (13) characterizes a sub-space of random variables on ðBa;b
d ; nÞ

consisting of elements which satisfy the reflection positivity property
(cf. Remark 4.1(i)).
In the same section, the consideration of the time-zero field corresponding

to cðt; ~xxÞ we investigate whether the random field cðt; ~xxÞ can be analytically
continued to a solution of the non-linear quantized equation (5) (cf. Remark
4.2(i)) or not.
The appendix contains the explanations of some fundamental notions and

notations associated with an abstract Wiener space and the proofs of
theorems and lemmas which were omitted in the main text.

1. Construction of non-linear H � C1 maps on Nelson’s free field

We shall first recall the definition of a stochastic process on a parameter
space D and its equivalent class.
(i) Let D be a locally convex topological vector space (TVS) which is

separable, and ðO;F;PÞ be a complete probability space. A family of complex-

valued random variables fCðj;oÞgjAD on ðO;F;PÞ is called as a stochastic

process with parameter space D:

(ii) Two stochastic processes fCðj;oÞgjAD and f *Cðj;oÞgjAD on ðO;F;PÞ
are said to be equivalent if

8jAD; PðfojCðj;oÞ ¼ *Cðj;oÞgÞ ¼ 1:

(iii) Two stochastic processes fCðj;oÞgjAD and f *Cðj;oÞgjAD on ðO;F;PÞ
are said to be strongly equivalent if

Pðfoj8jAD; Cðj;oÞ ¼ *Cðj;oÞgÞ ¼ 1:

Let SðRdÞ be the Schwartz space of rapidly decreasing test functions
equipped with usual topology. SðRdÞ is a nuclear space. Let S0ðRdÞ be its
topological dual.

Let D be the d-dimensional Laplacian, and set Ja ¼ ð�Dþ m2Þ�a for some
fixed m > 0: Precisely Ja is the pseudo-differential operator with the symbol

ðjxj2 þ m2Þ�a; xARd :We denote the kernel representation of Ja by Jaðx � yÞ :
ðJajÞðxÞ ¼

R
Rd Jaðx � yÞjðyÞ dy; for jAS: This is defined by the Fourier

inverse transform such that

JaðxÞ ¼ ð2pÞ�d

Z
Rd

e

ffiffiffiffiffi
�1

p
x
xðjxj2 þ m2Þ�a dxAL1ðRd ; ldÞ:
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An integral representation of this Green kernel by means of a modified
Bessel function, which also puts into evidence its regularity, will be described
in the appendix.

For each a; b; d > 0 let Ba;b
d be the linear subspace of S0ðRdÞ defined by

Ba;b
d ¼ fðjxj2 þ 1Þ

b
4J�af : fAL2ðRd ; ldÞg; ð14Þ

where l denotes the Lebesgue measure on Rd : Ba;b
d is a separable Hilbert

space with the scalar product

/ujvS ¼
Z

Rd

Jaððjxj2 þ 1Þ�
b
4 uðxÞÞ Jaððjxj2 þ 1Þ�

b
4vðxÞÞ dx; u; vABa;b

d : ð15Þ

Note that if a; b; d > 0; then C0ðRdÞCBa;b
d : From the consideration of

cylinder sets constructed from C0ðRd Þ and Ba;b
d it is easy to see that

BðC0ðRd-RÞÞ ¼ A-C0ðRd-RÞ :AABðBa;b
d Þ

n o
; ð16Þ

where BðC0ðRd-RÞÞ and BðBa;b
d Þ are the Borel s-fields of C0ðRdÞ and Ba;b

d ;
respectively (this is obvious because the Borel s field of a locally convex
topological vector space which is separable is generated by its cylinder sets,
cf. [54], [56]).
We use the same terminology and notations concerning multiple

stochastic integrals, abstract Wiener spaces and transformations between
abstract Wiener spaces which are used in [44,55].
Let ðO;F;PÞ be a complete probability space and consider an isonormal

Gaussian process W ¼ fW ðhÞ; hAL2realðR
d ; ldÞg; where ld denotes the

Lebesgue measure on Rd and L2real is the real L2 space: W is a centered

Gaussian family of random variables on ðO;F;PÞ such that

E½W ðhÞW ðgÞ� ¼
Z

Rd

hðxÞ gðxÞld ðdxÞ; h; gAL2realðR
d ; ldÞ;

where E denotes the expectation with respect to the probability measure P:
O can be taken to be the complete separable metric space RN equipped with
the metric

dðx; yÞ ¼
XN
n¼1

2�n min fjxn � ynj; 1g; x ¼ ðx1; x2; x3;yÞ;

y ¼ ðy1; y2; y3;yÞ;

P ¼ NN

0;1 ð17Þ

and F to be the completion of the Borel s-field of O with respect to P:

For AABðRdÞ such that ldðAÞoN we set

W ðAÞ ¼ W ðwAÞ;

where wA is the indicator function of the set A:
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Then, for hAL2realðR
d ; ldÞ the random variable W ðhÞ can be regarded as a

stochastic integral, and is denoted by

W ðhÞ ¼
Z

Rd

h dW :

In the sequel we sometimes use the notationW ðjÞ ¼ /j; ’WSS;S0 for jAS:
The multiple stochastic integrals, such as (24), are defined in the usual way.
Namely a multiple stochastic integral is the limit of a sequence of multiple
sums of Gaussian random variables such that

P
i1;y;ip

ai1;y;ip W ðAi1Þ �?�

W ðAipÞ; where ai1;?;ip ¼ 0 if ij ¼ ik for some jak (i.e. by taking sums with

elimination of all diagonal parts), for a precise definition of multiple
stochastic integral, cf. [44, Section 1.1.2].
We denote the Fourier and Fourier inverse transform of a function j;

respectively, by F½j� and F�1½j�; which are defined by

F½j�ðxÞ ¼
Z

Rd

e�
ffiffiffiffiffi
�1

p
x
xjðxÞ dx;

F�1½j�ðxÞ ¼ ð2pÞ�d

Z
Rd

e

ffiffiffiffiffi
�1

p
x
xjðxÞ dx for jASðRdÞ:

We sometimes denoteF½j� ¼ #j: Let Z1ACN

0 ðRdÞ be such that Z1ðxÞ ¼ Z1ðyÞ
for jxj ¼ jyj and

0pZ1ðxÞp1; Z1ðxÞ ¼
1 jxjp1;
0 jxjX2;

(
ð18Þ

and let ZkðxÞ ¼ Z1ð
x
k
ÞACN

0 ðRd Þ; k ¼ 1; 2; 3;y: Also define rACN

0 ðRdÞ as
follows:

rðxÞ ¼
C exp �

1

1� jxj2

� �
jxjo1;

0 jxjX1;

8><
>:

where the constant C is taken to satisfyZ
Rd

rðxÞ dx ¼ 1: ð19Þ

Let

rkðxÞ ¼ kdrðkxÞ; k ¼ 1; 2; 3;y :

For a > 0 we define Ja
kASðRdÞ; k ¼ 1; 2; 3;y by

Ja
k ðxÞ ¼

Z
Rd

JaðyÞrkðx � yÞ dy: ð20Þ

Also

F a
k ðx; y1;y; ypÞ ¼ ðZkðxÞÞ

pJa
k ðx � y1Þ?Ja

k ðx � ypÞ; ð21Þ
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and

F aðx; y1;y; ypÞ ¼ Jaðx � y1ÞyJaðx � ypÞ; p ¼ 1; 2; 3;y : ð22Þ

Then we see that the function F a
k and Fa are symmetric in the last p variables

ðy1;y; ypÞ and

F a
kASððRdÞpþ1Þ; F a

k ðx; y1;y; ypÞ ¼ 0 for jxjX2k: ð23Þ

For each a > 0; pX1 and kX1 we define the random variable :k fp
a;o : as a

multiple stochastic integral such that

:k fp
a;o : ðxÞ ¼

Z
ðRd Þp

Fa
k ðx; y1;y; ypÞ dWoðy1Þ?dWoðypÞ: ð24Þ

Remark 1. (i) Using the relationship between Hermite polynomials of
Gaussian random variables and multiple stochastic integrals (cf. [44,
Theorem 1.1.2]) we see that the following equality holds (in the sense of

two equivalent processes on RdÞ:

:k fp
a;o : ðxÞ ¼ p!ðZkðxÞÞ

p
X½p2�
n¼0

ð�1
2
ca;kÞ

n

n!ðp � 2nÞ!
ðkfa;oðxÞÞ

p�2n;

where

ca;k ¼
Z

Rd

ðJa
k ðyÞÞ

2 dy:

In Theorem 1.1 it is shown that limk-N :k fp
a;o : exists as a Ba;b

d -valued

random variable (for suitable a; a; b and p). In particular, when d ¼ 2;
limk-N :k fp

1
2
;o

:¼: fp
1
2
;o

: exists for all p ¼ 1; 2; 3;y . Moreover by (27) we

see that the following holds:

E½/f1
2
; h1S?/f1

2
; hpS/ : fp

1
2

:; gS�

¼ p!

Z
ðR2Þp �R2

Yp

j¼1

hjðxjÞJ1ðxj � yÞgðyÞ dx dy;

for hj ; gASðR2Þ; j ¼ 1; 2; 3;y; p; where we denote : f11
2

: by f1
2
: Hence :

fp
1
2
;o

: satisfies the definition of (Euclidean) Wick power of Nelson’s free field

on R2 introduced, e.g., in the Definition in Section V.1 of Simon [52, p. 135].
We have to distinguish strictly the Euclidean Wick power : fp : defined

here, which we considered throughout the paper, from : Fp
0 :; the Wick

power (renormalized product) of the free Hermitian scalar field operator F0
on the physical Hilbert space (F0 is the operator-valued distribution
satisfying (4), which has been reviewed in the Introduction, and is an
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analytic continuation of the Nelson’s free field f1
2
by taking its boundary

value, cf., e.g., [17,35] and in the book [18], also Section 4 in this paper).
(ii) The reason we adopt the expression of : fp : by means of the multiple

stochastic integral is that by this expression the random variables : fp : can
be studied on a same probability space ðO;F;PÞ and also their support
(path) properties are easily established (cf. Theorem 1.1).

Remark 1.2 (Continuous version of :k fp
a :). For each fixed kAN it is easy

to see that f:k fp
a;o : ðxÞgxARd satisfies the Kolmogorov’s continuity criterion

for processes on Rd (cf., e.g., [44, Section A.3]), and has an equivalent

process f:k *f
p

a;o : ðxÞgxARd which is a C0ðRd-RÞ-valued random variable:

Pð:k fp
a;o : ðxÞ ¼:k *f

p

a;o : ðxÞÞ ¼ 1; 8xARd ;

Pð:k *f
p

a;o : AC0ðRd-RÞÞ ¼ 1:

We always take f:k fp
a;o : ðxÞgxARd as its continuous modification f:k *f

p

a;o :

ðxÞgxARd and drop the tilde in the following. Then by (16) f:k fp
a;o : ðxÞgxARd

is understood as a Ba;b
d ða; bX0Þ valued random variable on ðO;F;PÞ:

In the next Theorem 1.1 we give multiple stochastic integral expressions to
Wick power and the Albeverio H�egh–Krohn Wick exponential (cf.

[8,10,11]) of Nelson’s Euclidean free field, which are S0-valued random
variables on ðO;F;PÞ: (For the consideration of the Albeverio H�egh–
Krohn trigonometric functions see Remark 1.5 in this section and Theorem
3.1 in Section 3).

Theorem 1.1. (i) Suppose that the positive integer p and the positive real

numbers a; b and a satisfy

min 1;
4a

d

� �
þ p �min 1;

4a
d

� �
> p; b > d: ð25Þ

Then f:k fp
a;o :gkAN is a Cauchy sequence in L2ðO-Ba;b

d ;PÞ (cf. Remark 1.2)

and there exists a Ba;b
d -valued random variable : fp

a;o : AL2ðO-Ba;b
d ;PÞ such

that

lim
k-N

Z
O
jj :k fp

a;o : � : fp
a;o : jj2

Ba;b
d

PðdoÞ ¼ 0; ð26Þ

Pð/ : fp
a;o :;jSS0 ;S ¼ lp;oðjÞÞ ¼ 1; 8jASðRdÞ; ð27Þ

where

lp;oðjÞ ¼
Z
ðRd Þp

Z
Rd

jðxÞ Jaðx � y1Þ?Jaðx � ypÞ dx

� �
dWoðy1Þ? dWoðypÞ:
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(ii) Let aXd
4

and jejoa0ðdÞ; where a0ðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð4pÞ

d
2Gðd

2
Þ

2

r
: For

Fk;lðx; y1;y; ypÞ ¼ ðZlðxÞÞ
pJa

k ðx � y1Þ?Ja
k ðx � ypÞ; set

:k;l f
p
a;o : ðxÞ ¼

Z
ðR2Þp

Fk;lðx; y1;?; ypÞ dWoðy1Þ?dWoðypÞ;

and define : eek;lfa;o :¼
P

N

p¼0
ep

p! :k;l f
p
a;o : : Then f: eek;lfa;o :gkAN is a Cauchy

sequence in L2ðO-Ba;b
d ;PÞ and there exists a Ba;b

d -valued random variable

: eefa;o : such that

lim
k-N

lim
l-N

Z
O
jj : eek;lfa;o : � : eefa;o : jj2

Ba;b
d

PðdoÞ ¼ 0; ð28Þ

where b is an arbitrary positive number such that b > d and a is any positive

number such that

e2d

4ða0ðdÞÞ
2
oao

d

4
:

The proof of Theorem 1.1 will be given in the appendix. By Remark 1.2

and (16), since the C0ðRd-RÞ-valued random variable :k fp
a;o : can be

understood as a Ba;b
d ða; b > 0Þ-valued random variable by making use of its

multiple stochastic integral expression, it is easy to see that this random

variable is in L2ðO-Ba;b
d ;PÞ: Then by making use of a Fubini type theorem

concerning the stochastic integral, resp. Lebesgue integral, on Rd ; the
theorem follows.

In the sequel we shall denote :k f1a;o : and : f1a;o : by kfa;o and fa;o;

respectively. In particular when a ¼ 1
2
; then for each given d the S0ðRdÞ-

valued random variable (cf. Theorem 1.1) f1
2
;o
is a stochastic integral

expression for Nelson’ s free Euclidean field, we denote it simply by fo and
we write

fo ¼ J
1
2 ’Wo:

Now, by making use of the above results and notations let us study non-
linear shifts on Nelson’s free field in the context of abstract Wiener spaces.

For given d; let m be the probability law of fo ¼ f1
2
;o
: Since fo is a Ba;b

d -

valued random variable (a > d�2
4
; b > d by Theorem 1.1) on ðO;F;PÞ; m is a

probability measure on Ba;b
d :

mðAÞ ¼ PðfojfoAAgÞ; AABðBa;b
d Þ a >

d � 2
4

; b > d

� �
: ð29Þ
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We remark that for the complete probability space ðO;F;PÞ defined by
(17), the following holds (cf. for e.g. [31]): If we let

Bm ¼ fAjfojfoAAgAFg;

then the probability space ðBa;b
d ;Bm;mÞ is a complete probability space, i.e.

Bm ¼ BðBa;b
d Þ

m
¼ the completion of BðBa;b

d Þ with respect to m: ð30Þ

Hence, the map tk defined by (33) below is a Ba0;b
d -valued random variable

on ðBa;b
d ;Bm;mÞ:

Theorem 1.2. (i) Suppose that a;b; a0; p and b satisfy

min 1;
4a

d

� �
þmin 1;

2

d

� �
> 1; ð31Þ

min 1;
4a0

d

� �
þ p �min 1;

4b
d

� �
> p; b > d: ð32Þ

For each k let tk ¼ tðb;pÞ;k be the measurable map from Ba;b
d to Ba0 ;b

d

defined by

tkðcÞðxÞ ¼ p!ðZkðxÞÞ
p
Xp
2

� �
n¼0

ð�1
2
cb;kÞ

n

n!ðp � 2nÞ!

ð/J
b
k ðx � 
Þ; ðJ�1

2cÞð
ÞSS;S0 Þ p�2n; for cABa;b
d ; ð33Þ

where

cb;k ¼
Z

Rd

ðJb
k ðyÞÞ

2 dy:

Then

Pðfo j tkðfoÞðxÞ ¼:k fp
b;o : ðxÞ 8xARdgÞ ¼ 1; ð34Þ

the Ba0;b
d -valued measurable functions ftkðcÞg on ðBa;b

d ;Bm; mÞ form a

Cauchy sequence in the Banach space L2ðBa;b
d -Ba0 ;b

d ; mÞ; and there

exists a BðBa0 ;b
d Þ=Bm-measurable function t ¼ tðb;pÞAL2ðBa;b

d -Ba0 ;b
d ; mÞ such

that

lim
k-N

Z
Ba;b

d

jjtkðcÞ � tðcÞjj2
Ba0 ;b

d

mðdcÞ ¼ 0; ð35Þ

or equivalently

lim
k-N

Z
O
jjtkðfoÞ � tðfoÞjj

2

Ba0 ;b
d

PðdoÞ ¼ 0: ð36Þ

Moreover one has

tðfoÞ ¼: fp
b;o :; P-a:s:; oAO: ð37Þ
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(ii) For bXd
4

and jejoa0ðdÞ (with a0ðdÞ defined in Theorem 1.1) and for each

k, l let

tk;l
ðb;eeÞðcÞ ¼

XN
p¼0

ep

p!
tðpÞ;k;lðcÞ;

where tðpÞ;k;l is defined by (33) in which Zk is replaced by Zl : Then by Theorem

1.1 there exists a BðBa0;b
d Þ=Bm-measurable function tðb;eeÞAL2ðBa;b

d -Ba0 ;b
d ; mÞ

such that

lim
k-N

lim
l-N

Z
Ba;b

d

jjtk;l
ðb;eeÞðcÞ � tðb;eeÞðcÞjj2Ba0 ;b

d

mðdcÞ ¼ 0; ð38Þ

and the following holds:

tðb;eeÞðfoÞ ¼: eefb;o :; P-a:s:; oAO; ð39Þ

where a satisfies (31) and a0 is any number satisfying e2d
4ða0ðdÞÞ2

oa0od
4

and b > d:

By the definition of Wick power and multiple stochastic integral (34) can
easily be proved. The existence of t is proved by using Theorem 1.1 and (34),
these proofs will be given in the appendix.

Remark 1.3. By Theorem 1.2 we have the following identifications: The

random variable t
ð1
2
;1Þ
ðcÞ on the probability space ðBa;b

d ;Bm;mÞ can be

identified with the random variable fo on the probability space ðO;F;PÞ: m
is then Nelson’s free field measure, t

ð1
2
;1Þ
ðcÞ is Nelson’s free field (cf. [41,52],

also cf. (40) and Remark 1.4). Similarly (for d ¼ 2) the random variable:
fp
1
2
;o
: on ðO;F;PÞ can be identified with Nelson’s free field Wick power

t
ð12;pÞ

ðcÞ on the probability space ðBa;b
d ;Bm;mÞ:

Next, we shall see that Nelson’s Euclidean free field possesses
the structure of an abstract Wiener space, and then show that the
maps tðb;pÞ and tðb;eeÞ on the abstract Wiener space have sufficient

regularities. Definitions of the notations and terminologies concerning an
abstract Wiener space (e.g., definitions of an abstract Wiener space, Gross–
Sobolev derivative r; divergence operator d; the Sobolev space Dp;k and

H � C1 maps) can be found in Definitions A.1–A.3 and Remark A.1 in the
appendix.

As usual let Hg ¼ HgðRd Þ be the Sobolev space on Rd such that

HgðRdÞ ¼ fAS0ðRdÞ
Z

Rd

jFfj2ðxÞð1þ jxj2Þg dxoN

����

 �

:
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In order to make the notations simple, we equip HgðRdÞ with the inner
product

/u; vSHg ¼ ð2pÞ�d

Z
Rd

ðFuÞðxÞðFvÞðxÞðm2 þ jxj2Þg dx

for a given constant m > 0 (interpreted as ‘‘mass parameter’’).

Then by Theorem 1.1 for a > d
4
� 1
2
we see that ðBa;b

d ;mÞ is an abstract
Wiener space and one has, for jASðRdÞ:Z

Ba;b
d

e

ffiffiffiffiffi
�1

p
/c;jSS0 ;SmðdcÞ

¼
Z
O
exp

ffiffiffiffiffiffiffi
�1

p Z
Rd

Z
Rd

jðxÞJ
1
2ðx � yÞ dx

� �
dWoðyÞ

�  
PðdoÞ

¼ exp �
1

2
jjjjj2H�1

� �
¼ exp �

1

2
jjJ1jjj2H1

� �
: ð40Þ

The inclusion map i :H�1-Ba;b
d defined by

iðhÞ ¼ J1h; hAH�1 ð41Þ

is continuous and iðH�1Þ ¼ H1 is dense in Ba;b
d : By this we can identify H�1

with H1; and we have the following continuous injection (cf. Definition A.1
in the appendix):

ðBa;b
d Þn+H�1DH1+Ba;b

d :

Setting

H ¼ H�1

we will consider the abstract Wiener space ðBa;b
d ; iðHÞ;mÞ with Cameron–

Martin space

iðHÞ ¼ J1H�1 ¼ H1: ð42Þ

We then apply the results given by [55] concerning the (non-linear) shifts on
Wiener spaces to the maps t defined above.

Remark 1.4. Nelson’s Euclidean free field is defined originally as a Gaussian

process indexed byH ¼ H�1 (cf. [41]), i.e. Gaussian process with the index

set H�1 of which characteristic function is

exp �
1

2
jjjjj2H�1

� �
; jAH�1 ðcf : ð40ÞÞ:

By this, here we prefer to denote the Cameron–Martin space by iðHÞ; and
denote the abstract Wiener space by ðBa;b

d ; iðHÞ;mÞ: Then our calculus on the
abstract Wiener space will be performed through H:
By remarking that the Cameron–Martin space H (in the present case

H ¼ H1) is identified with its dual space denoting Hn; and not explicitly
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denoting the identity map i; then the general statements concerning an
abstract Wiener space will be simplified and clarified. For e.g., if a shift T on
an abstract Wiener space is defined by TðcÞ ¼ cþ vðcÞ; where v is a
Cameron–Martin space-valued random variable (i.e. in the present case it is

an H1-valued random variable), then the properties of T ; the corresponding
Girsanov measure (cf. Section 2), and the Radon–Nikodym densities can be
expressed without complicated notations. We will formulate a shift T on the

abstract Wiener space ðBa;b
d ; iðHÞ; mÞ as follows: TðcÞ ¼ cþ iðuðcÞÞ; where u

is a random variable that takes values in the dual space of the Cameron–

Martin space (i.e. it is anH ¼ H�1-valued random variable, and then iðuÞ ¼
J1u is an H1-valued random variable). By introducing explicitly the identity
map i we can interpret the shift T as an inverse operator of a differen-

tial operator with a non-linear perturbation term: TðcÞ ¼ cþ ð�Dþ
m2Þ�1uðcÞ: Accordingly, we can consider the SPDEs on Nelson’s Euclidean
free field through such shift T :
Since, the identity map i plays the crucial role in the present study on

the SPDEs on the abstract Wiener space, we give the definitions and
notions corresponding to the abstract Wiener space by denoting ex-
plicitly the identity map i in Definitions A.1–A.3 and Remark A.1 in the
appendix.
We should also notice that the essential elements in the abstract Wiener

space are the Banach space Ba;b
d ; the Gaussian measure m on it and the

Cameron–Martin space H1 (or its continuous dual Hilbert spaceH ¼ H�1

with the continuous injection i). Then, the Hilbert space, on which the
calculus are performed, can be taken rather flexibly, as far as the continuous
injection i is specified (cf. [44, Section 4.1], where by giving a continuous

injection i from L2ðRd ; ldÞ to the Cameron–Martin space of an abstract
Wiener space, calculus on the abstract Wiener space is carried out on

L2ðRd ; ldÞ).

In order to make the subsequent discussions clear we shall fix nice
representatives for the random variables tðb;pÞ and tðb;eeÞ:

Definition 1.1 (Representatives for tðb;eeÞ and tðb;pÞ). (i) By (38) there exists a

BðBa0;b
d Þ=Bm-measurable function tðb;eeÞAL2ðBa;b

d -Ba0 ;b
d ; mÞ; a subsequence

ftkj ;li
ðb;eeÞg of ft

k;l
ðb;eeÞg and a set Bðb; eÞABm satisfying mðBðb; eÞÞ ¼ 1 such that

lim
kj-N

lim
li-N

jjtkj ;li
ðb;eeÞðcÞ � tðb;eeÞðcÞjj2Ba0 ;b

d

¼ 0; 8cABðb; eÞ:

Denote by %Bðb; eÞ the set consisting of all cABa;b
d such that the limit

limkj-N limli-N tkj ;li
ðb;eeÞðcÞ exists in Ba00 ;b

d for some a0pa00: Then %Bðb; eÞ is
Bm-measurable. In the sequel we fix a representative %tðb;eeÞ of tðb;eeÞ defined
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as follows:

%tðb;eeÞ ¼
limkj-N limli-N tkj ;li

ðb;eeÞðcÞ; cA %Bðb; eÞ;

0 elsewhere:

(

%tðb;eeÞ will be simply denoted by tðb;eeÞ
(ii) For each p by (35) we can take subsequences ftðb;1Þ;kj

g;y; ftðb;pÞ;kj
g

and a set Bðb; pÞABm satisfying mðBðb; pÞÞ ¼ 1 such that

lim
kj-N

jjtðb;qÞ;kj
ðcÞ � tðb;qÞðcÞjj2Ba;b

d

¼ 0; 8cABðb; pÞ; q ¼ 1;y; p:

We denote by %Bðb; pÞ the set of all cABa;b
d such that the limits

limkj-N tðb;qÞ;kj
ðcÞ exist, q ¼ 1;y; p; in Ba00;b

d for some apa00: Then %Bðb; pÞ
is Bm-measurable. In the sequel we fix a representative %tðb;pÞ of tðb;pÞ defined
as follows:

%tðb;pÞ ¼
limkj-N tðb;pÞ;kj

ðcÞ; cA %Bðb; pÞ;

0 elsewhere:

(

%tðb;pÞ will be simply denoted by tðb;pÞ:

Theorem 1.3 (Polynomial and exponential H � C1 maps). Let b > d and a

be a number such that a > d
4
� 1
2
: Let ðBa;b

d ; iðHÞ;mÞ be the abstract Wiener

space defined above, and denote the ‘‘Gross–Sobolev derivative’’ and

‘‘divergence’’ operators on ðBa;b
d ; iðHÞ; mÞ by r and d; respectively (cf.

Definition A.2). For MX0 let ZM be the space-cut-off such that ZM ðxÞ ¼
Z1ð

x
M
Þ (cf. (18)).

ði:11Þ Let the integer p and the real number b > 0 satisfy

b >
d

4

p þ 1
p þ 2

: ð43Þ

Then the map upðcÞ ¼ Jb�1
2ðZMtðb;pÞðcÞÞ (H-valued Wiener functional) is an

element of D2;kðHÞ (8kX1) (cf. Definition A.2), and the following holds:

rupðcÞðx; yÞ ¼ p/ZM ; tðb;p�1ÞðcÞð
ÞJ
b�1
2ð
 � xÞJb�1

2ð
 � yÞSS;S0

AL2ðH#H; mÞ:

Let Bðb; pÞ be as in Definition 1.1-(ii) for these p and b; then mðBðb; pÞÞ ¼ 1 and

Bðb; pÞ þ H1C %Bðb; pÞ:
The divergence of up is given by

dupðcÞ ¼ /ZM ; tðb;pþ1ÞðcÞSS;S0 ; m-a:s:; cABa;b
d : ð44Þ
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ði:21Þ If

b >
d

4

p � 2
p � 1

þ
2

3ðp � 1Þ

� �
ð45Þ

(which is a particular case of i: 11Þ), then

rupðcþ iðhÞÞðx; yÞ

¼ p
Xp�1
q¼0

p � 1

q

 !
/ZM ; ðJb�1

2ðiðhÞÞÞqtðb;p�1�qÞðcÞð
Þ

� Jb�12ð
 � xÞJb�12ð
 � yÞSS;S0 ; 8cABðb; pÞ; 8hAH; ð46Þ

up is an H � C1 map on ðBa;b
d ; iðHÞ;mÞ (cf. Definition A.3):

H3h/rupðcþ iðhÞÞAH#H is continuous for all cABðb; pÞ: ð47Þ

(ii) Let bXd
4 and set ueðcÞ ¼ Jb�1

2ðZMtðb;eeÞðcÞÞ:
ðii:11Þ Suppose that jejoa0ðdÞ; then the map ue is an element of D2;1ðHÞ

(cf. Definition A.2):

rueðcÞ ¼ e/ZMð
Þ; tðb;eeÞðcÞð
ÞJ
b�1
2ð
 � xÞJb�1

2ð
 � yÞSS;S0AL2

� ðH#H; mÞ: ð48Þ

The divergence of ue is given by

dueðcÞ ¼ ZM ;
XN
p¼0

ep

p!
tðb;pþ1ÞðcÞ

* +
S;S0

; m-a:s:; cABa;b
d : ð49Þ

ðii:21Þ Suppose that

jejo
a0ðdÞffiffiffi
2

p : ð50Þ

Let Bðb; eÞ be as in Definition 1.1(i). Then Bðb; eÞ þ H1C %Bðb; eÞ and ue is an

H � C map on ðBa;b
d ; iðHÞ;mÞ (cf. Definition A.3):

H3h/ueðcþ iðhÞÞAH is continuous for 8cABðb; eÞ:

ðii:31Þ Suppose that

jejo
a0ðdÞffiffiffi
3

p ; ð51Þ

then ue is an H � C1 map on ðBa;b
d ; iðHÞ;mÞ (cf. Definition A.3):

H3h/rueðcþ iðhÞÞAH#H is continuous for all cABðb; eÞ;

rueðcþ iðhÞÞ ¼ e/ZM ð
Þ; ee
%hð
Þtðb;eeÞðcÞð
ÞJ

b�1
2ð
 � xÞJb�1

2ð
 � yÞSS;S0

8cABðb; eÞ; 8 %h ¼ Jb�1
2ðiðhÞÞ with hAH:
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In the case b ¼ 1
2 we take Jb�1

2ðxÞ ¼ df0gðxÞ (with df0g the Dirac point measure

at f0g).

This theorem can be proved by a simple application of Fourier transforms
and Young’s inequality, see the proof in the Appendix and Remark A.1.

Remark 1.5 (Measurable maps corresponding to the Wick trigonometric
functions). Suppose that the numbers b and e satisfy the assumptions of
Theorem 1.3.ðii:11Þ (i.e. bXd

4
; jejoa0ðdÞ with a0ðdÞ defined in Theorem

1.1(ii)). Then similarly as in Theorem 1.2(ii) it is possible to define

measurable maps tðb;sinÞ and tðb;cosÞ on Ba;b
d such that

tðb;sinÞðcÞ ¼ lim
k-N

lim
l-N

XN
p¼0

ð�1Þ pe2pþ1

ð2p þ 1Þ!
tð2pþ1Þ;k;lðcÞ;

tðb;cosÞðcÞ ¼ lim
k-N

lim
l-N

XN
p¼0

ð�1Þ pe2p

ð2pÞ!
tð2pÞ;k;lðcÞ;

where for given bXd
4
the map tðpÞ;k;lðcÞ appearing on the right-hand side is

defined by (33) in which Zk is replaced by Zl :
These are, respectively, the expression of the Albeverio H�egh–Krohn sin

and cos perturbations (cf. [10]) by means of random variables on the Wiener

space ðBa;b
d ; iðHÞ;mÞ: Moreover it is possible to show that (cf. the proof

of Theorem 1.3) the maps usðcÞ ¼ Jb�1
2ðZMtðb;sinÞðcÞÞ resp. ucðcÞ ¼

Jb�1
2ðZMtðb;cosÞðcÞÞ are elements of D2;1ðHÞ; H � C; resp.H � C1 continuous

(cf. Definitions A.2 and A.3) under the same assumptions of tðb;eeÞ given in
Theorem 1.3(ii).

Definition 1.2. For uAD2;1ðHÞ and lAR we define

LluðcÞ ¼ det2ðIH þ lruðcÞÞ exp �lduðcÞ �
l2

2
juðcÞj2H

� �
; ð52Þ

where det2ðIH þ lruðcÞÞ denotes the Carleman–Fredholm determinant of
the Hilbert–Schmidt operator lruðcÞAH#H (cf. Definition A.2) and
j jH denotes the norm of the Hilbert space H:

2. Main results for SPDEs with cubic and exponential perturbations

In this section we shall consider elliptic SPDEs on Rd formally given by

ð�Dþ m2ÞcðxÞ þ lZM ðxÞ : c3ðxÞ :¼ ð�Dþ m2Þ
1
2 ’WðxÞ; xARd ; ð53Þ
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resp.

ð�Dþ m2ÞcðxÞ þ lZM ðxÞ : eecðxÞ :¼ ð�Dþ m2Þ
1
2 ’WðxÞ; xARd ; ð54Þ

where ZM ðxÞ ¼ Z1ð
x

M
Þ is the ‘‘space-cut-off’’ defined by (18), and W is an

isonormal Gaussian process on Rd : Using the measurable maps defined by
Theorem 1.2 and Definition 1.1, the above SPDEs can be written in the
following form:

ð�Dþ m2ÞcðxÞ þ lZM ðxÞt
ð1
2
;3Þ
ðcÞðxÞ ¼ ð�Dþ m2Þ

1
2 ’WðxÞ; xARd ; ð55Þ

resp.

ð�Dþ m2ÞcðxÞ þ lZM ðxÞt
ð1
2
;eeÞ

ðcÞðxÞ ¼ ð�Dþ m2Þ
1
2 ’WðxÞ; xARd : ð56Þ

We reduce the existence problem of the solution of (55), resp. (56), to the
existence of corresponding Girsanov measures. We shall adopt the notion of
‘‘Girsanov measure’’ given in Section 1.3 of [55] for our problem as follows.
Let S be a topological space and BðSÞ be its Borel s-field. Let m be a
complete probability measure on ðS;BðSÞ

m
Þ; and let T be a measurable map

such that T : ðS;BðSÞ
m
Þ/ðS;BðSÞÞ; where BðSÞ

m
¼‘‘the completion of BðSÞ

with respect to m’’. A signed measure n on ðS;BðSÞ
m
Þ will be called as a

‘‘Girsanov measure on ðS;BðSÞ
m
Þ associated with m and T’’ if and only if it

satisfiesZ
S

f ðTfÞ dnðfÞ ¼
Z

S

f ðfÞ dmðfÞ for any bounded measurable

f : ðS;BðSÞÞ/ðR;BðRÞÞ: ð57Þ

In particular if such a signed measure n is a probability measure on
ðS;BðSÞ

m
Þ; then this will be called the ‘‘Girsanov probability measure on

ðS;BðSÞ
m
Þ associated with m and T’’.

Remark 2.1. (i) If a ‘‘Girsanov probability measure n on ðS;BðSÞ
m
Þ associated

with m and T’’ exists, then by (57) the probability law of Tf under n is m: In
other words, for a random variable f taking values in S with probability law
n there exists a random variable c with probability law m; and the following
holds:

Tf ¼ c:

In case n is not a probability measure but a signed Girsanov measure on

ðS;BðSÞ
m
Þ associated with m and T ; if we set BT � fT�1AjAABðSÞg; and

restrict n to BT ; then njBT
is a probability measure on ðS;BT Þ and the

probability law of Tf under n is m: Such signed measures may be important
to be considered in relation with the indefinite metric quantum field theory
(cf. [3,4] and Remark 4.1 in Section 4).
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Let m be the probability law of Nelson’s free field f on Rd ; then m is a
complete probability measure on ðBa;b

d ;BmÞ (cf. (30)). Let T be the map

defined on Ba;b
d such that

TðcÞ ¼ cþ J1ðlZMt
ð1
2
;3Þ
ðcÞÞ; cABa;b

d :

We may set S ¼ Ba;b
d and BðSÞ ¼ BðBa;b

d Þ in the above general discussion. If

there exists n which is a ‘‘Girsanov probability measure on ðBa;b
d ;BmÞ

associated with m and T’’, then for a Ba;b
d -valued random variable c with

probability law n there exists a Nelson’s free field f on Rd and the following
holds:

cþ J1ðlZMt
ð1
2
;3Þ
ðcÞÞ ¼ f:

Since f can be expressed by f ¼ J
1
2 ’W for some isonormal Gaussian process

W on Rd ; in the sense of distribution-valued random variables this equation
means that

ð�Dþ m2ÞcðxÞ þ lZM ðxÞt
ð1
2
;3Þ
ðcÞðxÞ ¼ ð�Dþ m2Þ

1
2 ’WðxÞ; xARd : ð58Þ

By this way we can reduce the existence problem of the solution of the
SPDE (58) to the existence problem of the corresponding Girsanov

probability measure.
In general we give the following definition

Definition 2.1 (Solution of SPDE). For given d let ðBa;b
d ; iðHÞ;mÞ be the

abstract Wiener space, which is Nelson’s Euclidean free field, defined in

Section 1. For an H valued Bm-measurable function u : Ba;b
d /H and for

some lAR (note that by Theorem 1.3 uðcÞ ¼ ZMtðb;pÞðcÞ and uðcÞ ¼
ZMtðb;eeÞðcÞ satisfy this measurability condition) set

TðcÞ ¼ cþ lJ1ðuðcÞÞ; cABa;b
d :

We say that a probability measure n on ðBa;b
d ;BmÞ gives a solution of the

SPDE

ð�Dþ m2ÞcðxÞ þ luðcÞðxÞ ¼ ð�Dþ m2Þ
1
2 ’WðxÞ; xARd ;

where W is an isonormal Gaussian process on Rd ; if and only if n is a
Girsanov probability measure on ðBa;b

d ;BmÞ associated with m and T.

Remark 2.2 (Inverse shift). From the projection theorem (cf. [21, Theorem

III.23] [55, Theorem 4.2.1]) for a Bm measurable shift TðcÞ ¼ cþ J1ðluðcÞÞ
with a Bm measurable H1 ¼ J1ðHÞ-valued function J1u; we see that TðAÞ is
in the universally completed s algebra ofBm for all AABm: But, by (30) since
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ðBa;b
d ;Bm;mÞ is already a complete probability space, we have TðAÞABm for

all AABm: Hence, if there exists a measurable map S such that

S : ðBa;b
d ;sT Þ/ðBa;b

d ;BmÞ; S3TðcÞ ¼ c; m-a:s:; cABa;b
d ;

where sT � fTðAÞ :AABmg; then S is aBm=Bm-measurable left inverse of T :

And the probability measure n on ðBa;b
d ;BmÞ defined by nðAÞ ¼

mðS�1ðAÞÞ; AABm is a Girsanov probability measure on ðBa;b
d ;BmÞ

associated with m and T :

Lemma 2.1 (Key lemma for the cubic power perturbation). Let dX2 be

given, and suppose that the assumptions of Theorem 1.3ði:11Þ hold for p ¼ 3:
Also take the numbers l > 0 and e > 0 to satisfy lð1þ eÞo 2

9L
; where L ¼R

Rd ðJ2bðxÞÞ2 dx: Then for

uðcÞ ¼ u3ðcÞ ¼ Jb�1
2ðZMtðb;3ÞðcÞÞ

defined by Theorem 1.3ði:11Þ; the following holds:

exp �ldu þ
1þ e
2

l2jjrujj22


 �
A
\

qoN

LqðmÞ; ð59Þ

where jj jj2 denotes the Hilbert–Schmidt norm jj jjH#H:

By making use of the fact that du and ru are the 4th and 2nd Wick power
of c; respectively, this lemma can be proved by applying Nelson’s
exponential bounds. The proof will be given in the appendix.
Let LluðcÞ be the random variable given in Definition 1.2. Then from

Theorem 1.3ði:11Þ; for u as in Lemma 2.1 the following holds:

LluðcÞ

¼ det2ðIH�1 þ 3l/ZMð
Þ; tðb;2ÞðcÞð
ÞJ
b�12ð
 � xÞJb�12ð
 � yÞSS;S0 Þ

� exp �l/ZM ; tðb;4ÞðcÞSS;S0 �
l2

2
Jb�1

2ðZMtðb;3ÞðcÞÞ
����

����
2

H�1

( )
: ð60Þ

Lemma 2.2. Let a > d
4
� 1
2

and b > d: Under the assumptions of Theorem

1.3ði:21Þ the following holds:

LluA
\

qoN

LqðmÞ; Em½Llu� ¼ 1: ð61Þ

Let

D ¼ fyABa;b
d j det2ðIH þ lruðyÞÞa0g;

and let Nðc;DÞ denote the cardinality of the set T�1fcg-D for

TðcÞ ¼ cþ iðluðcÞÞ; then Nðc;DÞ is a measurable function and the
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following holds:

mðfc j 1pNðc;DÞoNgÞ ¼ 1: ð62Þ

Proof. First of all we recall a crucial result for H � C1 maps on abstract
Wiener spaces derived by Kusuoka [37] (cf. also [55, Proposition 3.5.1]): For

a map u that isH � C1 let T be the shift defined by Definition 2.1, then there

exists a sequence of measurable sets GnCBa;b
d ; nAN ; such that

S
n Gn ¼ D;

and there exists a sequence of shifts Tn; nAN ; such that Tn ¼ T a.s. on Gn;
Tn is bijective and the inverse T�1

n is measurable.

Under the assumptions of Theorem 1.3ði:21Þ since u3 is an H � C1

map, by this fundamental observation we can consider the properties
of such measurable functions Nðc;DÞ and

P
yAT�1ðcÞ signðLluðyÞÞ:

Namely, in Theorem 9.3.2 and Remark 9.3.3 of [55] it is shown that
if u satisfies (59) then (61) holds. On the other hand, in Theorem 9.2.4 of [55]
it is shown that (59) is also a sufficient condition for u under which the
following holds:

Em½Llu� ¼
X

yAT�1ðcÞ

signðLluðyÞÞ; m-a:s:; cABa;b
d : ð63Þ

Since LluðyÞ ¼ 0 and signðLluðyÞÞ ¼ 0 for yeD; by (61) and (63) we see thatX
yAT�1ðcÞ-D

signðLluðyÞÞ ¼
X

yAT�1ðcÞ

signðLluðyÞÞ ¼ 1 m-a:s:;cABa;b
d :

By this we have

1p
X

yAT�1ðcÞ-D

jsignðLluðyÞÞj ¼
X

yAT�1ðcÞ-D

1 ¼ Nðc;DÞ;

m-a:s:; cABa;b
d :

On the other hand, by (61) since Em½jLluj�oN; and by Theorem 3.5.2
of [55] since Em½jLluj� ¼ Em½Nð
;DÞ� (cf. also Theorem 3.1 in the next
section: in Theorem 3.1 if we set f ¼ g � 1; then this equality follows),
we have

Nðc;DÞoN m-a:s:; cABa;b
d :

Combining these facts we have (62).

Theorem 2.3 (Solution for the space-cut-off cubic perturbation case). For

given d and p ¼ 3 take the positive numbers a; a0 and b to satisfy the

assumptions of Theorem 1.3ði:21Þ: Also take number lX0 to satisfy lo 2
9L
;

where L is the number defined in Lemma 2.1. For some fixed positive number

M let ZMðxÞ ¼ Z1ð
x

M
Þ (cf. (18)), and define

T3ðcÞ ¼ cþ iðlu3ðcÞÞ; u3ðcÞ ¼ Jb�1
2ðZMtðb;3ÞðcÞÞ ð64Þ
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and

dn3 ¼ q3T3jLlu3 j dm for q such that

qðcÞ ¼
1

Nðc;DÞ if Nðc;DÞa0;

0 otherwise;

(

where Llu3 is given by (60), and the measurable function Nðc;DÞ is defined in

Lemma 2.2. Then Llu3m is a (signed) Girsanov measure and n3 is a Girsanov

probability measure on ðBa;b
d ;BmÞ associated with m and T3:

(i)

Em½f 3T3Llu3 � ¼ Em½f �; En½f 3T3� ¼ Em½f � 8fACbðB
a;b
d Þ: ð65Þ

(ii) n3 gives a solution of (66) below in the following sense: if c is a Ba;b
d -

valued random variable with probability law n3; then the following holds for

some isonormal Gaussian process W on Rd :

ð�Dþ m2Þ1þðb�1
2
ÞcðxÞ þ lZMðxÞtðb;3ÞðcðxÞÞ ¼ ð�Dþ m2Þb ’WðxÞ: ð66Þ

Proof of Theorem 2.3. First of all we note that qðT3ðcÞÞjLlu3ðcÞj can be
taken as a Bm-measurable function: For the Bm-measurable shift T3ðcÞ with
theH � C1 map u3; since T3 *ðmjDÞ (the image measure of T3ðcÞ restricted to
D) is absolutely continuous with respect to m (cf. [55, Theorem 3.5.2]), we
can define the random variable qðT3ðcÞÞjLlu3 ðcÞj without ambiguity by using
a Borel measurable qðcÞ which is defined through any Borel measurable
version ÑðcÞ of NðcÞ such that

Nðc;DÞ ¼ Ñðc;DÞ; m-a:s:; cABa;b
d

(cf. the proof of Lemma 2.2).
Noticing this, by (62) we can apply Corollary 3.5.3 of [55] to our shift T3;

which then yields the results. &

Remark 2.3 (Comparison with ðf4Þ2 field). When d ¼ 2 we can take b ¼ 1
2
a

case of special interest in Euclidean quantum field theory. In this case the
above theorem tells us that the measure n3 gives a solution of (55) with
space-cut-off:

ð�Dþ m2ÞcðxÞ þ lZM ðxÞ : c3ðxÞ :¼ ð�Dþ m2Þ
1
2 ’WðxÞ; xAR2: ð67Þ

n3 can be written by

n3ðdcÞ ¼ qðTðcÞÞjdet2ðIH�1 þ 3lZM ðxÞ :c2ðxÞ : dfxgðyÞÞj

� exp �l
Z

R2
ZM ðxÞ : c4ðxÞ : dx �

l2

2

Z
R2

ðJ
1
2ðZM : c

3 :Þ



ðxÞÞ2 dx
$

� mðdcÞ;
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where we have used the fact that Jb�1
2ðxÞ ¼ df0gðxÞ for b ¼ 1

2 (cf. Theorem

1.3).

On the other hand, the ðf4Þ2 Euclidean field with space-cut-off ZM is a

random field on R2 with the probability measure nZM
such that (cf., e.g., [52,

Definition, Section 1, p. 141])

dnZM
ðcÞ ¼

1

ZM

exp �l
Z

R2
ZMðxÞ : c4ðxÞ : dx


 �
dm;

with the normalization constant ZM ¼ Em½expf�l
R

R2 ZMðxÞ : c4ðxÞ : dxg�:
Then, there is a similarity between n3 and nZM

in the sense that their

Radon–Nikodym densities dn3
dm ; resp.

dnZM

dm ; have the common term

expf�l
R

R2 ZMðxÞ : c4ðxÞ : dxg: But, because of the existence of the other

non-linear (also non-local) terms of c in dn3
dm such that qðTðcÞÞ ¼ 1

NðTðcÞ;DÞ ¼
1

xfT�1ðTðcÞÞ-Dg; the reciprocal of the cardinality of the set fc
0ADj Tðc0Þ ¼

TðcÞg (cf. Lemma 2.2 and Theorem 2.3), L1 ¼ jdet2ðIH�1 þ

3lZM ðxÞ : c2ðxÞ : dfxgðyÞj and L2 ¼ expf�l2
2

R
R2 ðJ

1
2ðZM : c

3 :ÞðxÞÞ2 dxg; we
have to distinguish n3 from nZM

(as far as qðTðcÞÞ; L1 and L2 do not cancel
each other).

We also remark that ðJ
1
2ðZM : c

3 :ÞðxÞÞ2; which is the integrand of L2;

is non-local in the sense that ðJ
1
2ðZM : c

3 :ÞðxÞÞ2 ¼ ð
R

R2 J
1
2ðx �

yÞZMðyÞ : c3ðyÞ : dyÞ2 is not measurable with respect to the s-field generated
by the random variable /cð
Þ; defxgS with d

e a CN

0 ðR2Þ approximation of the
Dirac measure at the point x:

Moreover, since
R

R2ðJ
1
2ðZM : c

3 :ÞðxÞÞ2 dx ¼
R

R2�R2 J1ðy � y0ÞZMðyÞZMðy0Þ

ð : c3ðyÞ :Þð: c3ðy0Þ :Þ dy dy0 and J1ðyÞ on R2 diverges like ‘‘�log jyj’’ (near 0)
(cf. (A.5) in the appendix), it is possible to say that the exponent of L2
contains a term of higher order than :c4 :.

Theorem 2.4 (Solution for the exponential perturbation case). For given

dX2 take b and e to satisfy

bX
d

4
; 0peo

a0ðdÞffiffiffi
2

p ; ð68Þ

let a and b be any numbers such that a > d
4
� 1
2
; b > d: For some given lX0 and

MX0 define

TeðcÞ ¼ cþ iðlueðcÞÞ; ueðcÞ ¼ Jb�12ðZMtðb;eeÞðcÞÞ: ð69Þ

Then the following holds:

(i) The shift Te on the abstract Wiener space ðBa;b
d ; iðHÞ; mÞ is

strongly monotone in the sense of [55] (cf. Definition A.3). There

S. Albeverio, M.W. Yoshida / Journal of Functional Analysis 196 (2002) 265–322 291



exists an iðHÞ-invariant set A of Ba;b
d with mðAÞ ¼ 1 and Te is a bijection

on A.
(ii) Let S be the inverse map of Te; then S is a Bm=Bm-measurable

function, S : ðBa;b
d ;BmÞ/ðBa;b

d ;BmÞ: A probability measure ne on ðBa;b
d ;BmÞ

defined by

neðAÞ ¼ mðS�1AÞ; AABm

is a Girsanov probability measure on ðBa;b
d ;BmÞ associated with m and Te:

Ene ½f 3Te� ¼ Em½f �; 8fACbðB
a;b
d Þ; ð70Þ

ne solves the following SPDE in the sense of Definition 2.1:

ð�Dþ m2Þ1þðb�1
2
ÞcðxÞ þ lZMðxÞtðb;eeÞðcðxÞÞ ¼ ð�Dþ m2Þb ’WðxÞ;

where c is a Ba;b
d -valued random variable with probability law ne and W is an

isonormal Gaussian process on Rd :

(iii) In the case d ¼ 2 it is possible to take b ¼ 1
2

and 0peo
ffiffiffiffiffiffi
2p

p
: The

probability measure ne gives then a solution of (54) with space-cut-off ZM :

(iv) If in particular 0peoa0ðdÞffiffi
3

p ; then Llue
defined by (48), (49) and (52)

satisfies Llue
X0; a:s:; Em½Llue

� ¼ 1 and ne satisfies ne ¼ Llue
m:

Remark 2.4 (Why 0peoa0ðdÞffiffi
2

p in Theorem 2.4). In order to apply a change

of variable formula concerning the monotone shifts to our exponential shift

case, in Theorem 2.4 we had to assume condition (68) (i.e. 0peoa0ðdÞffiffi
2

p ) under

which Te becomes anH � C continuous map (cf. the proof of Theorem 2.4).

By this, in case d ¼ 2 if we take b ¼ 1
2
; then e should satisfy 0peo

ffiffiffiffiffiffi
2p

p
:

On the other hand, by Theorem 1.3ðii:11Þ we have ueAD2;1ðHÞ when
0peoa0ðdÞ; i.e. 0peo2

ffiffiffi
p

p
in case d ¼ 2 and b ¼ 1

2
:

However, generally speaking if a shift TðfÞ ¼ fþ uðfÞ on an
abstract Wiener space admits an application of some change of
variable formula, then uðfÞ should satisfy not only the differentiability
condition such that uADp;kðHÞ (H being the Cameron–Martin space)

but also an H-regularity (e.g., H � C and H � C1). The property
that uADp;kðHÞ is characterized by means of the integrability of the
Gross–Sobolev derivative ru; which is rather an element that connects
to the algebraic structure of the Wiener space (cf. Definition A.2). On the
other hand, H-regularities are the properties that come from the
topological structure of the Wiener space (cf. Definition A.3 and the proof
of Theorem 1.3). (Note that in our formulation we identify the Cameron–

Martin space H1 with H ¼ H�1 by H1 ¼ iðHÞ; cf. Remark 1.4 and
Definitions A.1–A.3)
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Proof of Theorem 2.4. For simplicity we write the detailed proof of

Theorem 2.4 only for the case that d ¼ 2 and b ¼ 1
2; the other cases

are similar. From Theorems 1.1 and 1.2 we see that t
ð1
2
;eeÞ

ðfoÞ ¼: e
ef1
2
;o :

and limkj ;li-N : e
ekj ;li

f1
2
;o :¼: e

ef1
2
;o : P-a:s:; oAO: For the Wick ex-

ponential: e
ek;lf1

2
;o : the following equality in the sense of equivalent processes

holds:

: e
ek;lf1

2
;o : ðxÞ ¼ expfeðk;lf1

2
;o
ðxÞÞg expf�e2ck;lðxÞg; P-a:s:; oAO;

where k;lf1
2
;o
ðxÞ ¼ ZlðxÞ

R
R2 J

1
2
k ðx � yÞ dWoðyÞ and ck;l ¼ E½ðk;lf1

2
;o
ðxÞÞ2� ¼

ðZlðxÞÞ
2
R

R2 ðJ
1
2
k ðx � yÞÞ2 dy (cf. [52, I.16]).

Noticing that the right-hand side of the above equality is non-negative, by

Definition 1.1 and Theorem 1.3ðii:11Þ; for rueðcÞAL2ðH#H; mÞ it is easy
to see that

ððIH�1 þ lrueÞh; hÞH�1

¼ jjJ
1
2hjj2L2 þ le

Z
R2�R2

ðJ
1
2hÞðy1ÞðJ

1
2hÞðy2Þ

�/J
1
2ð
 � y1ÞJ

1
2ð
 � y2ÞZM ð
Þ; t

ð1
2
;eeÞ

ðcÞS dy1 dy2

Xjjhjj2H�1 ; m-a:s:; fABa;b
2 ; 8hAH�1 ¼ H:

This proves that the shift Te defined by (69) satisfies the definition of
strongly monotone shift (cf. [55, Lemma 6.2.1]).
In addition, by Theorem 1.3ðii:21Þ since uðcÞ is H � C; by applying [55,

Theorem 6.4.1] we see that Te is a bijection on some A such that mðAÞ ¼ 1:
Then by Remark 2.2 for the measurable inverse S we can define a Girsanov
probability measure, and assertion (ii) follows.
In particular if e satisfies (iv), then from Theorem 1.3 ðii:31Þ we see that ue

is H � C1: Now by [55, Theorem 4.5.1] we have Em½jLlue
j� ¼ 1 and ne ¼

jLlue
jm: But, for the monotone shift Te the Carleman–Fredholm determinant

obviously satisfies det2ðIH þ lrueðcÞÞX0; m-a:s:; and the non-negativity of
Llue

follows. This proves (iv). &

Remark 2.5 (Crucial difference between ne and the Albeverio H�egh-Krohn

model). From Theorem 2.4(iv), if 0peoa0ðdÞffiffi
3

p ; then the Girsanov probability

measure ne associated with the monotone shift Te has the expression ne ¼
Llue

m: But if we compare Llue
with the multiplier considered in Albeverio

and H�egh–Krohn [8,10] we find a crucial difference between them. Namely
in [8,10] an Euclidean quantum field is defined through a probability
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measure such that

1

ZM

exp �l
Z

R2
ZMðxÞ : eac : ðxÞ dx


 �
;

where ZM is a normalizing constant. But Llue
defined by (48), (49) and (52)

has no term of the form
R

R2 ZM ðxÞ : eac : ðxÞ dx:

Remark 2.6 (Regularities of tðb;pÞ and tðb;eeÞ as Wiener functions). (i) In
Theorem 2.3 we have assumed that (43) holds for given d and b (precisely
the stronger condition (45) is assumed). This implies that if we take b ¼ 1

2
;

we have to restrict ourselves to d ¼ 2: Restriction (43) for b ¼ 1
2
and p ¼ 3 is

just the assumption under which the ‘‘Sobolev divergence’’ of u3ðcÞ ¼

ZMt
ð1
2
;3Þ
ðcÞAH is given by du3ðcÞ ¼ /ZM ; t

ð1
2
;4Þ
ðcÞSS;S0AL2ðBa;b

d ; mÞ: In

other words this is a condition under which du3 becomes a Skorohod

integral (cf. Remark A.1). For dX3 if we take b ¼ 1
2
and pX3; then the

divergence given by (44) cannot be defined any longer in the L2ðmÞ sense.
However, also in this case, when d ¼ 3 there still exists a possibility that

one can define du3ðcÞ ¼ /ZM ; t
ð1
2
;4Þ
ðcÞSS;S0ALrðmÞ for some 1oro2: The

study of this object and its relations to existing constructions, by different

means, of a ðf4Þ3 space-cut-off renormalized perturbation of Nelson’s free
field (see, e.g., [25]) will be pursued in forthcoming work.
(ii) In [38] the following statement is proven: Let d ¼ 2; and consider the

exponential perturbation, that is equivalent (as a consequence) to the
random variable t

ð1
2
;eeÞ

defined in Theorem 1.2 of the present paper.

If e2o4p; then ZMt
ð1
2
;eeÞ

AL2ðS0ðR2Þ; mÞ; and if e2A½4p; 8pÞ then

ZMt
ð1
2
;eeÞ

ALrðS0ðR2Þ; mÞ; rAð1; ð8pe2 Þ42Þ:

By the same reason mentioned in (i), for d ¼ 2 we have restricted our
considerations to the case that e2o4p: But it would be interesting to
reinterpret in the present framework the results of Albeverio and H�egh-
Krohn [8,11], resp. Kusuoka [38], for the case e2A½4p; 8pÞ: Then for
e2A½4p; 8pÞ it may hold that ZMt

ð1
2
;eeÞ

ADr;1ðH�sÞ for some 1oro2 and 1os:

Remark 2.7 (Poincaré–Brascamp–Lieb and Log Sobolev inequalities).
After finishing a preliminary version of this work, the authors were
informed by Prof. A. S. Üstünel about the results of Feyel and Üstünel [24].
By applying the general results concerning the Poincaré–Brascamp–Lieb
and Log Sobolev inequalities corresponding to (Gibbs type) measures
defined through monotone shifts (concave function on Wiener spaces) given
in Theorems 6.1 and 6.3 of [24], we immediately have the following: Suppose
that the assumptions of Theorem 1.3(ii:11) hold and that tðb;eeÞ is the
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exponential perturbation defined there. Let nM be the probability measure

on ðBa;b
d ;mÞ of the Albeverio H�egh-Krohn model with the space-cut-off ZM

such that

nM ðdfÞ ¼
1

ZM

expf�l/ZM ; tðb;eeÞðfÞSgmðdfÞ;

where lX0 is some given constant and ZM is a normalizing constant. Then
for any smooth cylindrical Wiener functional G; we have

EnM ½jG � EnM ½G�j2�pEnM ½ððIH þ lrueÞ
�1rG;rGÞH�;

EnM ½G2flogG2 � logjjGjj2L2ðnM Þg�p2E
nM ½jrGj2H�;

where EnM ½
� denotes the expectation with respect to the probability measure
nM and rue is given by (48).
When d ¼ 2 the assumptions of Theorem 1.3(ii:11; 21 and 31) are

jejo2
ffiffiffi
p

p
; jejo

ffiffiffiffiffiffi
2p

p
and jejo

ffiffiffiffi
4p
3

q
; respectively. In [8] there exists the

considerations of the mass gaps corresponding to a class of Euclidean
fields defined by the probability measures including the above nM

as its special case. Definitely, in Theorem 7.1 of [8] (for the positivity
of the corresponding Schwinger functions cf. Theorem A.1) the existence
of the mass gap of the Hamiltonian corresponding to the model defined

by nM has been proved under the assumption that jejo 4 ffiffi
p

p : It may

be interesting to consider this Sobolev inequality in the framework
of [8].
In [13] there are other considerations and applications of the log-concave

property of the sharp time field measure of the Albeverio H�egh-Krohn
model.
Next, let us try to remove the space-cut-off ZM from Theorems 2.3 and

2.4. The following Corollary 2.5 gives a first result in this direction, in which
the probability measure is only constructed on a restricted s-field.

Corollary 2.5 (Removing of the space-cut-off). Let b ¼ 2kþ1
2

for some

k ¼ 0; 1;y :
(i) Suppose that the assumptions of Theorem 2.3 hold. In order to put in

evidence the dependence on M we rewrite (64) as TM
3 ðcÞ ¼ cþ iðluM ðcÞÞ and

uM ðcÞ ¼ Jb�1
2ðZMtðb;3ÞðcÞÞ: For each M we define a sub-s-field FM of BðBa;b

d Þ
such that

FM ¼ sub-s� field of BðBa;b
d Þ generated by a family of

random variables /j;TM
3 ðcÞS; jAFb;M ; ð71Þ
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where

Fb;M ¼ fjAS j there exists j0ACN

0 such that j ¼ J�ðbþ1
2
Þj0;

supp½j0�CfxARd j jxjoMgg:

Let FN be the smallest s-field that includes all FM ; M ¼ 1; 2;y:

FN ¼
_

MX1

FM :

Then there exists a probability measure nN on ðBa;b
d ;FNÞ such that

nNðBÞ ¼ Em½wBq3TM
3 jLluM

j� for BAFM ; MAN ; ð72Þ

and the following holds:

EnN ½F ð/j01; J
�ðbþ1

2
Þcþ ltðb;3ÞðcÞS;y;/j0n; J

�ðbþ1
2
Þcþ ltðb;3ÞðcÞSÞ�

¼ EP½F ð/j01; J
�b ’WoS;y;/j0n; J

�b ’WoSÞ� ð73Þ

for j0iACN

0 ; i ¼ 1;y; n; that satisfies J�ðbþ1
2
Þj0i ¼ ji for some

jiA
S

M Fb;M and for FACbðRnÞ:
(ii) Suppose that (68) holds. We rewrite (69) by TM

e ðcÞ ¼ cþ iðluMðcÞÞ

and uMðcÞ ¼ Jb�1
2ðZMtðb;eeÞðcÞÞ; to underline the dependence on M : Let

SM be the inverse map of TM
e : Replacing TM

3 by TM
e in (71) we define the s-

fields FM and FN: Then there exists a probability measure nN on ðBa;b
d ;FNÞ

such that

nNðBÞ ¼ mðS�1
M ðBÞÞ for BAFM ; MAN :

The equation obtained by replacing tðb;3Þ by tðb;eeÞ in (73) holds.

Proof. For notational simplicity we denote TM
3 by TM simply. By (18) and

(64), if MpM 0 then for jAFb;M we see that

/j;TM ðcÞS ¼ /j;TM 0
ðcÞS; m� a:s:

Hence by (65) for jiAFb;M ; i ¼ 1;y; n; FACbðRnÞ; nAN and MpM 0;

Em½F ð/j1;T
MðcÞS;y;/jn;T

MðcÞSÞqM 03TM 0
jLluM0 j�

¼ Em½F ð/j1;T
M 0
ðcÞS;y;/jn;T

M 0
ðcÞSÞqM 03TM 0

jLluM0 j�

¼ Em½F ð/j1;cS;y;/jn;cSÞ�

¼ Em½F ð/j1;T
MðcÞS;y;/jn;T

MðcÞSÞqM3TM jLluM
j�;

(qM is the q defined by Theorem 2.3). By this for each M if we define a

probability measure nM on ðBa;b
d ;FMÞ by

nM ðBÞ ¼ Em½wBqM3TM jLluM
j� for BAFM ;
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then we remark that FMCFM 0 (MpM 0) we have

nM 0
ðBÞ ¼ nMðBÞ for BAFM ; MpM 0: ð74Þ

Hence, ðBa;b
d ;FM ; nM Þ; MAN ; forms an inverse system of measures (cf. for

e.g. [20, Section 9.4]), where for each M we assume that Ba;b
d is a topological

space equipped with the weakest topology by which TM is a continuous map

on it. Then, we have the existence of a probability measure nN on ðBa;b
d ;FNÞ

which satisfies (72).
By (65) and (72), for jiAFb;M ; i ¼ 1;y; n and FACbðRnÞ; (MAN ; nAN)

we have

EnN ½F ð/j01; J
�ðbþ1

2
Þcþ ltðb;3ÞðcÞS;y;/j0n; J

�ðbþ1
2
Þcþ ltðb;3ÞðcÞSÞ�

¼ EnN ½F ð/j01; J
�ðbþ1

2
Þcþ lZMtðb;3ÞðcÞS;y;

�/j0n; J
�ðbþ1

2
Þcþ lZMtðb;3ÞðcÞSÞ�

¼ EnM

½F ð/J�ðbþ1
2
Þj01;T

M ðfÞS;y;/J�ðbþ1
2
Þj0n;T

M ðfÞSÞ�

¼ EP½F ð/J�ðbþ1
2
Þj01; J

1
2 ’WoS;y;/J�ðbþ1

2
Þj0n; J

1
2 ’WoSÞ�;

and (73) is proved. This completes the proof of (i).

Moreover using S�1
M ¼ TM

e and (18), (69) and (70), for jiAFb;M ; i ¼
1;y; n; FACbðRnÞ; nAN and MpM 0; we obtain

mðS�1
M 0 fcABa;b

d : F ð/j1;T
M
e ðcÞS;y;/jn;T

M
e ðcÞSÞAAgÞ

¼ mðS�1
M fcABa;b

d : F ð/j1;T
M
e ðcÞS;y;

�/jn;T
M
e ðcÞSÞAAgÞ; 8AABðRÞ:

The proof of assertion (ii) is then similar to the one of (i).

3. Case of trigonometric and general polynomial perturbations

For general pX2; pa3; we do not have Lemma 2.1, which is a key lemma
for the case p ¼ 3; nor for the shifts with the Albeverio H�egh-Krohn
trigonometric perturbation term (cf. Remark 1.5) have we the monotonicity,
which is satisfied by the exponential shift. Hence we cannot show in the
above way the existence of a Girsanov probability measure associated with m

and TðcÞ ¼ cþ J1ðlJb�1
2ðZMtðb;xÞðcÞÞÞ ðx ¼ p; s; cÞ: The following Theorem

3.1 gives a partial substitute for these statements.

Let Cþ
b ðB

a;b
d Þ be the space of all non-negative-valued bounded continuous

functions on Ba;b
d :

Theorem 3.1 (Trigonometric or : cp : perturbations with pa3). (i) Suppose

that the assumptions of Theorem 1.3ði:21Þ hold, and let upðcÞ ¼
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Jb�1
2ðZMtðb;pÞðcÞÞ be the H � C1 map considered there. For lAR let

TðcÞ ¼ cþ iðlupðcÞÞ:

Then for any f ; gACþ
b ðB

a;b
d Þ the following holds:

Em½f 3T jLujg� ¼ Em f
X

yAT�1fcg-D

gðyÞ

2
4

3
5;

where

D ¼ fcABa;b
d j det2ðIH þrupðcÞÞa0g:

(ii) Suppose that the assumptions of Theorem 1.3ðii:31Þ hold, and let usðcÞ ¼

Jb�1
2ðZMtðb;sÞðcÞÞ and ucðcÞ ¼ Jb�1

2ðZMtðb;cÞðcÞÞ be the H � C1 trigonometric

maps considered in Remark 1.5. Then the assertion obtained by replacing up by

us or uc in ðiÞ holds.

Proof. By Theorem 1.3(i:21Þ and Remark 1.5 it has been proved that upðcÞ;
us and uc are H � C1 maps on ðBa;b

d ; iðHÞ;mÞ: Then Theorem 3.1 follows

from Theorem 3.5.2 in [55]. &

4. A note on the reflection positivity and the time-zero field

This section contains two considerations in relation with constructive

quantum field theory: We firstly discuss a restricted reflection positivity
property of the random field defined by the solutions of the SPDEs
considered in the previous sections, and secondly we establish a relation
between the solutions of the Euclidean SPDEs and that of quantized non-

linear equations (cf. [18,47]), by observing the corresponding time-zero fields.

Let T : Ba;b
d -Ba;b

d be the shift T3; resp. Te; considered in Theorems 2.3 and
2.4, and let n ¼ n3; resp. n ¼ ne: In this section we will only consider such T :

Let y be the time reflection operator on Rd :

yf ðt; ~xxÞ ¼ f ð�t; ~xxÞ; ð75Þ

for a complex-valued function f on Rd ; with ðt; ~xxÞAR � Rd�1: For

cAS0ðRd Þ; we define yc as the tempered distribution ycAS0ðRd Þ that
satisfies

/j; ycSS;S0 ¼ /yj;cSS;S0 ; 8jASðRdÞ: ð76Þ

Note that for each jASðRdÞ

/j;Tð
ÞSS;S0 : Ba;b
d 3c//j;TðcÞSS;S0AR
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defines a non-linear measurable functional on ðBa;b
d ;BmÞ: We regard this

functional as a ‘‘non-linear test functional’’ on S0:

We observe that for T ¼ T3 or T ¼ Te satisfying 0peoa0ðdÞffiffi
3

p the following

holds:

/j; yTðcÞSS;S0 ¼ /j;TðycÞSS;S0 ; n-a:s:; cABa;b
d : ð77Þ

This can be shown as follows: Since ð�Dþ m2Þ�a is translation invariant, in

fact its kernel as x; yARd is given by Jaðx � yÞ; and by definition we have
Zkðt; ~xxÞ ¼ Zkð�t; ~xxÞ; moreover the inclusion map i is defined by (41), from
(20), (33), (35), (38), (64) and (69) we have

/j; yTðcÞSS;S0 ¼ /j;TðycÞSS;S0 ; m-a:s:; cABa;b
d : ð78Þ

By Theorems 2.3 and 2.4(iv) since the probability measure n is absolutely

continuous with respect to m; from (78) we obtain (77).

Theorem 4.1 (Subspace of reflection positive random variables). For

given d let T ¼ T3; n ¼ n3 or T ¼ Te; n ¼ ne where T3 and n3; resp. Te

and ne are the shifts and measures defined in Theorem 2.3, resp. Theorem

2.4ðivÞ: Let m be the probability law of Nelson’s Euclidean free field on Rd

defined in Section 1. Let FT ;þ be a linear subspace of the random variables on

ðBa;b
d ;Bm; nÞ such that

FT ;þ � ff 3TðcÞ j fAFþg
L2ðnÞ

;

where

Fþ ¼ linear hull of ff j (nAN ; (fiACN

0 ðRÞ

satisfying fið0Þ ¼ 0; (jiACN

0 ðRd
þÞ; i ¼ 1;y; n;

such that f ð
Þ ¼ f1ð/j1; 
SS;S0 Þ?fnð/jn; 
SS;S0 Þg;

where

Rd
þ � fðt; ~xxÞARd : t > 0g:

Then, on FT ;þ the reflection positivity holds

En½F ðycÞF ðcÞ�X0 for FAFT ;þ: ð79Þ

Proof. By (65), (70) and (77) for fAFþ the following holds:

En½f 3TðycÞf 3TðcÞ� ¼En½f ðyTcÞf ðTcÞ�

¼Em½f ðycÞf ðcÞ�X0:

The last inequality is the reflection positivity property of Nelson’s free field
(cf. for e.g. [3, Remark 5.2]), that comes from its Markov field property.
This proves (79). &
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Remark 4.1. (i) In order to conclude that the random fields c considered in
Theorems 2.3 and 2.4(iv) possess the property of reflection positivity
(Hegerfeldt T positivity given in [29]), we have to show that (79) holds for
FAFþ; where

Fþ � ff ðcÞ j fAFþg
L2ðnÞ

Thus, Theorem 4.1 characterizes a sub-space of L2ðnÞ-random variables on
which the reflection positivity holds. Nevertheless, FT ;þ and Fþ have non-

empty intersection: e.g., in case d ¼ 2; if we take b ¼ 1
2
; then for T ¼ T3 and

n ¼ n3 we have

FT ;þ-Fþ*ff 3TðcÞ j fAF̃þg
L2ðnÞ

;

where F̃þ is a subset of Fþ defined by restricting jiACN

0 ðRd
þÞ in the

definition of Fþ to jiACN

0 ðRd
þÞ such that

ji ¼ ð�Dþ m2Þgi for some giACN

0 ðRd
þÞ:

(ii) Let Te; resp. ne; be the exponential shift, resp. the corresponding

Girsanov probability measure, defined in Theorem 2.4 for a0ðdÞffiffi
3

p peoa0ðdÞffiffi
2

p ;

then we cannot conclude in general that ne is absolutely continuous with
respect to m; and (77) does not follow from (78). But from (70) we can still
deduce the following:

En½f 3yTðcÞf 3TðcÞ�X0 for fAFþ:

Also for the signed measure Llu3m defined in (65) we haveZ
Ba;b
2

f 3yTðcÞf 3TðcÞLlu3 dmðcÞX0 for fAFþ:

This can be seen as a weaker substitute for (79).
(iii) For discussions of the reflection-positivity property in axiomatic

Euclidean quantum field theory see, e.g., [25,29,45,46,52] (and references
therein). For the proof in models see, e.g., [2,10,12,16,25,32,52] (the latter
references also contains a proof of the global Markov property of
interacting (Euclidean) quantum fields).

Next, we give a short discussion on the time-zero fields of the Euclidean
random fields which are defined by the solution of SPDEs considered in
Section 2.
Let c be the solution of the (Euclidean) SPDE with cubic perturbation on

R2; namely c is the Euclidean random field with the probability law n3
defined by Theorem 2.3 for d ¼ 2 and b ¼ 1

2: Then under n3 the random
variable T3ðcÞ is a Nelson’s Euclidean free field on R2; and by the definition
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of T3 (cf. (64)) the following holds:

�
@2

@t2
�

@2

@x2
þ m2

� �
cþ lZM : c3 :¼ �

@2

@t2
�

@2

@x2
þ m2

� �
T3ðcÞ:

Since, at the point t ¼ 0 by taking the boundary-value Nelson’s Euclidean
free field it is analytically continued to F0 which is a solution of (4) reviewed
in the Introduction, we find that c satisfies

�
d2

dt2
En3 ½/cðt; 
Þ; fSu�

����
t¼0

þ En3 cð0; 
Þ; �
d2

dx2
þ m2

� �
f

+ ,
þ l/ : c3ð0; 
Þ :; ZM ð0; 
ÞfS

� �
u

�  

¼ �
d2

dt2
En3 ½/T3ðcÞðt; 
Þ; fSu�jt¼0

þ En3 T3ðcÞðt; 
Þ; �
d2

dx2
þ m2

� �
f

+ ,
u

�  ����
t¼0

¼ 0 ð80Þ

for real fASðRÞ and uA *U; where

*U � linear hull of
Yn

i¼1

/T3ðcÞ; df0g#giSjgiASðRÞ; i ¼ 1;y; n; nAN

( )
:

Thus, if *U is dense in the (time-zero) Hilbert space HI given by

HI �
Yn

i¼1

/cð0; 
Þ; fið
ÞSjfiASðR1Þ; i ¼ 1;y; n; nAN

( )L2ðn3Þ

ð81Þ

then the Euclidean field c on R2 with the probability measure n3
may be analytically continued to a solution FI (assuming its existence) of
the non-linear quantized equation such that FI is an operator-valued
distribution on the physical Hilbert space HI with a dense domain and
satisfies

d2

dt2
FI ðdftg#f Þ þ FI dftg# �

d2

dx2
þ m2

� �
f

� �
þ l/ : ðFI ð
ÞÞ

3 :; dftg#ZM ð0; 
Þf ð
ÞS ¼ 0 for fASðRÞ; tAR;

ð82Þ

where : ðFI ðt;xÞÞ
3 : is a renormalization of ðFI ðt;xÞÞ

3; and it is also a (linear)
operator-valued distribution.

However, since *U is a linear space spanned by the products of random
variables such that /T3ðcÞð0; 
Þ; gð
ÞS with

T3ðcÞ ¼ cþ lJ1ðZM : c3 :Þ ð83Þ
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and J1 is an integral operator, *U may not be dense in HI (cf. Remark
4.1(i)). Hence, we have the following Remark 4.2:

Remark 4.2 (Time-zero fields of the solutions). (i) The Euclidean random
field c with the probability law n3 defined by Theorem 2.3 for the space-time
dimension d ¼ 2 and b ¼ 1

2
satisfies the functional differential equation (80)

at least for uA *U: In order that c can be analytically continued to some
operator FI ; that is a solution of the functional equation (82), with a dense

domain in the Hilbert space HI defined by (81), the set
%*U-HI has to be

dense in HI (
%*U* *U is the set on which (80) holds).

We do not know whether %*U-HI is sufficiently large. We should
accordingly modify T3 and the corresponding measure n3 adequately.
Namely, in the definition of T3 given by (83), ZMðt; ~xxÞACN

0 ðR2Þ should be
changed to Zð~xxÞ#df0gðtÞ for some ZACN

0 ðR1Þ satisfying ZX0; and then
define a map T̃3 on ðBa;b

2 ; iðHÞ;mÞ by

T̃3ðcÞðt; ~xxÞ ¼ cðt; ~xxÞ þ l
Z

R1
J1ððt; ~xxÞ � ð0; ~xx0 ÞÞZð~xx0 Þ : c3ð0; ~xx0 Þ : d~xx0 :

Passing through similar arguments as in Theorem 1.3, it is not hard to show
that Z

R1
J1ððt; ~xxÞ � ð0; ~xx0 ÞÞZð~xx0 Þ : c3ð0; ~xx0 Þ : d~xx0AD2;kðiðHÞÞ ðkX0Þ;

(i.e. Zð~xxÞdf0gðtÞ : c
3ðt; ~xxÞ : AD2;kðHÞ). But the H � C1 (or H � C) continuity

of T̃3 is not obvious (cf. Remark 2.4).
However, if everything is completed, and a corresponding Girsanov

probability measure *n3 is defined, then for this modification *U (using the
same notation as above) we would have

*U � linear hull of
Yn

i¼1

ð/cð0; 
Þ; fið
ÞSþ l/ : c3 : ð0; 
Þ;

(

ðJ
1
2fiÞð
ÞZð
ÞSÞj fiASðRÞ; i ¼ 1;y; n; nAN

�
C *HI ;

where *HI is the Hilbert space defined by (81) by replacing n3 by *n3: Also d *n3
dm ;

the Radon–Nikodym density of *n3 with respect to the Nelson’s Euclidean
free field measure m on R2; has then a term such that

exp �l
Z

R

ZðxÞ : f4 : ð0; xÞ dx


 �
:

For further discussions in this relation (cf. [18, Corollary 8.8.1], [17]) we
refer to forthcoming papers.
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(ii) By Theorem 2.4 analogous discussions as (i) can be performed for the
case of Euclidean random fields that are solutions of the SPDE with an
exponential perturbation.
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Appendix

In the first part of the appendix we shall quickly recall some fundamental
notations and notions associated with the analysis on an abstract Wiener
space. The following explanations on Definitions A.1–A.3 are mainly
borrowed from Section 3.3 and Chapter B in [55], but some of the notations
are changed in order that they are adaptable to the present paper
(cf. Remark 1.4 and Remark A.1).

Definition A.1 (Abstract Wiener space). (i) Let H be a separable Hilbert
space, denote by m0 the standard Gaussian cylindrical measure on H whose
characteristic function is given by

expf�1
2
jhj2Hg; hAH :

In the infinite dimensional case, m0 is not a sigma-additive measure on H: By
Gross [26] it has been proved that H can be completed under a weaker norm
than the original norm of H to a Banach space W ; and m0 can be extended
to a probability measure m on W :
The triple ðW ;H ;mÞ is called as an abstract Wiener space, H is called the

Cameron–Martin space and m is called the Wiener measure. The Cameron–
Martin space H is identified with its continuous dual Hn; then

W n+HnDH+W :
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Let i be the continuous injection such that

i :Hn-W ; i:e: iðHnÞ ¼ H:

In the sequel we sometimes denote the triple ðW ;H; mÞ by ðW ; iðHnÞ;mÞ:
We notice that in the previous sections Hn has been denoted by H:
(ii) Let aAWn; then w//a;wS is a Gaussian random variable on the

probability space ðW ;mÞ whose characteristic function is

expf�1
2
jiðaÞj2Hg ¼ expf�1

2
jaj2Hng:

If hnAHn; then there exists ðan; nANÞ such that an converges to hn inHn; and
ð/an;wS; nANÞ forms a Cauchy sequence in LpðmÞ for any pX0:
We denote the limit by /hn;wS (hnAHn).

Definition A.2 (Derivative and divergence operators). (i) Let ðW ; iðHnÞ;mÞ
be an abstract Wiener space. A measurable function j :W-R is called as a
cylindrical Wiener functional if it is of the form

jðwÞ ¼ f ð/hn

1 ;wS;y;/hn

n ;wSÞ; hn

1 ;y; hn

nAHn; fASðRnÞ;

for some nAN : For the cylindrical Wiener functional j and an element of
the Cameron–Martin space hAH we define

rhjðwÞ ¼
d

de
jðw þ ehÞ

����
e¼0

;

then

rhjðwÞ ¼
Xn

j¼1

@f

@xj

ð/hn

1 ;wS;y;/hn

n ;wSÞhn

j ðhÞ;

where hn
j ðhÞ denotes the dualization of hn

j AHn and hAH: For each fixed w;

the map h/rhjðwÞ is continuous and linear onH; it determines an element
of the dual space of H: This element is called the Gross–Sobolev derivative
of j and is denoted by rj:
Since hn

j ðhÞ ¼ /iðhn
j Þ; hSH ¼ /hn

j ; i
�1ðhÞSHn ; where /iðhn

j Þ; hSH ; resp.

/hn
j ; i

�1ðhÞSHn ; are inner products with respect to the Hilbert spaces H ;

resp. Hn; depending on the adoption of the inner products the Gross–
Sobolev derivative rj can be understood as either Hn or H-valued random

variable. In this paper we discuss rj as an Hn (Hilbert space)-valued
random variable.

(ii) In this paper we have denoted Hn ¼ H: The Sobolev space Dp;1 is the

set of equivalent class of the real-valued Wiener functionals defined as
follows: jADp;1 if and only if there exists a sequence of cylindrical random

variables ðjn; nANÞ converging to j in LpðmÞ such that ðrjn; nANÞ is
Cauchy in Lpðm;HÞ: In this case limn-N rjn is denoted by rj:

Dp;1 is a Banach space with the norm defined by

jjjjjp;1 ¼ jjjjjLpðmÞ þ jjrjjjLpðm;HÞ:
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This definition of Dp;1 can be extended to the case of Wiener functionals

with values in some separable Hilbert space X: The corresponding Banach
space will be denoted by Dp;1ðXÞ:
(iii) Let p > 1; kX1; and let X be a separable Hilbert space. The space

Dp;kðXÞ is inductively defined by
(1) FADp;2ðXÞ if rFADp;1ðX#HÞ and with r2F ¼ rðrF Þ:
(2) FADp;kðXÞ if rk�1FADp;1ðX#H#ðk�1ÞÞ; where # denotes the

completed Hilbert–Schmidt tensor product.

(iv) Let p > 1; x :W-Hð¼ HnÞ be a Wiener functional. xADompðdÞ if
and only if for any jADq;k; q�1 ¼ 1� p�1; the following holds:

jEm½ðrj; xÞH�jpCjjjjjLqðmÞ;

where C is a constant depending only on x and p:
If xADompðdÞ; then there exists an element, denoted by dx; in LpðmÞ such

that

Em½ðrj; xÞH� ¼ Em½j 
 dx�:

dx is called the divergence of x:
(v) Let A be a Hilbert–Schmidt operator on the separable Hilbert space

H: The (modified) Carleman–Fredholm determinant of A; denoted by
det2ðIH þ AÞ; is defined as

det2ðIH þ AÞ ¼
YN
i¼1

ð1þ giÞe
�gi ;

where ðgi; iANÞ are the eigenvalues of A counted with respect to their
multiplicity.

Remark A.1. Let us examine the concrete actions of the operators r and d
on the functionals on Nelson’s Euclidean free field ðBa;b

d ; iðHÞ; mÞ; which is
an abstract Wiener space defined in Section 1. For this purpose it is
convenient to use the identification of Nelson’s free field t

ð1
2
;1Þ
ðcÞ with the

stochastic integral
R

Rd J
1
2ðx � x0Þ dWoðx0Þ (this expression is ‘‘formal’’, but

the following discussions can be carried out rigorously by making use of this
expression (cf. Theorems 1.1 and 1.2 and Remark 1.3)).
Now, let d ¼ 2: Consider a cylindrical Wiener functional j such that

j ¼
Z

R2ðpþ1Þ

Ypþ1
j¼1

ðJ
1
2hnÞðxjÞ

 !
dWoðx1Þ?dWoðxpþ1Þ for hnAH ¼ H�1:

This is identified with : /hn; t
ð1
2
;1Þ
ðcÞSpþ1 :; which is the ðp þ 1Þth Wick

product of the random variable /hn; t
ð1
2
;1Þ
ðcÞS (cf., e.g., [52, Section I-1]).
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Then by Definition A.1, it is easy to see that the derivative

of: /hn; t
ð1
2
;1Þ
ðcÞSpþ1 : is given by

r : /hn; t
ð1
2
;1Þ
ðcÞSpþ1 :¼ ðp þ 1ÞhnðxÞ : /hn; t

ð1
2
;1Þ
ðcÞSp : :

This can be identified with the following stochastic integral:

rj ¼ ðp þ 1ÞhnðxÞ
Z

R2p

Yp

j¼1

ðJ
1
2hnÞðxjÞ

 !
dWoðx1Þ? dWoðxpÞAH:

Also, t
ð1
2
;pÞ
ðcÞ is identified with

Z
R2p

Yp

j¼1

J
1
2ðx � xjÞ

 !
dWoðx1Þ? dWoðxpÞ:

Hence, the map up; which is an H-valued functional, defined by upðcÞ ¼
JbðZMtðb;pÞðcÞÞ is identified with (in case b ¼ 1

2
)

up ¼ dfx0gðxÞZM ðx0Þ
Z

R2p

Yp

j¼1

J
1
2ðx0 � xjÞ

 !
dWoðx1Þ?dWoðxpÞ:

If we set

dX ¼
Z

R2ðpþ1Þ

Z
R2

ZM ðxÞ
Ypþ1
j¼1

J
1
2ðx � xjÞ dx

 !
dWoðx1Þ?dWoðxpþ1Þ:

Then, for j; rj; up and dX defined above by the properties of expectations
with respect to (multiple) stochastic integrals (cf., e.g., [44, Section 1]), we
obviously have

E½/rj; upSH� ¼ E½j 
 dX�:

Since dX is identified with /ZM ; t
ð1
2
;pþ1Þ

S; by this we have relation (44):

dup ¼ /ZM ; t
ð1
2
;pþ1Þ

S:

Definition A.3 (H-regularity and monotone shifts). Let ðW ; iðHnÞ; mÞ be an
abstract Wiener space.
(i) Let uðwÞ be a random variable taking values in a separable Hilbert

space X:
(1) uðwÞ is said to be an H � C map if, for almost all wAW ;

Hn3hn/uðw þ iðhnÞÞ is a continuous function of hnAHn:
(2) uðwÞ is said to be an H � C1 map if it is H � C; and for almost all

wAW ; Hn3hn/uðw þ iðhnÞÞ is continuously Fréchet differentiable on Hn

and this Fréchet derivative is an H � C as a mapping from Hn into X#Hn

when the latter is equipped with the Hilbert–Schmidt topology.
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(ii) Let uðwÞ be an Hn-valued random variable. The shift T :W-W

defined by Tw ¼ w þ iðuðwÞÞ is called strongly monotone if there exists some
a > 0 such that

ðTðw þ iðhnÞÞ � TðwÞ; iðhnÞÞHXajiðhnÞj2H ;

almost surely for all hnAHn:
By Lemma 6.2.1 of [55], this condition is equivalent to (cf. Definition

A.1(i))

ððIHn þruÞhn; hnÞHnXajhnj2Hn ;

almost surely for all hnAHn:

The following Proposition A.1 gives some evaluations for the
functions that have been used in this paper, and they are well known or
obvious.

Proposition A.1. (i) Let rACN

0 ðRdÞ be such that

#rkðxÞ ¼ #r
x
k

� �
; j #rðxÞjp1; #rð0Þ ¼ 1 ðA:1Þ

(with # denoting Fourier transform), then #rkðxÞ converges to 1 uni-

formly on compact sets: For any MoN and any e > 0 there exists an

NoN such that

0p1� #rnðxÞoe for any x satisfying jxjpM and any nXN : ðA:2Þ

(ii) JaðxÞ has the following integral representation (cf. [53, V-3.1],
or [48]):

JaðxÞ ¼
1

ð4pÞ
d
2 GðaÞ

Z
N

0

exp �
jxj2

4s
� m2s


 �
s
�d�2þ2a

2 ds; xARd :

By this there exist some constants C1;C2 > 0 such that the following holds: if

0o2aod; then

JaðxÞp
C1jxj

�dþ2a for jxjo1;

C1e
�C2 jxj for jxjX1;

(
ðA:3Þ

if 0odo2a; then

JaðxÞpC1e
�C2 jxj for xARd ; ðA:4Þ

if 0o2a ¼ d; then

JaðxÞp
C1 � 2

ð4pÞ
d
2 Gðd

2
Þ

log jxj for jxjo1

C1e
�C2 jxj for jxjX1:

8<
: ðA:5Þ
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Proposition A.2 (Fubini type lemma for multiple stochastic integrals). Let

gAL2ðRdÞ and KAL2ððRdÞ pþ1Þ: Suppose that K satisfies the following:

Kðx; y1;y; ypÞ is symmetric in the last p variables ðy1;y; ypÞARpd

ðfor all xARdÞ;

there exists a compact set DCRd such that Kðx; y1;y; ypÞ ¼ 0 for

ðx; y1;y; ypÞADc � ðRdÞ p; and the map Rd3x/Kðx; 
ÞAL2ððRdÞpÞ is con-

tinuous.

Then, the stochastic process IpðKxÞðoÞ ¼
R
ðRd Þ p Kðx; y1;y; ypÞ

dWoðy1Þ?dWoðypÞ on Rd has an equivalent process which is measurable

with respect to the two variables ðo;xÞ; we simply denote this by IpðKxÞðoÞ:
The following Fubini type formula holds:Z

Rd

gðxÞIpðKxÞðoÞ dx

¼
Z
ðRd Þ p

Z
Rd

gðxÞ Kðx; y1;y; ypÞ dx

� �
dWoðy1Þ?dWoðypÞ;

P-a:s:; oAO: ðA:6Þ

Proof. For each x we denote Kðx; y1;y; ypÞ by Kxðy1;y; ypÞ; and
the multiple stochastic integrals with order p by Ip: Since for

each xARd ; jjIpðKxÞð
Þjj
2
L2ðO;PÞ ¼ p!jjKxð
Þjj

2
L2ððRd Þ p;lpd Þ and since Rd3x/

Kðx; 
ÞAL2ððRdÞ p; lpd Þ is assumed to be continuous, by Bochner Von
Neumann measurability theorem IpðKxÞðoÞ has an equivalent process that is
measurable with respect to ðo; xÞ: Moreover from the assumption of K it is

easy to see that
R

Rd IpðKxÞ dW ðxÞ is well defined (IpðKxÞ is a process that is

Skorohod integrable). Since E½ðI1ðgÞÞ
2
R

Rd ðIpðKxÞÞ
2 dx�oN for any

gAL2ðRdÞ; we can apply formula (1.49) in [44] (the Skorohod integral of a

process multiplied by a random variable) to I1ðgÞIpðKxÞ; thenZ
Rd

ðI1ðgÞIpðKxÞÞ dW ðxÞ

¼ I1ðgÞ
Z

Rd

IpðKxÞ dW ðxÞ �
Z

Rd

gðxÞIpðKxÞ dx; P-a:s:; oAO: ðA:7Þ

On the other hand, from the definition of multiple stochastic integrals the

following equality holds in the sense of equivalent processes on Rd :

I1ðgÞIpðKxÞ ¼ Ipþ1ðKxð
Þgð
ÞÞ þ pIp�1

Z
Rd

Kxðy1;y; ypÞgðy1Þ dy1

� �
:

Moreover, if we let

Rðx; y1;y; ypÞ ¼
1

p þ 1
fKxðy1;y; ypÞ þ Ky1 ðx; y2;y; ypÞ

þ?þ Kyp
ðy1;y; yp�1;xÞg
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(the symmetrization of Kðx; y1;y; ypÞ), then since
R

Rd IpðKxÞ dW ðxÞ ¼
Ipþ1ðRÞ; we have

I1ðgÞ
Z

Rd

IpðKxÞ dW ðxÞ ¼ Ipþ2ðRgÞ þ ðp þ 1ÞIp

Z
Rd

Rðx; 
ÞgðxÞ dx

� �
;

P-a:s:; oAO:

Substituting these two equalities for the integrand on the left-
hand side, resp. for the first term on the right-hand side, of (A.7), we
obtain (A.6). &

Lemma A.1. Let pAN ; a; b; a > 0: For each fixed k let

Iðo; zÞ ¼
Z
ðRd Þ p

Z
Rd

Jaðx � zÞð1þ jxj2Þ�
b
4Fa

k ðx; y1;y; ypÞ dx

� �
� dWoðy1Þ?dWoðypÞ;

then Iðo; zÞ has an equivalent process which is measurable with respect to

ðo; zÞ; we simply denote this by Iðo; zÞ: The following holds:

P Iðo; zÞ ¼
Z

Rd

Jaðx � zÞð1þ jxj2Þ�
b
4 :k fp

a;o : ðxÞ dx

� �
¼ 1;

8zARd ; ðA:8Þ

where :k fp
a;o: is the C0ðRd-RÞ-valued random variable given in

Remark 1.2.

Proof. Since the process f:k fp
a;o : ðxÞgxARd defined by Remark 1.2 (cf. (24))

satisfies the assumption for IpðKxÞðoÞ in Proposition A.2, for each zARd we

have Z
Rd

Ja
n ðx � zÞð1þ jxj2Þ�

b
4 :k fp

a;o : ðxÞ dx

¼
Z
ðRd Þ p

Z
Rd

Ja
n ðx � zÞð1þ jxj2Þ�

b
4Fa

k ðx; y1;y; ypÞ dx

� �
� dWoðy1Þ?dWoðypÞ; a:s:; oAO; 8n:

But for each fixed k we have :k fp
a;o : ð
ÞAC0ðRd-RÞ; so if we let n-N

in the above equation then by Lebesgue convergence theorem we
obtain (A.8).
The fact that Iðo; zÞ has an equivalent process that is measurable with

respect to ðo; zÞ follows from Bochner Von Neumann measurability theorem
(cf. the proof of Proposition A.2). &

Proof of Theorem 1.1. Since the proof of Theorem 1.1(i) is similar and
simpler than that of Theorem 1.1(ii), we only give the proof of (ii). Also

since the proof of (28) for dX3; a ¼ d
4
; jejoa0ðdÞ; e2df4ða0ðdÞÞ

2g�1oaod
4
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and b > d can be done by exchanging the corresponding subscripts and

superscripts in the proof of (28) for d ¼ 2; a ¼ 1
2
; jejo2

ffiffiffi
p

p
; e2
8poao1

2
and

b > 2; we give the proof only for the latter case. The other cases considered

in Theorem 1.1(ii) (i.e. a > d
4
) are easy and omitted.

Let d ¼ 2; a ¼ 1
2
and jejo2

ffiffiffi
p

p
; and define

:k;l f
p
o : ðxÞ ¼

Z
ðR2Þ p

Fk;lðx; y1;y; ypÞ dWoðy1Þ?dWoðypÞ;

where Fk;lðx; y1;y; ypÞ ¼ ðZlðxÞÞ
pJ
1
2
k ðx � y1Þ?J

1
2
k ðx � ypÞ: Then by virtue

of Lemma A.1 (with a slight modification) we see that for a > 0 and
b > 2

E½jj :k;l f
p : � :k;l0 f

p : jj2
Ba;b
2

�

¼
Z
O

Z
R2

Z
R2
ð1þ jxj2Þ�

b
4Jaðx � zÞð:k;l f

p
o : ðxÞ� :k;l0 f

p
o : ðxÞÞ dx

����
����
2

� dzPðdoÞ

¼ ð2pÞ�2ðpþ1Þp!
Z

R2

Z
ðR2Þ p

#gl;l0

Xp

j¼1

xj þ x

 !�����
�����
2

ðjxj2 þ 1Þ�2a

�
Yp

j¼1

ðjxj j
2 þ m2Þ�1ð #rkðxjÞÞ

2 dx1?dxpdx

pð2pÞ�2ðpþ1Þp!ðm�2Þ pðjj #rk jjL1Þ
p

Z
jxjXminðl;l0Þ

ð1þ jxj2Þ�
b
2 dx; ðA:9Þ

where

gl;l0 ðxÞ ¼ ð1þ jxj2Þ�
b
4ððZlðxÞÞ

p � ðZl0 ðxÞÞ
pÞA

\
rX1

Lr;

and we have used Young’s inequality repeatedly.
For

: expðek;lfÞ :¼
XN
p¼0

ep

p!
:k;l f

p :

by making use of inequality (A.9) we can show that there

exists: expðek;NfÞ :AL2ðO-Ba;b
2 ;PÞ such that

lim
!-N

E½jj : expðek;NfÞ : � : expðek;lfÞ : jj2Ba;b
2

� ¼ 0; ðA:10Þ

where a and b are any real numbers such that a > 0 and b > 2: Indeed by
(A.9) we have

E½jj : expðek;lfÞ : � : expðek;l0fÞ : jj2Ba;b
2

�

¼ exp
2e2jj #rk jjL1

m2p2

� �
� 1

� �
ð2pÞ�2

Z
jxjXminðl;l0Þ

ð1þ jxj2Þ�
b
2 dx:

S. Albeverio, M.W. Yoshida / Journal of Functional Analysis 196 (2002) 265–322310



By this f: expðek;lfÞ :glAN forms a Cauchy sequence in L2ðO-Ba;b
2 ;PÞ; for

each fixed k; and (A.3) is proved.
Now, by (A.10) for any e > 0; k and k0 there exists Lðe; k; k0Þ; and the

following holds for all lXLðe; k; k0Þ:

ðE½jj : expðek;NfÞ : � : expðek0 ;NfÞ : jj2
Ba;b
2

�Þ
1
2

pðE½jj : expðek;!fÞ : � : expðek0;lfÞ : jj2Ba;b
2

�Þ
1
2 þ e: ðA:11Þ

Also, again from Lemma A.1

E½jj : expðek;lfÞ : � : expðek0 ;lfÞ : jj2Ba;b
2

�

¼
Z

R2�R2
J2aðx1 � x2Þð1þ jx1j2Þ

�b
4ð1þ jx2j2Þ

�b
4ðAðl; k; k; x1;x2Þ

� 2Aðl; k; k0; x1;x2Þ þ Aðl; k0; k0; x1; x2ÞÞ dx1 dx2; ðA:12Þ

where

Aðl; k; k0; x1; x2Þ ¼ expðe2Zlðx1ÞZlðx2ÞJk;k0 ðx1 � x2ÞÞ � 1

with Jk;k0 ðx1 � x2Þ ¼
R

R2�R2 rkðzÞrk0 ðz0ÞJ1ððx1 � x2Þ � ðz � z0ÞÞ dz dz0: Hence,
for a > 0 and b > 2 if we let lmN on the right-hand side of (A.11), then by
(A.12) and the Lebesgue convergence theorem we have

E½jj : expðek;NfÞ : � : expðek0;NfÞ : jj2
Ba;b
2

�

p
Z

R2�R2
J2aðx1 � x2Þð1þ jx1j

2Þ�
b
4ð1þ jx2j

2Þ�
b
4½ðee

2Jk;kðx1�x2ÞÞ � 1Þ

� 2ðee
2Jk;k0 ðx1�x2ÞÞ � 1Þ þ ðee

2Jk0 ;k0 ðx1�x2ÞÞ � 1Þ� dx1 dx2: ðA:13Þ

Let us evaluate the right-hand side of (A.13), using an argument for Wick
exponentials developed by [8] (a simple application of Fourier transform
and Young’s inequality would not give such a nice estimation). From

Proposition A.1(ii) for d ¼ 2 since J1ðxÞ ¼ 1
2p K0ðmjxjÞ; for jxjo1 the

function J1ðxÞ þ 1
2p log jxj is bounded, and for jxjX1; J1ðxÞ is a bounded

function that decays exponentially to 0 as jxj-N: Thus, if jejo2
ffiffiffi
p

p
and

a > e2
8p; then J2aðxÞðexpðeJ1ðxÞÞ � 1ÞAL1: Let Ce;a �

R
R2 J2aðxÞðexpðeJ1ðxÞÞ

�1Þ dx; then by Young’s inequality, for b > 2 we haveZ
R2�R2

J2aðx1 � x2Þð1þ jx1j
2Þ�

b
4ð1þ jx2j

2Þ�
b
4ðee

2J1ðx1�x2ÞÞ � 1Þ dx1 dx2

pCe;ajjðjxj2 þ 1Þ
�b
2jj2L2 :

In addition since limk;k0-N ee
2Jk;k0 ðx1�x2Þ ¼ ee

2J1ðx1�x2Þ a.e. x1;x2; we can apply
Fatou’s lemma to each term on the right-hand side of (A.13), and then
conclude that f: expðek;NfÞ :gk¼1;2;y forms a Cauchy sequence in

L2ðO-Ba;b
2 Þ: This proves Theorem 1.1(ii): &
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Proof of Theorem 1.2. Since the map Rd3x/J
b
k ðx � 
ÞAS is continuous, tk

defined by (33) maps S0ðRdÞ to C0ðRdÞ and by (16) this defines a

BðBa0;b
d Þ=BðBa;b

d Þ measurable map.

For each xARd if we set jð
Þ ¼ J�1
2ðJb

k ðx � 
ÞÞ then from (27) for p ¼ 1 we
have

ZkðxÞ/J
b
k ðx � 
Þ; ðJ�1

2foÞð
ÞSS;S0

¼ ZkðxÞ/J�1
2ðJb

k ðx � 
ÞÞ;foð
ÞSS;S0

¼ ZkðxÞ
Z

Rd

J
b
k ðx � yÞ dWoðyÞ ¼k fb;oðxÞ; P-a:s:; oAO:

Hence, by (33) for each xARd

tkðfoÞðxÞ ¼ p !
X½p2�
n¼0

ð�1
2

cb;kÞ
n

n!ðp � 2nÞ!
ðZkðxÞÞ

2n ðkfb;oðxÞÞ
p�2n

¼ :k fp
b;o : ðxÞ; P-a:s:; oAO;

where the last equality follows from the well-known Wiener chaos
expression of multiple stochastic integrals. But both sides of the above
formula are continuous processes, hence we have (34).
By means of (16) Eq. (34) can be understood as an equality with respect to

two Ba0 ;b
d -valued random variables: tkðfoÞ ¼:k fp

b;o: P-a.s., oAO: Hence
from (26)Z

Ba;b
d

jjtkðcÞ � tmðcÞjj2Ba0 ;b
d

mðdcÞ ¼
Z
O
jjtkðfa;oÞ � tmðfa;oÞjj

2

Ba0 ;b
d

PðdoÞ

-0 as k;m-N:

Thus, ftkgkAN forms a Cauchy sequence in L2ðBa;b
d -Ba;b0

d ; mÞ; and (35) is
proved.
The Proof of Theorem 1.2(ii) is similar and will therefore be omitted. &

Proof of Theorem 1.3. By the discussion made in Remark A.1, we
can see that rup; dup; rue and due have the expressions given in this

theorem.
Before proving Theorem 1.3(i), we shall prove Theorem 1.3(ii). In order to

simplify the notations we prove this theorem only for the case d ¼ 2; b ¼ 1
2
:

Since the proofs for the other cases are similar, we will only point out the
differences between the former case and the other cases at the end of this
proof.
The D2;1ðHÞ property of ue has been essentially proven by Albeverio

and H�egh-Krohn [8], namely, if b and e satisfy the assumptions of
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Theorem 1.3(ii-11), by Proposition A.1(ii) (cf. also the proof of Theorem 1.1)

Em½jjruejj2H#H� ¼ e2
Z

R2�R2
ZMðxÞðJ1ðx � yÞÞ2 expfe2J1ðx � yÞg

� ZMðyÞ dx dyoN:

Moreover by Theorem 1.1(ii) and Theorem 1.2(ii) it has been proved that

ueðcÞAH (for m-a.s., cABa;b
d ).

Next, we shall prove the H-regularity of ue: For this purpose we firstly

note that for hAH1ðR2Þ and eAR the following holds:

eeh � 1AH1�d; lim
k-N

jjðeehk � 1Þ � ðeeh � 1ÞjjH1�d ¼ 0; 8d > 0; ðA:14Þ

where

hkðxÞ � /J
1
2
k ðx � 
Þ; J�1

2hSS;S0 :

Indeed, by a simple application of Fourier transform and Young’s
inequality it is easy to see that there exists a constant C and for any d
and d0 satisfying 0od0odo1 the following hold:

jjðhÞ pjjH1�dpCpðjjhjjH1 Þ pjjð1þ jxj2Þ�
d
2jj

L
2
d0

pðp � 1� d0Þ
d0

� �p�1�d0

2

;

8hAH1: ðA:15Þ

Using this and a simple calculation we obtain

jjeeh � 1jjH1�dp
XN
p¼1

ep

p!
jjðhÞ pjjH1�d

pCjjð1þ jxj2Þ�
d
2 jj

L

2
d0

XN
p¼1

eC0

ffiffiffiffi
1

d0

r ! p
jjhjjp

H1

Gðp
2
þ 1Þ

;

8hAH1ðRdÞ for any 0oeoe0; ðA:16Þ

where C is a constant which does not depend on h; e; d; d0 and p:
From this, (A.14) follows immediately.
Next by Theorem 1.2(ii) (cf. definition of tðpÞ;k;l) we have

tk;l

ð1
2
;eeÞ

ðcþ hÞ ¼ eehktk;l

ð1
2
;eeÞ

ðcÞ; 8cABa;b
2 ; 8hAH1:

If we assume that e satisfies the assumption of Theorem 1.3(ii21):

jejo
a0ð2Þffiffiffi
2

p ;
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then by (38), (A.14) and Definition 1.1 for some a00 such that a0oa00o1
2
the

following holds:

lim
kj-N

lim
li-N

jjeehktkj ;li

ð1
2
;eeÞ

ðcÞ � eeht
ð1
2
;eeÞ

ðcÞjj2
Ba00 ;b

d

¼ 0;

8cABð1
2
; eÞ; 8hAH1:

Again, from Definition 1.1 this equation tells us that

Bð1
2
; eÞ þ H1C %Bð1

2
; eÞ and t

ð1
2
;eeÞ

ðcþ hÞ ¼ eeht
ð1
2
;eeÞ

ðcÞ;

8cABð1
2
; eÞ; 8hAH1: ðA:17Þ

Now, by (A.14), (A.16) and (A.17) by passing through a similar (and easier)

discussion as in the proof of theH � C1 property of ue given below, it can be

shown that for each cABð12; eÞ the map

H ¼ H�13h/ZMt
ð1
2
;eeÞ

ðcþ iðhÞÞAH�1

is continuous.

Next, we shall show that ue is H � C1 when e satisfies the stronger
assumption:

jejo
a0ðdÞffiffiffi
3

p :

For this purpose and for later use we remark the following (A.19):

Let d ¼ 2 and b ¼ 1
2
; and suppose that b and M are any non-negative

numbers. Then for any non-negative a and d satisfying

a þ
d
6
o
1

6
ðA:18Þ

there exists K ¼ Kða; d; b;MÞ such thatZ
R2�R2

ð/J
1
2ðx � 
ÞJ

1
2ðy � 
Þ; ZM ð
Þhð
Þjð
ÞSS0;SÞ

2 dx dy

pK jjhjj2H1�d jjjjj2Ba;b
2

; 8h; 8jASðR2Þ: ðA:19Þ

This inequality also follows easily from a standard argument by means of
Fourier transforms and the theory of pseudo-differential operators (cf. for
e.g. [36]). Actually this can be derived directly as follows: For h; jAS; let h0

and j0 be such that hðxÞ ¼ ðJ
1�d
2 h0ÞðxÞ; jðxÞ ¼ ðjxj2 þ 1Þ

b
4ðJ�aj0ÞðxÞ: If we
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set Z0M ðxÞ ¼ ZMðxÞðjxj2 þ 1Þ
b
4; then we have

/J
1
2ðx � 
ÞJ

1
2ðy � 
Þ; ZM ð
Þhð
Þjð
ÞSS0;S

¼ ð2pÞ2
Z
ðR2Þ4

#Z0Mðx1Þðjx2j
2 þ m2Þ�

1�d
2 ĥ0ðx2Þ

� ðjx1 þ x2 þ x4 þ x5j
2 þ m2Þa #j0ð�x1 � x2 � x4 � x5Þ

� ðjx4j
2 þ m2Þ�

1
2ðjx5j

2 þ m2Þ�
1
2e�

ffiffiffiffiffi
�1

p
xx4e�

ffiffiffiffiffi
�1

p
yx5 dx1 dx2 dx4 dx5;

where dxj ¼ ð2pÞ�2 dxj : Hence, by making use of the elementary inequality

Xn

j¼1

xj

�����
�����
2

þL2pnL�2ðn�1Þ
Yn

j¼1

ðjxj j
2 þ L2Þ;

and setting #Z00MðxÞ ¼ ðjxj2 þ m2Þa #Z0MðxÞ; we haveZ
R2�R2

ð/J
1
2ðx � 
ÞJ

1
2ðy � 
Þ; ZM ð
Þhð
Þjð
ÞSS0;SÞ

2 dx dy

pð2pÞ8ð4m�6Þ2a
Z
ðR2Þ6

#Z00Mðx1Þ#Z
00
Mðx01Þðjx2j

2 þ m2Þ�
1�d
2

þa

� ðjx02j
2 þ m2Þ�

1�d
2

þaĥ0ðx2Þĥ0ðx
0
2Þ

� #j0ð�x1 � x2 � x4 � x5Þ #j0ð�x01 � x02 � x4 � x5Þ

� ðjx4j
2 þ m2Þ�1þ2aðjx5j

2 þ m2Þ�1þ2a dx1 dx2 dx01 dx02 dx4 dx5

pð2pÞ4ð4m�6Þ2afjj#Z00M jjL1 jjðjxj
2 þ m2Þ�

1�d
2

þajjLq

� jjðjxj2 þ m2Þ�1þ2ajjLs jjj0jjL2 jjh0jjL2g
2;

where the latter inequality holds under the condition that there exist q and s

such that

ðjxj2 þ m2Þ�
1�d
2

þaALq; ðjxj2 þ m2Þ�1þ2aALs; 1pq; spN;
1

q
þ
1

s
¼ 1:

If a and d satisfy (A.18), then there exist such q and s: Hence, under

condition (A.18) we can take Kða; d; b;MÞ ¼ ð2pÞ4ð4m�6Þ2aðjj#Z00M jjL1 jjðjxj
2 þ

m2Þ�
1�d
2

þajjLq jjðjxj2 þ m2Þ�1þ2ajjLs Þ2; and since jjh0jjL2 ¼ jjhjjH1�d and jjjjjL2 ¼

jjjjjBa;b
2
; for h;jAS; we obtain (A.19).

Now, since S is dense in H1�d and Ba;b
2 ; from (A.14), (A.17) and (A.19)

we see that

jjrueðcþ iðhÞÞ � rueðcÞjjH#H

pKða0; d; b;MÞjjt
ð1
2
;eeÞ

ðcÞjj
Ba0 ;b
2

jjeeiðhÞ � 1jjH1�d ; 8cAB; 8hAH�1;

ðA:20Þ
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where from Theorem 1.1(ii) a0 must satisfy

e2f4ða0ðdÞÞ
2g�1oa0:

For d ¼ 2 this means that

e2

8p
oa0: ðA:21Þ

If jejo2
ffiffip
3

p
¼ a0ð2Þffiffi

3
p ; then we can take a0 satisfying both (A.18) (replacing a by

a0) and (A.21) (d can be taken arbitrarily small cf. (A.14)). Hence, from
(A.20) and(A.16) the H � C1 property of ue follows.

For general d if we take b ¼ d
4
; then the corresponding condition of (A.18)

becomes

a0 þ
d
6
o

d

12
:

If we combine this with the condition that e2df4ða0ðdÞÞ
2g�1oa0 (coming

from Theorem 1.1(ii)), then we have a sufficient condition under which

Jb�1
2ðZMtðb;eeÞðfÞÞ becomes an H � C1 map. In other words jejoa0ðdÞffiffi

3
p is a

sufficient condition for the H � C1 property of ue:
The other parts of Theorem 1.3(ii) are obvious.
Next, we shall prove Theorem 1.3(i). Under the assumptions of Theorem

1.3(i-11) from Theorem 1.1(i), Theorem 1.2(i) and Proposition A.1(ii) it is
easy to see that the following holds:

upðcÞAH for m-a:s:; Ba;b
d and

Em½jjrrupjj2H#r � ¼ p2?ðp � r þ 1Þ2ðp � rÞ!Z
Rd�Rd

ZMðxÞðJ2bðx � yÞÞ pþ1ZMðyÞ dx dyoN; 1prpp:

This proves the D2;rðHÞ property of up:

Next, we write the detailed proof of the H � C1 property of up only for

d ¼ 2; b ¼ 1
2
and p ¼ 3 (proofs for the cases where dX3; b ¼ d

4
and p ¼ 3 are

essentially the same as in the former case and the other cases can be proved
in a similar manner (cf. (A.15),(A.19) and (46))).

Let Bð1
2
; 3Þ be the measurable set introduced in Definition 1.1(ii) for d ¼ 2;

b ¼ 1
2
and p ¼ 3; then similar to (A.17), by noting (33) and (A.15) it is seen

that

Bð1
2
; 3Þ þ H1C %Bð1

2
; 3Þ and t

ð1
2
;2Þ
ðcþ hÞ ¼ t

ð1
2
;2Þ
ðcÞ þ 2hcþ h2;

8cABð1
2
; 3Þ; hAH1:
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Hence, from (A.15) and the fact that t
ð1
2
;pÞ
ðfÞA

T
a>0 Ba;b

2 ; ðp ¼ 1; 2;yÞ by

Theorem 1.2, the H � C1 property of u3 can be proved in the same manner
as in the proof for this property of ue given above.
The proofs of the other assertions in Theorem 1.4(i) are obvious. &

Proof of Lemma 2.1 (Key lemma for the map with cubic power). Here we
will prove (59):

exp �ldu3 þ
1þ e
2

l2jjru3jj
2
2


 �
A
\

qoN

LqðmÞ: ðA:22Þ

For simplicity we will give a proof only for the case d ¼ 2 and b ¼ 1
2
:

The proof will be performed by following a strategy given by Nelson [42].
Namely, let

V � �ldu3 þ
1þ e
2

l2jjru3jj22 and Vk � �ldu3;k þ
1þ e
2

l2jjru3;kjj22;

where

u3;kðcÞ ¼ Jb�1
2ðZMtðb;3Þ;kðcÞÞ:

Suppose that we can show that there exist k1; k2 and a that do not depend
on k such that

VkðcÞpk1ðckÞ
2; 8k; m-a:s:; cABa;b

2 ; ðA:23Þ

ðEm½jVk � V jq�Þ
1
qpk2ðq � 1Þ2k�a; qX2; ðA:24Þ

where ck ¼ c1
2
;k
¼
R

R2ðJ
1
2
k ðyÞÞ

2 dy; defined in Theorem 1.2. Then through the

same discussion as Lemma V.5 of [52], we see that there exist a0 > 0 and
b > 0; independent of k; such that

mfcjVXbðlog kÞ2gpe�ka0

for all large k:

Eq. (A.22) easily follows from this inequality (cf. [52, Theorem V.7]).
Hence, it suffices to show that (A.23) and (A.24) hold for our exponent.

Eq. (A.23) can be shown as follows. For cABa;b
2 let ckðzÞ � /J

1
2
k ðz � 
Þ;

ðJ�1
2cÞð
ÞSS;S0 ; then by (33)

t
ð1
2
;2Þ;k

ðcÞðzÞ ¼ 2!ðZkðzÞÞ
2 1

2!
ðckðzÞÞ

2 � 1
2

ck


 �
;
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by this we see that

1þ e
2

ð3lÞ2jj/ZMð
Þ; t
ð1
2
;2Þ;k

ðcÞð
ÞJ0ð
 � xÞJ0ð
 � yÞSS;S0 jj2H#H

¼
ð1þ eÞð3lÞ2

2

Z
R2�R2

ZM ðzÞðZkðzÞÞ
2fðckðzÞÞ

2 � ckgZM ðz0ÞðZkðz
0ÞÞ2

� fðckðz
0ÞÞ2 � ckgðJ1ðz � z0ÞÞ2 dz dz0

¼ �
ð1þ eÞð3lÞ2

4

Z
R2�R2

½ZMðzÞðZkðzÞÞ
2fðckðzÞÞ

2 � ckg

� ZMðz0ÞðZkðz
0ÞÞ2fðckðz

0ÞÞ2 � ckg�2ðJ1ðz � z0ÞÞ2 dz dz0

þ
ð1þ eÞð3lÞ2L

2

Z
R2
ðZMðzÞÞ2ðZkðzÞÞ

4fðckðzÞÞ
2 � ckg

2 dz;

8cABa;b
2 ; ðA:25Þ

where L ¼
R

R2 ðJ
1ðzÞÞ2 dz:

On the other hand, from (33)

�ldu3ðcÞ ¼ � l/ZM ; t
ð1
2
;4Þ;k

ðcÞS

¼ � l
Z

R2
ZMðzÞ 4!ðZkðzÞÞ

4 1

4!
ðckðzÞÞ

4 �
1
2

ck

2!
ðckðzÞÞ

2


�

þ
ð1
2

ckÞ
2

2!

)#
dz; 8cABa;b

2 : ðA:26Þ

Since the first term of the right-hand side of (A.25) cannot be positive, from
(A.25) and (A.26) we have the evaluation

� ldukðcÞ þ
1þ e
2

l2jjrukðcÞjj2H#H

pl
Z

R2
ZMðzÞðZkðzÞÞ

4 �ðckðzÞÞ
4 þ 6ckðckðzÞÞ

2 � 3ðckÞ
2

.
þ
32ð1þ eÞ
2

lLZM ðzÞððckðzÞÞ
4 � 2ckðckðzÞÞ

2 þ ðckÞ
2Þ
�

dz; 8cABa;b
2 :

ðA:27Þ

Since 0pZM ðzÞp1; if e and l satisfy 32ð1þeÞ
2

lLo1; then the term in the

bracket of the right-hand side of (A.27), the biquadratic formula of ck;

cannot be greater than k01ðckÞ
2; where k01 is a constant which is independent

of z and k: Hence, we can take k1 ¼ lk01
R

R2 ZM ðzÞ dz; and obtain (A.23).
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Next, (A.24) can be proved as follows. By Hölder’s inequality we see that

ðEm½jjjru3;k jj
2
2 � jjru3jj

2
2j

q�Þ
1
q

pðEm½jjru3jj
2q
2 �Þ

1
2qðEm½jjru3;k �ru3jj

2q
2 �Þ

1
2q

þ ðEm½jjru3;kjj
2q
2 �Þ

1
2qðEm½jjru3;k �ru3jj

2q
2 �Þ

1
2q: ðA:28Þ

But each term in the above expectation such as jjru3jj22; jjru3;k �ru3jj22 and
jjru3;k jj22 has an expression by means of multiple stochastic integrals, for
example

jjru3ðfoÞjj
2
2

32

¼
Z

R8

Z
R2�R2

ðJ1ðz � z0ÞÞ2ZMðzÞZM ðz0ÞJ
1
2ðz � x1ÞJ

1
2ðz � x2Þ

�

� J
1
2ðz0 � x0

1ÞJ
1
2ðz0 � x0

2Þ dz dz0
�

� dWoðx1Þ dWoðx2Þ dWoðx0
1Þ dWoðx0

2Þ

þ 4

Z
R4

Z
R2�R2

ðJ1ðz � z0ÞÞ3ZM ðzÞZM ðz0ÞJ
1
2

�

� ðz � x1ÞJ
1
2ðz0 � x0

1Þ dz dz0
�

� dWoðx1Þ dWoðx0
1Þ þ 2

Z
R2�R2

ðJ1ðz � z0ÞÞ4ZMðzÞZMðz0Þ dz dz0;

P-a:s:; oAO: ðA:29Þ

Using (A.1) and (A.2) and passing to a standard argument concerning the
calculation of the expectation of multiple stochastic integrals (cf. [52,56,
Section V.1]) by (A.29) and the corresponding expressions through multiple
stochastic integrals for the other terms, it is easy to see that there exists C1
which depends only on M such that

ðEm½ðjjru3jj
2
2Þ
2�Þ
1
2pC1;

ðEm½ðjjru3;k jj22Þ
2�Þ
1
2pC1;

also for each a > 0 there exists C2 which depends only on M such that

ðEm½ðjjru3;k �ru3jj
2
2Þ
2�Þ
1
2pC2k

�a:

Since for random variables having multiple stochastic integral representa-
tion we can apply Nelson’s Hypercontractive bound (cf. [52, Theorem
1.22]), from the above inequalities we can deduce the following:

ðEm½ðjjru3jj22Þ
q�Þ
1
qpðq � 1Þ2C1; ðA:30Þ
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ðEm½ðjjru3;k jj
2
2Þ

q�Þ
1
qpðq � 1Þ2C1; ðA:31Þ

ðEm½ðjjru3;k �ru3jj22Þ
q�Þ
1
qpðq � 1Þ2C2k�a; q ¼ 2; 3;y: ðA:32Þ

Then, by (A.28), (A.30–A.32)(we conclude that there exists some C0 that
depends only on M such that

ðEm½j jjru3;kjj
2
2 � jjru3jj

2
2j

q�Þ
1
qpðq � 1Þ2C0k�a:

Moreover using that du3;kðfoÞ and du3ðfoÞ have expressions by means of
multiple stochastic integral we easily see that

ðEm½jdu3;k � du3j
q�Þ
1
qpðq � 1Þ2C0k�a:

Combining these evaluations we obtain (A.24). &
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