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Complete L-regularity is internally characterized in terms of separating chains
of open L-sets. A possible characterization in terms of normal and separating
families of closed L-sets is discussed and it is shown that spaces admitting such
families are completely L-regular. The question of whether the converse holds true
remains open. Some partial solutions are however given, e.g. in the class of
countably compact spaces. Q 1997 Academic Press

1. INTRODUCTION

w xCompletely L-regular spaces, introduced by Hutton 8 , constitute one of
the best established categories of L-topological spaces. These spaces have
satisfactory theories of uniform and metric structures, provided L is

w xcompletely distributive 3, 8, 20 . There are a number of characterizations
in terms of continuous L-real functions under various assumptions about
Ž . ŽL including completeness . For L-Tychonoff spaces s completely L-reg-

.ular spaces in which open L-sets separate points there is the Tychonoff
embedding theorem, holding for any complete L. The complete L-regular-
ity and the L-Tychonoff behave well with respect to the functors i andL
v , where L is a hypercontinuous lattice, in particular, a completelyL

w xdistributive one. For these results see 17 . There are also further results,
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among them those related to compactness in completely L-regular spaces
w x w x w x1 and to probabilistic metric spaces 6 . Also cf. 11, 19, 24 .

Ž � 4Internal characterizations of complete regularity i.e., complete 0, 1 -
. w xregularity have been given by several authors. The paper 2 has an almost

Žcomplete bibliography. We recall that an internal characterization is one
Ž .that depends only on the lattice of all open or closed subsets and does

.not involve the real numbers, even as an index set. Among the T -free1
w x w xcharacterizations are those of Kerstan 13 , Steiner 25 , and Johnson and

w xMandelker 10 .
In this paper we discuss the possibility of an internal characterization of

complete regularity in an L-topological setting. We shall show that the
w xcharacterization of 10 in terms of separating chains continues to hold for

completely L-regular spaces with an arbitrary complete L. This provides a
Ž . w xpositive answer to the first named author’s question of 23, p. 349 . Since

Ž Ž .. Ž < < .a ring structure is not available in C X, R L with L ) 2 , there are
difficulties in implementing the characterization in terms of normal and

w xseparating families of closed sets due to Steiner 25 . Spaces that admit
normal and separating families of closed L-sets will be shown to be
completely L-regular for any complete L. We have not yet been able to

< <prove or disprove the converse for any L with L ) 2. Our conjecture is
Žthat this may be the case for any complete Boolean algebra see Question

.5.10 and Conjecture 5.11 for details . However, a partial solution is given
for those completely L-regular spaces that are countably compact in the

w x Ž .sense of 9 with L is a complete lattice . Among the less interesting
Žspecial cases are second countable completely L-regular spaces L meet-

.continuous and topologically generated completely L-regular spaces
Ž w x.where L s 0, 1 . The paper also includes a number of open questions.

2. PRELIMINARY NOTIONS AND RESULTS

We recall a bit of standard terminology, mainly to fix notation.
Ž X.Let L s L, be a complete lattice with an order-reversing involution

Ž . X Ž0 and 1 are the bounds . For a set X, L is the complete lattice under
.pointwise defined ordering and involution of all maps from X to L. These

X Žmaps are called L-sets. Bounds of L are denoted 1 and 1 in general,B X
. Xthe characteristic function of A ; X is denoted 1 . A subfamily T of L ,A
Ž X .which is closed under arbitrary sups and finite infs both formed in L , is

Ž . Žcalled an L-topology on X, and X, T is then an L-topological space L-ts
.for short . The space will often be denoted just by X if T is understood

from the context. Members of T are called open, and k g LX is closed iff
X Xk is open. If a g L , we denote by a the closure of a, and by Int a the

� < 4interior of a. If A ; X, then the set of all restrictions u A: u g T is the
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X �subspace L-topology on A. We say that S ; L generates T if T s F T >1
4S: T is an L-topology on X . A map f between two L-topological spaces1

ŽX and Y is continuous if uf is open in X for every open u in Y where uf
.is the composition of f and u .

The following lemma is important because it enables us to deal with
continuous L-real functions in a complete lattice setting. For a proof and

w xremarks about it, see 23, p. 282 .

SUBBASE LEMMA 2.1. Let L be a complete lattice. Let X and Y be two
L-topological spaces and let S ; LY generate the L-topology of Y. Then
f : X ª Y is continuous if and only if uf is open in X for e¨ery u g S.

w xWe now recall the concepts of the L-line and the unit L-interval 4, 7 .
Let L be complete. Let R be the set of all order-reversing membersL

R Ž . Ž .l g L such that E l R s 1 and H l R s 0. For every t g R we let
qŽ . Ž . yŽ . Ž . q ql t s E l t, ` and l t s H l y`, t . Define l ; m iff l s m

Ž y y w x.this is equivalent to the statement that l s m 17, Remark 1.3.1 . The
Ž .quotient set R L s R r; is called the L-real line. It becomes a posetL

w x w x q qŽ y y.with the ordering l F m iff l F m iff l F m . For every t g
R ŽL. w x yŽ .X w x qŽ .R, L , R g L are defined by L l s l t and R l s l t . Thet t t t

Ž . Ž .natural L-topology on R L is generated by the L-sets L and R t g R .t t
Ž . �w x Ž . yŽ .X qŽ . 4 Ž .The set I L s l g R L : l 0 s l 1 s 0 is called the unit L-in-

Ž .ter̈ al. It has the subspace L-topology and the ordering induced from R L .
< Ž . Ž .We write R rather than R I L and similarly for L to denote the opent t t

Ž . Ž . Ž Ž Ž ...L-sets of I L . We write C X resp., C X, I L for the collection of all
Ž . Ž Ž ..continuous functions from X to R L resp., I L .

For a fuller account about the lattice-theoretic properties which follow,
w x Ž Ž . . Ž .we refer to 17, Sect. 1.3 . For any complete L, I L ,F is a complete

w x w x w xlattice in which l k m s l k m and the same for n. Furthermore,
Ž . Ž .v w xv w v xI L has a continuous order-reversing involution ? defined by l s l ,

v Ž . Ž .X Ž w x. Ž Ž ..where l t s l 1 y t , t g R see 14, 17 . Given an f g C X, I L , we
v Ž Ž .. Ž .vwrite f for the function in C X, I L , obtained by composing f and ? .

Ž . w xLet t denote the constant map of X into R L with the value 1 .Žy`, t .
Ž . Ž .For any complete L and any f g C X , we have t n f , t k f g C X .

However, if L is meet-continuous, i.e., for every a g L and every directed
subset D ; L:

� 4MC a n E D s E a n d : d g D ,Ž .

Ž . Ž .then C X is closed under arbitrary finite pointwisely defined k and n.
We do not need this information; yet it may be useful when dealing with
the open questions of Section 5.

Ž .Notation. Given an f : X ª R L , we write f for a representative ofx
Ž . Ž . w xf x , i.e., f x s f .x
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Ž . Ž . Ž . Ž .For f g C X and s g R, we define f q s by f q s t s f t y s forx x
Ž . Ž .every x g X and t g R. We have R f q s s R f and L f q s st tys t

Ž . Ž .L f ; hence f q s g C X by 2.1. We write f y s for f q ys .tys

Remark. In point-set topology a subset A of a topological space X is
y1� 4called a zero-set if A s f 0 for some continuous real-valued function f

y1� 4 < <y1Ž x y1Ž x Ž .y1� 4of X. Since f 0 s f y`, 0 and g y`, 0 s g k 0 0 , A is a
y1Ž xzero-set iff A s h y`, 0 for some continuous h. This motivates the

following definition.

DEFINITION 2.2. Let X be an L-topological space, where L is a
complete lattice. An a g LX is called an L-zero-set if a s RX f for some0

Ž .f g C X .

The obvious proof of what follows is included just to make it clear that it
is a complete lattice proof.

LEMMA 2.3. Let X be an L-topological space, where L is a complete
lattice. For a g LX, the following are equï alent:

Ž .1 a is an L-zero-set.
Ž . Ž Ž .. X2 There exists f g C X, I L such that a s R f.0

Ž . Ž Ž .. X3 There exists f g C X, I L and 0 F t F 1 such that a s R f.t

Ž . Ž Ž .. X4 There exists f g C X, I L and 0 F t F 1 such that a s L f.t

Ž . Ž . X Ž . Ž .Proof. 1 « 2 : Let a s R g with g g C X . Put f s g k 0 n 1.0
Ž Ž ..Then f g C X, I L , and for every x g X we have

R f x s R g k 1 n 1Ž . Ž .0 0 x Žy` , 0. Žy` , 1.

s g s k 1 s n 1 sŽ . Ž . Ž .Ž .E x Žy` , 0. Žy` , 1.
s)0

s g s s R g x .Ž . Ž .E x 0
s)0

Ž . Ž .2 « 3 : Obvious
Ž . Ž . X X v3 « 4 : We have a s R f s L f .t 1yt

Ž . Ž . X X v4 « 3 : Similarly, a s L f s R f .t 1yt
X XŽ . Ž . Ž .3 « 1 : a s R f s R f y t .t 0

Ž .Remark. If L satisfies MC , then the family of all L-zero-sets is a ring,
i.e., it is closed under finite n and k. This is not needed for us, but, note
again, it may be useful for solving the questions of Section 5.
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w x XRemark 2.4. Recall 14 that the characteristic function of a g L is
Ž . Ž .the map x : X ª I L , where x x is defined bya a

¡a x if 0 F t F 1,Ž .~x t sŽ . Ž . 1 if t - 0,a x ¢
0 if t ) 1.

Ž Ž ..If a is a closed-and-open L-set in an L-ts X, then x g C X, I L anda
Ž w x.vice versa see 14, Proposition 3.2 .

3. GENERATING CONTINUOUS L-REAL FUNCTIONS

� 4 XLet X be a set. A nondecreasing family CC s c : r g Q ; L is calledr
a scale on X if H CC s 1 and E CC s 1 . For every x g X and t g R letB X

f t s cX x .Ž . Ž .Hx r
r-t

y Ž .It is easy to see that f g R and f s f . The function f : X ª R L ,x L x x
Ž . w x Ž w x.defined by f x s f , is said to be generated by CC cf. 7, 12, 15 . In whatx

follows p, q, r stand for rationals.

Ž .LEMMA 3.1. Let L be complete and let f : X ª R L be generated by the
� 4 Xscale c : r g Q ; L . Then:r

Ž .1 L f s E c for e¨ery t g R;t r - t r

Ž . X2 R f s H c for e¨ery t g R.t r ) t r

For X an L-topological space we ha¨e

Ž . Ž .3 f g C X if and only if c F Int c whene¨er r - q;r q

Ž . Ž Ž .. Ž .4 f g C X, I L if and only if f g C X , and c s 1 if r - 0, andr B

c s 1 if r ) 1.r X

Ž . X Ž . yŽ . Ž .Proof. 1 For each x g X we have L f x s f t s f t st x x
X Ž .H c x . Hence L f s E c .r - t r t r - t r

Ž . X Ž .2 Since R f s H L f , by 1 we gett s) t s

RX f s c F c s c .H E H H Ht r r r
r-s r)ss)t s)t r)t

For the reverse inequality observe that H c F E c for each s ) t,r ) t r r - s r
and therefore H c F H E c .r ) t r s) t r - s r
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Ž . Ž . Ž .3 « : For r - q we have, by 1 and 2 :

c F c s RX f F L f s c F c .H Er p r q p q
p)r p-q

XSince R f is closed and L f is open, we obtain c F Int c .r q r q
Ž .¥: It is clear that E c s E Int c ; hence L f is open by 1 .r - t r r - t r t

X Ž .Similarly, since H c s H c , R f is closed by 2 . By the Subbaser ) t r r ) t r t
Ž .Lemma, f g C X .

Ž . Ž Ž .. Ž .4 « : f g C X, I L if and only if L f s R f s 1 . But, by 1 and0 1 f

Ž . X2 , we have L f s E c and R f s E c ; hence c s 1 if r - 0,0 r - 0 r 1 r )1 r r B

and c s 1 iif r ) 1.r X
¥: Reverse the steps of the forward implication.

LEMMA 3.2. Let X be an L-topological space, where L is a complete
lattice. For a F b in LX, the following are equï alent:

Ž . X Ž .1 a F L f F R f F b for some f g C X and s - t in R;t s

Ž . X Ž Ž ..2 a F L f F R f F b for some f g C X, I L ;1 0

Ž . X Ž Ž ..3 a F R f F L f F b for some f g C X, I L ;0 1

Ž . � Ž .44 There exists a family u : r g Q l 0, 1 of open L-sets of X suchr
Ž .that a F u F b for e¨ery r g Q l 0, 1 , and u F u whene¨er r - q.r r q

Ž . Ž . Ž . w xProof. 1 m 2 m 3 : 17, Remark 1.4.1 .
Ž . Ž . Ž . X3 « 4 : For every r g Q l 0, 1 we have R f F L f F L f. Fur-0 r 1

Xthermore, L f F R f F L f if 0 - r - p - q - 1; hence L fF L f ifr p q r q
� Ž .4r - q. Therefore L f : r g Q l 0, 1 has the required properties.r

Ž . Ž . � Ž .44 « 3 : Let u : r g Q l 0, 1 be given. Put u s 1 for r F 0 andr r B

� 4u s 1 for r G 1 Then UU s u : r g Q is a scale of open L-sets suchr X r
that u F u if r - q in Q. Let f be the function generated by UU. Byr q

Ž . Ž Ž ..Lemma 3.1 4 , f g C X, I L . Moreover, since a F u F b if 0 - r - 1,r
Ž . Ž .we obtain by 1 and 2 of Lemma 3.1

Xa F u s R f F L f s u F b.H Er 0 1 r
r)0 r-1

X Ž .Notation. If a, b g L , we write a $ b if a and b satisfy condition 2
Ž .of Lemma 3.2 and thus all of them . If necessary, we shall write a $ b tof

Ž .indicate the function involved in 2 .

DEFINITION 3.3. Two L-sets c and d are completely separated in
X X Ž . Ž .an L-ts X if c $ d . We then also have d $ c , because of 2 m 3 in

Lemma 3.2.
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4. AN INTERNAL CHARACTERIZATION OF
COMPLETELY L-REGULAR SPACES.

Ž w x.DEFINITION 4.1 Hutton 8 . Let L be a complete lattice. An L-topo-
logical space X is completely L-regular if, whenever u is an open L-set,
there exists a family AA ; LX such that E AA s u and a $ u for every
a g AA.

w xPROPOSITION 4.2 17, Section 2.1 . Let L be complete. For X an L-ts, the
following are equï alent:

Ž .1 X is completely L-regular.
Ž .2 For e¨ery open u there exists a family VV of open L-sets such that

E VV s u and ¨ $ u for e¨ery ¨ g VV .

We are now going to show that the internal characterization of topologi-
w xcal complete regularity due to Johnson and Mandelker 10 generalizes to

completely L-regular spaces, where L is a complete lattice.

Ž w x w x.DEFINITION 4.3 cf. 10 or 21 . Let L be a complete lattice. A
separating chain in an L-ts X is a family UU of open L-sets of X such that

Ž . X Ž .1 UU is a countable chain in L i.e., totally ordered under F ;
Ž .2 HUU s 1 and UU s 1 ;f X

Ž .3 If u, ¨ g UU, u F ¨ , and u / ¨ , then there exists w g UU such that
u F w F w F ¨ .

A Q-indexing of UU is a function f : Q ª UU that is onto and such that
Ž .c p F c r whenever p - r.Ž .

� 4It is well known that if L s 0, 1 , then every separating chain can be
Žw x w x. Ž w x.Q-indexed 10 , 21 . In the proof of this fact as in 21 , the argument is

seen on examination to be both point-free and distributivity-free, and does
not use the Boolean complements. Thus, it goes unchanged to the case
that follows, and we therefore omit the proof.

LEMMA 4.4. Let L be a complete lattice. Any separating chain in an
L-topological space can be Q-indexed.

Remark. A separating chain, when Q-indexed, becomes a scale.

Ž .THEOREM 4.5 internal characterization . Let L be a complete lattice.
For X an L-topological space, the following are equï alent:

Ž .1 X is completely L-regular.
Ž .2 For e¨ery open L-set u there exists a family VV of open L-sets such

that E VV s u, and for e¨ery ¨ g VV there exists a separating chain GG such
that ¨ F g F g F h F u for some g, h g GG.
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Ž . Ž .Proof. 1 « 2 : If u is open, there exists by Proposition 4.2 a family VV

�of open L-sets with E VV s u and ¨ $ u for all ¨ g VV . Let g : r g Q lr
Ž .40, 1 be the associated scale of open L-sets that exists on account of

Ž .Lemma 3.2 4 , i.e., ¨ F g F u and g F g if r - q. Put g s 1 if r F 0,r r q r B

� 4and g s 1 if r G 1. Then GG s g : r g Q is the required separatingr X r
chain.
Ž . Ž . Ž .2 « 1 : Let VV be as in 2 . Fix ¨ g VV and assume that ¨ F g F g F

h F u for some g and h of a separating chain GG. Let c be a Q-indexing of
Ž . Ž . Ž .GG cf. Lemma 4.4 . Let g s c p and h s c r for some p, r g Q.

Ž Ž ..If g s h, then g s g is a closed-and-open L-set; hence x g C X, I Lg
Ž . Xcf. Remark 2.4 . We have ¨ F g s L x s R x s g F u, i.e., ¨ $ u.1 g 0 g

Ž . Ž . XIf g / h, then p - r. Thus ¨ F c p F H c q s R f , where f isq ) p p
� Ž . 4the continuous function generated by the scale c r : r g Q . Similarly,

Ž . Ž . X X X X XL f s E c q F c r F u. Thus u F L f F R f F ¨ , i.e., u $ ¨ .r q - r r p
Ž .Hence ¨ $ u cf. Lemma 3.2 and Definition 3.3 .

5. NORMAL AND SEPARATING FAMILIES
OF CLOSED L-SETS

The definition below is a point-free variant of the concept of a normal
Žand separating family of closed subsets of a topological space cf. Steiner

w x.25 .

DEFINITION 5.1. Let L be complete. A family KK of closed L-sets of an
L-ts is called:

Ž .1 separating, if for every open L-set u there exist two families
� 4 � 4 Xa : g g G , b : g g G ; KK such that u s E a and a F b F u forg g g g G g g g

Ž X X � X 4every g g G therefore u s E b and hence KK s a : a g KK is ag g G g

.base of the L-topology of X ;
Ž . X2 normal, if for every a,b g KK with a F b there exist c, d g KK

such that a F cX F d F bX.

LEMMA 5.2. Let L be a complete lattice and let KK be a normal family of
closed L-sets of an L-topological space X. Then any a, b g KK such that
a F bX are completely separated.

� 4Proof. This is essentially the proof of Urysohn’s lemma. Let q be ann
w xenumeration of Q l 0, 1 , where q s 0 and q s 1. For every n G 2 we1 2

� 4 X � 4shall inductively define families u : i - n ; KK and k : i - n ; KKq qi i

such that

I a F u F k F u F bX if q - q i , j - n .Ž . Ž .n q q q i ji i j
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X Ž .There are u and k where a F u F k F b \ u . This is I .q q q q q 21 1 1 1 2
Ž .Assume that u and k are already defined for i - n and satisfy I . Letq q ni i

� 4 � 4q s max q - q : i - n and q s min q ) q : i - n . Then q - q andl i n r i n l r
thus there are c, d g KK such that k F cX F d F u . Put u s cX andq q ql r n

Ž . Ž .k s d. Then u ,k i - n q 1 satisfy I . We thus have a familyq q q nq1n i i X� Ž .4u : r g Q l 0, 1 of open L-sets such that a F u F b and u F u ifr r r q
Xr - q. By Lemma 3.2 we conclude that a $ b .

w xWe recall that X is L-normal 7 if, given a closed k and an open u
with k F u, there exists an open ¨ with k F ¨ F ¨ F u. Clearly, X is
L-normal iff its family of closed L-sets is normal. Thus we get by Lemma
5.2 the following.

Ž w x.COROLLARY 5.3 Hutton-Urysohn lemma 7 . Let L be a complete
lattice. An X is L-normal if and only if , whene¨er k is closed, u is open and
k F u, there holds k $ u.

PROPOSITION 5.4. Let L be a complete lattice. E¨ery L-topological space
with a normal and separating family of closed L-sets is completely L-regular.

Proof. Let X be an L-ts with a normal and separating family KK of
closed L-sets. For an open u, let u s E a and a F bX F u forg g G g g g

a , b g KK, g g G. By Lemma 5.2, a F bX implies a $ bX , and thus a $ u.g g g g g g g

This shows complete L-regularity of X.

w xThe above generalizes half of Steiner’s 25 internal characterization: a
topological space is completely regular if and only if it has a normal and
separating family of closed subsets. In a completely regular X the family
Ž . Ž .Z X of all zero-sets is clearly separating cf. Remark 5.5 below , while
Ž .Z X is normal for any X. The usual proof of the latter statement depends

Ž . w y1� 4 y1� 4heavily upon the ring structure of C X, R viz., if f 0 l g 0 s B
Ž . Ž .with f , g g C X, R , then h s fr f q g completely separates these dis-

Ž . wŽjoint zero-sets, and this is equivalent to the normality of Z X ; see
.x Ž .Proposition 5.6 below . In an L-topological setting, C X is merely a

Ž w x.poset or a lattice if L is meet-continuous 17 .

Ž .Notation. In what follows, Z X stands for the family of all L-zero-setsL
of an L-topological space X.

Ž .Remark 5.5. Z X is a separating family for every completely L-regu-L
lar space X with L a complete lattice.

Indeed, if E AA s u and a $ u for all a g AA, then u s E LX ff a ag AA 1 a
and LX f F R f F u.1 a 0 a

Ž .PROPOSITION 5.6. Let L be complete and let X be an L-ts. Then Z X isL
X Ž . Xa normal family if and only if a $ b for e¨ery a, b g Z X with a F b .L
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Proof. The necessity follows from Lemma 5.2. For the sufficiency: if
a F LX f F R f F bX, then a F cX F d F bX with c s RX f and d s LX f.1 0 1r2 1r2

The following provides a number of open questions suggested by the
above discussion.

� 4 Ž .Question 5.7. Does there exist a lattice L / 0, 1 such that Z X is aL
normal family for every L-ts X ?

wBy Proposition 5.6, this is the same question as that of 17, Open
xquestion 10.4 .

Ž w x x.Question 5.8 cf. 23, p. 350 and 17, Open question 10.5 . Does every
completely L-regular space have a normal and separating family of closed

� 4L-sets for some L / 0, 1 ?

Question 5.9. Is the property of having a normal and separating family
� 4of closed L-sets hereditary if L / 0, 1 ?

Question 5.10. Let L be a complete Boolean algebra. Is there a
Ž .Gbijection from the L-topology of the L-cube I L onto the topology of

w xG Žthe cube 0, 1 that preserves arbitrary suprema and finite infima? We
< < w x .recall that this is the case when G s 1; cf. Hutton 7 . If the answers to

Questions 5.9 and 5.10 were ‘‘yes,’’ then the Tychonoff embedding theo-
w xrem for L-topological spaces 17 would yield the following, which we state

Žas a conjecture. We note that when L is a complete Boolean algebra,
then the concept of a normal and separating family of closed L-sets can be
formulated in terms of open L-sets involving arbitrary suprema and finite

.infima.

Conjecture 5.11. Let L be a complete Boolean algebra. An L-T space0
Ž .s open L-sets separate points of the space is completely L-regular if
and only if it has a normal and separating family of closed L-sets.

w xAn L-topological space X is countably compact 9 if, given a closed k
and a countable family UU of open L-sets of X such that k F EUU, there
exists a finite subfamily UU ; UU with k F EUU .0 0

Since a countably compact completely L-regular space need not be
Ž � 4 w x.L-normal as the case of L s 0, 1 shows; cf. 5, 3L , the following is of

some interest.

PROPOSITION 5.15. Let L be a complete lattice. A countably compact L-ts
X is completely L-regular if and only if it has a normal and separating family
of closed L-sets.

Proof. After Proposition 5.4 and Remark 5.5 it suffices to observe that
Ž . Ž . XZ X is a normal family. Indeed, let a, b g Z X and a F b . By LemmaL L

X Ž Ž ..2.3, we can assume that b s R f for some f g C X, I L . Since a is0
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� 4closed and R f s E R f : r ) 0, r g Q , there are r , . . . , r ) 0 such that0 r 1 n
� 4a F R f k . . . k R f s R f , where r s min r : i F n . But then a Fr r r i1 nX X Ž .R f F L f F R f s b ; hence Z X is normal by Lemma 2.3.r r 0 L

Ž .Remark 5.13. 1 If L is meet-continuous, then every second countable
w xcompletely L-regular space X is L-normal 17, Theorem 9.11 ; hence

Ž .Z X is normal by Corollary 5.3.L
Ž .2 There is also an obvious argument for the solution to Question 5.8 in

w x w xthe class of topologically generated spaces with L s I s 0, 1 . Recall 18
that v X is said to be topologically generated from a topological space X
if v X is the set X endowed with the I-topology consisting of all lower

wsemicontinuous functions from the space X to I. It is proved in 16,
xCorollary 3.4 and Remark 4.4 that X is a completely regular space if and

only if v X is completely I-regular if and only if v X is zero-dimensional
Ž .s there is a base consisting of closed-and-open I-sets . Thus, clearly, the

Ž Ž ..family of all closed-and-open I-sets s C X, I is then both normal and
separating in v X.
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