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a b s t r a c t

The problem of subsampling in two-sample and K -sample settings is addressed where
both the data and the statistics of interest take values in general spaces. We focus on the
case where each sample is a stationary time series, and construct subsampling confidence
intervals and hypothesis tests with asymptotic validity. Some examples are also given, and
the problem of optimal block size choice is discussed.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Subsampling is a statistical method that is most generally valid for nonparametric inference such as the construction of
confidence intervals and hypothesis tests in a large-sample setting. The applications of subsampling are numerous starting
from i.i.d. data and regression, and continuing to time series, random fields, marked point processes, etc.; see [1] for a review
and extensive list of references.
Interestingly, the two-sample and K -sample i.i.d. set-ups have not been explored yet in the subsampling literature;

we attempt to fill this gap here. So consider K independent datasets: X (1), . . . , X (K) where X (k) = (X (k)1 , . . . , X
(k)
nk ) for

k = 1, . . . , K . The random variables X (k)j take values in an arbitrary space S; typically, S would be Rd for some d, but S
can very well be a function space.
Although dataset X (k) is independent of X (k

′) for k 6= k′ there may well be dependence within a dataset. Thus, we
distinguish two cases:

• i.i.d. samples. For each k = 1, . . . , K , the data X (k)1 , . . . , X
(k)
nk are i.i.d.

• Time series samples. For each k = 1, . . . , K , the data X (k)1 , . . . , X
(k)
nk represent a stretch from a time series {X

(k)
t , t ∈ Z}

that is governed by probability law Pk.
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An example in the i.i.d. case above is the usual two-sample set-up in biostatistics where d ‘features’ (body characteristics,
gene expressions, etc.) are measured on a group of patients, and then again measured on a control group. The i.i.d. case was
concisely treated in the short announcement of [2].
Since the i.i.d. case is a special case of the time series case, the paper at hand focuses on the latter. An immediate

formulation of the set-up of multiple time series is the framework of a multivariate time series—see e.g. [3], [4], or [5]);
this multivariate set-up is covered by the general theory of subsampling as discussed in [6]. In particular, [7] were recently
able to use subsampling in the context of a bivariate time series with the purpose of comparing the two coordinate time
series with each other.
Nevertheless, literature on comparing time series of possibly different length, sampling frequency, and/or synchronicity

seems scarce. As an example, consider the problem of comparing the average temperature of San Diego to that of San
Francisco where the San Diego measurements are quarterly (say) spanning years 1997 to 2007, and the San Francisco
measurements are monthly (say) spanning 2000 to 2005. Because of different lengths, sampling frequencies, and lack of
synchronicity, this two-sample temperature dataset could not easily be treated as a multivariate time series.
Three concrete examples are given in the next section together with some key definitions and assumptions for our

asymptotic results. The large-sample validity of subsampling-based confidence intervals is shown in Section 3 using both
studentized and unstudentized roots. Section 4 shows how similar results can be obtained with subsamples that have only
partial overlap that is associated with a reduction of the computational expense. Section 5 focuses on hypothesis tests based
on K -sample subsampling, while finally Section 6 addresses the problem of optimal choice of the block sizes, and the need
for dealing with estimated rates of convergence.

2. Definitions, examples, and problem set-up

Throughout this paper it is assumed that, for each k = 1, . . . , K , the data X (k)1 , . . . , X
(k)
nk represents a stretch from a time

series {X (k)t , t ∈ Z} which is governed by probability law Pk. Throughout this paper, each time series {X
(k)
t , t ∈ Z} will be

assumed strictly stationary and strong mixing with mixing coefficients α(k)(t)→ 0 when t →∞; both the stationarity and
the mixing assumption can be somewhat relaxed—see [1], Ch. 4 and Ch. 12 and also [20].
The probability law associated with such a K -sample experiment is P = (P1, P2, . . . , PK ). The goal is inference

(confidence regions, hypothesis tests, etc.) regarding some parameter θ = θ(P) that takes values in a general normed linear
space B with norm denoted by ‖ · ‖. Denote n = (n1, . . . , nK ), and let θ̂n = θ̂n(X (1), . . . , X (K)) be a consistent estimator of
θ as mink nk →∞.

2.1. Some motivating examples

We now give three illustrations; in all three examples, K = 2 and S = R, i.e., two real-valued time series samples.

Example 2.1 (Comparing Population Means). For simplicity, let B = R, and denote by µk, γk(s) and fk(w), the mean, lag-s
autocovariance, and spectral density of time series {X (k)t } respectively for k = 1, 2. All such parameters are assumed to exist.
The natural statistic for testing H0 : µ1 = µ2 is the difference of sample means, i.e., θ̂n = X̄ (2) − X̄ (1) where

X̄ (2) = n−12
∑n2
i=1 X

(2)
i , and X̄

(1)
= n−11

∑n1
i=1 X

(1)
i . Note that θ̂n satisfies Eθ̂n = µ2 − µ1, and

Var(θ̂n) =

n2∑
s=−n2

(1− |s|n−12 )γ2(s)

n2
+

n1∑
s=−n1

(1− |s|n−11 )γ1(s)

n1
,

and hence

Var(θ̂n) ∼
2π f2(0)
n2

+
2π f1(0)
n1

as min(n1, n2)→∞.

The statistic θ̂n is asymptotically normal under standard conditions; see e.g. Brockwell and Davis (1991). Thus, an

asymptotically valid 95% confidence interval for µ2 − µ1 is simply θ̂n ± 1.96
√
Var(θ̂n). Since even the asymptotic

expression for Var(θ̂n) depends on the unknown parameters f2(0), f1(0), it must be replaced by a consistent estimator
in the construction of the confidence interval. Such an estimator is given by V̂ar(θ̂n) = 2π f̂2,n2(0)/n2 + 2π f̂1,n1(0)/n1
where f̂2,n2(0), f̂1,n1(0) are consistent nonparametric estimates of f2(0), f1(0) based on the X

(k)
t data of size nk, for k = 1, 2;

see e.g. [3]. Alternatively, the large-sample distribution of θ̂n can be directly approximated by subsampling, which would
automatically capture the correct asymptotic variance without explicit estimation. �



318 D.N. Politis, J.P. Romano / Journal of Multivariate Analysis 101 (2010) 316–326

Example 2.2 (Comparing Probability Distribution Functions). Let G(k)(·) denote the probability distribution function of X (k)1 ,
i.e., the first marginal distribution of time series {X (k)t }. The goal is to compare G(1)(·) to G(2)(·). Let

θ(P) = θ(·, P) = G(1)(·)− G(2)(·),

regarded as a random element of D(−∞,∞) endowed with the sup norm ‖ · ‖. Let Ĝ(k)nk (·) denote the empirical distribution
function of the kth sample. Then, an empirical estimate of θ(x, P) is given by

θ̂n(x) = Ĝ(1)n1 (x)− Ĝ
(2)
n2 (x).

Note that under regularity conditions, as a random process on D(−∞,∞),

nk[Ĝ(k)nk (·)− G
(k)(·)]

converges weakly to a mean zero, Gaussian process; see Deo [8] and Yoshihara [9] who provide sufficient strong mixing
conditions in the univariate and multivariate cases, respectively. Let τ 2n = min(n1, n2) and assume the ratio n1/n2 stays
bounded away from 0 and∞. It follows that, under sufficient mixing conditions, τn[θ̂n(·)− θ(·)] converges in distribution
to a mean zero Gaussian process as well.
The two-sample Kolmogorov–Smirnov test statistic is then given by

tn = sup
−∞<x<∞

|θ̂n(x)|.

Under the null hypothesis H0 : G(1)(·) = G(2)(·), the statistic τntn has a well-defined asymptotic distribution under
an appropriate mixing condition. However, in contrast to the i.i.d. case that is described in detail by DasGupta [10], this
distribution depends on particular characteristics of the two time series, namely their dependence structure. To appreciate
why, note that although EĜ(k)nk (x) = G

(k)(x), we have

Var[Ĝ(k)nk (x)] =
1
nk

nk∑
j=−nk

(
1−
|j|
nk

)
c(k)(x, j)

where

c(k)(x, j) = Cov(1{X (k)1 ≤ x}, 1{X
(k)
1+j ≤ x})

and 1{·} is the indicator function. Therefore,

nkVar[Ĝ(k)nk (x)] →
∞∑

j=−∞

c(k)(x, j),

assuming the series on the right side is convergent. Note that, in the i.i.d. case, exact permutation tests could be constructed,
but the construction breaks down if there is dependence present. Nevertheless, subsampling can be used to directly
approximate the quantiles of the null limit distribution of tn so that the test can be performed. �

Example 2.3 (Comparing Spectral Distribution Functions). Now let F (k)(·) denote the spectral distribution function of time
series {X (k)t }. The goal is to compare F (1)(·) to F (2)(·). Let

θ(P) = θ(·, P) = F (1)(·)− F (2)(·),

regarded as a random element of D[0, π] endowed with the sup norm ‖ · ‖. Let F̂ (k)nk (·) denote the corresponding integrated
periodogram estimate, so that a natural estimate of θ(λ, P) is given by

θ̂n(λ) = F (1)n1 (λ)− F̂
(2)
n2 (λ).

For testing H0 : F (1)(·) = F (2)(·), consider the test statistic given by

tn = sup
λ∈[0,π ]

|θ̂n(λ)|.

Under H0, τntn has a well-defined asymptotic distribution for some judicial choice of τn; see Ch. 7.5 of [1]. If we can assume
that n1/n2 → β ∈ (0,∞), then we could take τn = min(n1, n2) as the convergence rate. Otherwise, we can take
τn = (σ 21 /n1 + σ

2
2 /n2)

−1/2 where σ 21 , σ
2
2 are some positive parameters; since σ

2
1 , σ

2
2 are unknown, Corollary 6.1 could

then be invoked in order to use an estimated rate of convergence τ̂n.
Alternatively, in order to construct a confidence band for the difference in spectral distribution functions, we can consider

the root

τn sup
λ∈[0,π ]

‖[F̂ (1)n1 (λ)− F̂
(2)
n2 (λ)] − [F

(1)
1 (λ)− F (2)2 (λ)]‖,
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whose true c.d.f. can be denoted by Jn(x, P). Evidently, knowledge of Jn(x, P) would allow for construction of a confidence
region for the function-valued parameter θ(P); this confidence region is tantamount to a (simultaneous) confidence band
for the difference of spectral distribution functions.
The subsampling method will offer an asymptotically valid approach to either approximate Jn(x, P) (resulting into

confidence bands), and/or approximate the threshold of the critical region for the test of H0. �

2.2. Main assumptions

In order to handle the above and other examples in a unifying waywe introduce the following notation. Let g : B→ R be
a continuous function, and let Jn(P) denote the probability law of the ‘‘root’’ g[τn(θ̂n − θ(P))] under P , with corresponding
cumulative distribution function

Jn(x, P) = ProbP{g[τn(θ̂n − θ(P))] ≤ x} (1)

where τn is a normalizing sequence; in particular, τn is to be thought of as a fixed function of n such that τn → ∞ when
mink nk →∞.
Typically, g(θ)will either be (a continuous and invertible function of) the norm ‖θ‖ or a ‘projection’, i.e., a linearmapping

of B into R of particular form. Some motivating examples are given below.

1. Case B = R. Here g may be taken to be the identity function (i.e., projection), or g(θ) = |θ | (i.e., the norm).
2. Case B = Rp. Here θ = (θ1, . . . , θp), and the ‘projection’ choice corresponds to g(θ) =

∑p
i=1 ciθi for some vector

c = (c1, . . . , cp); in particular, if cj = 1 and all the other coordinates of c are zero, then g(θ) = θj just picks the jth
coordinate of θ . A ‘norm’ choice is to let g(θ) = ‖θ‖where ‖ · ‖ is some norm on Rp.

3. Case B = lp. Here θ = (θ1, θ2, · · ·)with ‖θ‖ = (
∑
∞

i=1 |θi|
p
)1/p. If c = (c1, c2, . . .) is a sequence in lq (with q−1 = 1−p−1),

then a projection on direction c can be defined as g(θ) =
∑
∞

i=1 ciθi. As above, if cj = 1 and all the other coordinates of c
are zero, then g(θ) = θj.

4. Case B = Lp[a0, a1]. Here θ = {θx for x ∈ [a0, a1]} is a real-valued function on [a0, a1], and the norm is ‖θ‖ =
(
∫ a1
a0
|θx|

p
dx)1/p. If c = {cx} is a function on Lq[a0, a1] (with q−1 = 1 − p−1), then a projection on direction c can be

defined as g(θ) =
∫ a1
a0
cxθxdx. Letting g(θ) = θx0 for some particular value x0 is also a projection.

As in the one-sample case, the basic assumption that is required for subsampling to work is existence of a bona fide large-
sample distribution, i.e.,

Assumption 2.1. There exists a nondegenerate limiting law J(P) such that Jn(P) converges weakly to J(P) as mink nk →∞.

The law J(P) has associated distribution function J(x, P)with its 1− α quantile denoted by J−1(1− α, P). In general, for
any distribution function F(x), we define the quantile-inverse as F−1(α) = inf{x : F(x) ≥ α}. Similarly, for a distribution of
the type F(x, P), the quantile-inverse is defined by F−1(α, P) = inf{x : F(x, P) ≥ α}.
The basic idea behind subsampling is to be able to recompute a statistic of interest (θ̂n here) not on datawith sample sizes

of n = (n1, . . . , nK ) but on appropriate subsamples of the original data of sizes b = (b1, . . . , bK )where each bk is an integer
between 1 and nk, chosen so that bk/nk → 0. These recomputed valueswill be used to build up the subsampling distribution
of a test statistic or a root; explicit constructions will be given in subsequent sections where, in addition to Assumption 2.1,
we will use the following mild assumption.

Assumption 2.2. As mink nk →∞, τb‖θ̂n − θ(P)‖ = oP(1).

As a matter of fact, Assumptions 2.1 and 2.2 are implied by the following assumption, as long as τb/τn → 0.

Assumption 2.3. As mink nk → ∞, the distribution of τn(θ̂n − θ(P)) under P converges weakly to some distribution (on
the Borel σ -field of the normed linear space B).

Here, weak convergence is understood to be taken in the modern sense of Hoffmann–Jorgensen; see Section 1.3 of [11].
That Assumption 2.3 implies both Assumptions 2.1 and 2.2 follows by the ContinuousMapping Theorem; see Theorem 1.3.6
of [11].
All the above asymptotic limits are under the assumption that mink nk → ∞. However, for technical reasons it will be

important that the individual sample sizes nk are of the same order of magnitude, i.e., that for some positive constants C∗, C∗
we have

C∗ ≤ nk/nk′ ≤ C∗ for all k, k′. (2)
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3. Confidence sets with full-overlap subsampling

3.1. Unstudentized roots

In time series subsampling and/or the block bootstrap, an important issue is the degree of overlap between the extracted
blocks to be re/subsampled. The case of fully overlapping blocks is generally thought to be the most efficient; see e.g. [1] or
[12], Ch. 5).
Focusing on the kth sample (for some 1 ≤ k ≤ K ), let

T (k)j = (X
(k)
(j−1)+1, X

(k)
(j−1)+2, . . . , X

(k)
(j−1)+bk

)

be the jth block-subsample of size bk that can be extracted from the series {X
(k)
1 , . . . , X

(k)
nk }. The block size bk is an integer

in [1, nk]; note that the overlap between adjacent blocks is the maximum possible, i.e., T
(k)
j and T (k)j+1 have bk − 1 common

elements.
Let Tk denote the set of all size bk block-subsamples obtained from the kth sample, i.e., let Tk = {T

(k)
j , j = 1, . . . , qk}

where qk = nk − bk + 1. A K -fold subsample is then constructed by choosing one element from each super-set Tk for
k = 1, . . . , K . Thus, a typical K -fold subsample has the form: T (1)i1 , T

(2)
i2
, . . . , T (K)iK , where 1 ≤ ik ≤ qk for k = 1, . . . , K . It is

apparent that the number of possible K -fold subsamples is q =
∏K
k=1 qk.

So a subsample value of the general statistic θ̂n is

θ̂i,b = θ̂b(T
(1)
i1
, . . . , T (K)iK ) (3)

where b = (b1, . . . , bK ) and i = (i1, . . . , iK ).
The subsampling distribution of statistic θ̂n is now defined as

Ln,b(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τb(θ̂i,b − θ̂n)] ≤ x}. (4)

As in the single-sample case, Ln,b(x) provides a generally consistent approximation to Jn(x, P) of Assumption 2.1.
Consequently, the quantiles of Ln,b(x) can be used in place of the unknown quantiles of Jn(x, P) for the construction of
large-sample confidence regions for θ .

Theorem 3.1. Assume Assumptions 2.1 and 2.2, where g is assumed uniformly continuous. Also assume (2), and that, for each
k = 1, . . . , K , we have bk/nk → 0, τb/τn → 0, and bk →∞ asmink nk →∞.

(i) Then, Ln,b(x)
P
−→ J(x, P) for all points of continuity of J(·, P).

(ii) If J(·, P) is continuous at J−1(1− α, P), then the event

g[τn(θ̂n − θ(P))] ≤ L−1n,b(1− α) (5)

has asymptotic probability equal to 1− α.

Proof. (i) Let x be a continuity point of J(·, P). We first argue that it suffices to show that

Un,b(x)
P
−→ J(x, P) (6)

where

Un,b(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τb(θ̂i,b − θ(P))] ≤ x}. (7)

Assume without loss of generality that θ(P) = 0. We claim that

Ln,b(x)− Un,b(x)
P
−→ 0. (8)

Given ε > 0, there exists δ > 0, so that |g(x) − g(x′)| < ε if ‖x − x′‖ < δ. But then, |g[τb(θ̂i,b − θ̂n)] − g(τbθ̂i,b)| < ε if
‖τbθ̂n‖ < δ; this latter event has probability tending to one. It follows that, for any fixed ε > 0,

Un,b(x− ε) ≤ Ln,b(x) ≤ Un,b(x+ ε)

with probability tending to one. So, assuming we can show (6), the result is established by letting ε → 0 through continuity
points x± ε.
To establish (6), note that E[Un,b](x) = Jb(x, P)→ J(x, P) asmink bk →∞. So, it suffices to show that Var(Un,b(x))→ 0.
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To do this, let α(s) = maxk α(k)(s), and note that α(s) → 0 when s → ∞ since α(k)(s) → 0 for all k. Momentarily
treating the K -samples as a multivariate time series, we see that the mixing coefficient at lag s of this K -variate time series
is bounded above by

CK · α(s) where CK = K ; (9)

this is a corollary of Theorem 6.2(I) of [13].
For simplicity of presentation we now focus on the two-sample case; the general case is handled similarly. So, in the case

K = 2, we have

Var(qUn,b(x)) =
q1∑
i1=1

q2∑
i2=1

q1∑
j1=1

q2∑
j2=1

Cov(Yi, Yj) (10)

where Yi = 1{τbg(θ̂i,b − θ(P)) ≤ x}. Now fix an i and consider the last two sums, namely

q1∑
j1=1

q2∑
j2=1

Cov(Yi, Yj). (11)

Note that Yi and Yj are (possibly) strongly dependent when |i1 − j1| ≤ b1 and/or |i2 − j2| ≤ b2; in these cases, we
bound Cov(Yi, Yj) by 1/4 which is a crude upper bound to the variance of any Bernoulli random variable such as Yi. Now if
|i1 − j1| > b1 and |i2 − j2| > b2, then Cov(Yi, Yj) ≤ 4C2 · α(mink{|ik − jk| − bk}), by a well-known mixing inequality such
as Lemma A.0.2 of [1] coupled with (9).
Letting c1, c2, . . . denote some positive constants, we have∣∣∣∣∣ q1∑

j1=1

q2∑
j2=1

Cov(Yi, Yj)

∣∣∣∣∣ ≤ c1b1q2 + c2b2q1 + 4C2 q1∑
s1=1

q2∑
s2=1

α(min(s1, s2)). (12)

Assume without loss of generality that q1 ≥ q2. Then,

q1∑
s1=1

q2∑
s2=1

α(min(s1, s2)) ≤ 2
q1∑
s1=1

s1∑
s2=1

α(s1) = 2
q1∑
s1=1

s1α(s1) ≤ 2q1
q1∑
s1=1

α(s1). (13)

Plugging in the bounds (12) and (13) to (10), it follows that

Var(Un,b(x)) ≤
1
q21q

2
2

q1∑
i1=1

q2∑
i2=1

q1∑
j1=1

q2∑
j2=1

|Cov(Yi, Yj)|

≤
1
q21q

2
2

q1∑
i1=1

q2∑
i2=1

(
c1b1q2 + c2b2q1 + 2q1C2

q1∑
s1=1

α(s1)

)

≤
c1b1
q1
+
c2b2
q2
+
2q1C2
q1q2

q1∑
s1=1

α(s1). (14)

The first two terms of (14) tends to zero because bk/nk → 0 by assumption. Finally, due to (2), the third term on the RHS
of (14) is of the order O(q−11

∑q1
s1=1

α(s1)) which also tends to zero because of the strong mixing assumption α(s) → 0 as
s→∞.
(ii) The proof of (ii) is very similar to the proof of Theorem 1 of [14] given our result (i). �

Remark 3.1. Theuniformcontinuity assumption for g can beweakened to continuity if Assumptions 2.1 and2.2 are replaced
by Assumption 2.3. However, the proof is much more complicated and relies on a K -sample version of Theorem 7.2.1 of [1].

Remark 3.2. If g(·) = ‖ · ‖, then part (ii) of Theorem 3.1 implies that the statement τn‖θ̂n− θ(P)‖ ≤ L−1n,b(1−α) defines an
asymptotic (1−α)100% confidence region for θ(P) that is centered around θ̂n. In the special case of a real-valued parameter
θ(P), the above reduces to an approximate 1−α level confidence interval for θ(P) that is symmetric about θ̂n. If, on the other
hand, g(·) is a ‘projection’, then using the linearity of the projectionmapping, (5) can be solved for g(θ) yielding a one-sided
confidence bound for g(θ) with asymptotic (1− α)100% confidence level; putting two such bounds together will result in
a confidence interval for g(θ). To elaborate, if the above is implemented using α = 0.05 and α = 0.95, the resulting two
bounds will form an approximate 90% equal-tailed confidence interval for g(θ).
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Remark 3.3. The approach taken here is to estimate the distribution of some real-valued root. In fact, it is generally possible
to use subsampling to estimate the distribution of the B-valued random object τn(θ̂n − θ), assuming the weak convergence
Assumption 2.3. The proof can be based on a generalization of the argument behind Theorem7.4.1 of [1] from the one-sample
to the K -sample setting of the present paper.

3.2. Studentized roots

Consider the t-statistic for comparing the means of two i.i.d. samples, e.g., our Example 2.1 without dependence. This
familiar example shows the necessity of considering ‘studentized’ roots of the type g[τn(θ̂n − θ(P))]/σ̂n where σ̂n =
σ̂n(X (1), . . . , X (K)) is a nonnegative (real-valued) statistic. If

σ̂n
P
−→ some σ(P) > 0 as min

k
nk →∞ (15)

then the subsampling application is straightforward; see [1], Section 2.5.1). To describe it, let J∗n(P) denote the probability
law of the ‘studentized’ root g[τn(θ̂n − θ(P))]/σ̂n with associated distribution function

J∗n(x, P) = ProbP{g[τn(θ̂n − θ(P))]/σ̂n ≤ x}. (16)

The subsampling distribution of the studentized root is defined as

Ln,b,∗(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τb(θ̂i,b − θ̂n)]/σ̂i,b ≤ x} (17)

where σ̂i,b is evaluated on the same K -fold subsample as θ̂i,b.

Theorem 3.2. Assume Assumption 2.1 together with (15). Also assume Assumption 2.2 and (2), that g is uniformly continuous,
and that for each k = 1, . . . , K, we have bk/nk → 0, τb/τn → 0, and bk →∞ asmink nk →∞. Then,

(i) Ln,b,∗(x)
P
−→ J∗(x, P) for all points of continuity of J∗(·, P).

(ii) If J∗(·, P) is continuous at J−1
∗
(1− α, P), then the event

g[τn(θ̂n − θ(P))]/σ̂n ≤ L−1n,b,∗(1− α) (18)

has asymptotic probability equal to 1− α.

Proof. Similar to the proof of Theorem 2.5.1 in [1] in view of Theorem 3.1.
The discussion of Remark 3.2 applies in the context of Theorem 3.2 as well. To elaborate, (18) can be solved for either θ

(‘norm’ case) or for g(θ) (‘projection’ case) to yield confidence intervals of the ‘studentized’ type. �

Remark 3.4. In general, it may be necessary to ‘studentize’ with a quantity that does not necessarily converge in probability,
i.e., a case where (15) does not hold. Subsampling can still work in that case; in particular, Theorem 3.2 would remain valid
at the expense of a more complicated assumption analogous to Assumption 11.3.1 of [1].

4. Confidence sets with partial-overlap subsampling

As previously mentioned, the full-overlap case of Section 3 is the most efficient in terms of the accuracy of the
subsampling approximation. Nevertheless, the number of K -fold subsamples obtained with full overlap is of the order of∏K
k=1 nk which can be a prohibitively large number whenmink nk is large.We thus consider the case of partially overlapping

subsamples as a practical alternative.
Again, focus on the kth sample where 1 ≤ k ≤ K . Let

T (k)j = (X
(k)
(j−1)hk+1

, X (k)(j−1)hk+2, . . . , X
(k)
(j−1)hk+bk

)

be the jth partial-overlap, block-subsample of size bk that can be extracted from the series {X
(k)
1 , . . . , X

(k)
nk }. The block size

bk is an integer in [1, nk] as before; the parameter hk is an integer in [1, bk] and controls the amount of overlap between
T (k)j and T

(k)
j+1. If hk = 1, then the overlap is the maximum possible as in the previous subsection; if hk = bk, then there is no

overlap between T (k)j and T
(k)
j+1.

Let Tk denote the set of all size bk block-subsamples extracted from the kth sample corresponding to the overlap
parameter hk, i.e., let Tk = {T

(k)
j , j = 1, . . . , qk}where qk = b(nk−bk)/hkc+1 and b·c denotes the integer part function. No

overlap implies qk = bnk/bkc; maximum overlap implies qk = nk−bk+1 as in the previous subsection. A K -fold subsample
is again constructed by choosing one element from each super-set Tk for k = 1, . . . , K . Thus, a typical K -fold subsample has
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Table 1
Comparison of the asymptotic relative efficiency (ARE) of subsampling estimation of the variance of the samplemean according to different overlap schemes
with its resulting effect on qk , the number of subsamples under consideration; ARE is taken with respect to the full-overlap case.

lim(hk/bk) 0 1/4 1/2 1

Overlap full 75% 50% zero
ARE 1 1.031 1.125 1.5
qk ∼ nk − bk 4 nk/bk 2 nk/bk nk/bk

the form: T (1)i1 , T
(2)
i2
, . . . , T (K)iK ,where 1 ≤ ik ≤ qk for k = 1, . . . , K . The number of possible K -fold subsamples is then given

by q =
∏K
k=1 qk.

A subsample value of the general statistic θ̂n is given by θ̂i,b defined in (3). The subsampling distribution of statistic θ̂n is
now defined as

Ln,b,h(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τb(θ̂i,b − θ̂n)] ≤ x} (19)

where h = (h1, . . . , hK ).
As in the previous subsection, Ln,b,h(x) provides another consistent approximation to Jn(x, P) of Assumption 2.1.

Theorem 4.1. Under the assumptions of Theorem 3.1, and with any choice of h satisfying 1 ≤ hk ≤ bk for all k, we have:
(i) Ln,b,h(x)

P
−→ J(x, P) for all points of continuity of J(·, P).

(ii) If J(·, P) is continuous at J−1(1 − α, P), then the event g[τn(θ̂n − θ(P))] ≤ L−1n,b,h(1 − α) has asymptotic probability
equal to 1− α.

Proof. Similar to the proof of Theorem 3.1. �

As before, the subsampling distribution of the studentized root is defined as

Ln,b,h,∗(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τb(θ̂i,b − θ̂n)]/σ̂i,b ≤ x}. (20)

Theorem 4.2. Under the assumptions of Theorem 3.2, and with any choice of h satisfying 1 ≤ hk ≤ bk for all k, we have:
(i) Ln,b,h,∗(x)

P
−→ J∗(x, P) for all points of continuity of J∗(·, P).

(ii) If J∗(·, P) is continuous at J∗−1(1−α, P), then the event g[τn(θ̂n−θ(P))]/σ̂n ≤ L−1n,b,h,∗(1−α) has asymptotic probability
equal to 1− α.

Proof. Similar to the proof of Theorem 3.2. �

Remark 4.1. Insisting on a partial (although not full) overlap is a practical alternative that can be arbitrarily close to being
efficient. For example, in the single-sample case when the statistic is the sample mean, a 75% overlap (i.e., hk ∼ bk/4)
leads to relative efficiency that is very close to one as compared to the full-overlap case, even though the number of K -fold
subsamples is now only of the order of

∏K
k=1 4bnk/bkc instead of

∏K
k=1(nk − bk). Typically, bk ∼ ckn

β

k for some ck > 0 and
β ∈ (0, 1), and so the resulting computational savings are of substantial magnitude. See Table 1 whose compilation was
based on eq. (9.3) of [1].

5. Hypothesis testing

Consider the general problem of testing a null hypothesis H0 that P = (P1, . . . , Pk) ∈ P0 against H1 that P ∈ P1.
The goal is to construct an asymptotically valid null distribution based on some (generally studentized) test statistic of
the form g(τnθ̂n)/σ̂n, whose probability law under P is defined to be Gn(P) with distribution function denoted by Gn(·, P).
The unstudentized case is obtained by letting σ̂n = 1.
A theoretical critical value of the test is a 1 − α quantile of Gn(·, P), i.e., G−1n (1 − α, P). However, this critical value is

generally unknown, since it depends on P . The subsampling approximation to this critical value is G−1n,b,h(1− α)where

Gn,b,h(x) =
1
q

q1∑
i1=1

q2∑
i2=1

· · ·

qK∑
iK=1

1{g[τbθ̂i,b]/σ̂i,b ≤ x}, (21)

and the partial-overlap framework of the previous section was used.
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We will make use of the following assumption.

Assumption 5.1. If P ∈ P0, there exists a nondegenerate limiting law G(P) such that Gn(P) converges weakly to G(P) as
mink nk →∞.

Let G(·, P) denote the c.d.f. corresponding to G(P). Let G−1(1−α, P) denote a 1−α quantile of G(P). The following result
gives the consistency of the procedure under H0, under a sequence of contiguous alternatives, and under fixed alternatives;
see Section 12.3 of [15] for the definition of contiguity.

Theorem 5.1. Assume (2) and that, for each k = 1, . . . , K, we have bk/nk → 0, and bk →∞ asmink nk →∞. The choice of
the overlap parameter can by any vector h satisfying 1 ≤ hk ≤ bk for all k.
(i) Further suppose Assumption 5.1 holds and that (15) holds under P ∈ P0. Assume P ∈ P0. If G(·, P) is continuous at

G−1(1− α, P), then

ProbP{g(τnθ̂n)/σ̂n > G−1n,b,h(1− α)} → α as min
k
nk →∞. (22)

Furthermore, if G(·, P) is continuous and strictly increasing at G−1(1− α, P), then

G−1n,b,h(1− α)
P
−→ G−1(1− α, P). (23)

(ii) Assume the same conditions as (i). Let P (n) denote the joint distribution of the data of size n from P = (P1, . . . , PK ), where
as before, n = (n1, . . . , nK ) and nk is the number of observations from the time series Pk. Let Q

(n)
n denote the joint distribution

of n observations, with nk of those observations from the time series Qn,k; denote by Q
(nk)
n,k the joint distribution of these nk

observations. Suppose, for each k, Q (nk)n,k is contiguous to P
(nk)
k , where P = (P1, . . . , PK ) ∈ P0. Then, under such a contiguous

sequence, g(τnθ̂n)/σ̂n is tight. Moreover, if it converges in distribution to some random variable T and G(·, P) is continuous
and strictly increasing at G−1(1− α, P), then the limiting power of the test against such a sequence is P{T > G−1(1− α, P)}—
which is the same limiting power as if we used the asymptotic critical value G−1(1− α, P).
(iii) Assume the test statistic is constructed so that θ̂n → θ(P) in probability asmink nk →∞, where θ(P) is a constant which

satisfies θ(P) = 0 if P ∈ P0 and θ(P) > 0 if P ∈ P1. Assume that (15) holds for P ∈ P1. Further assume that lim inf(τn/τb) > 1.
Then, for P ∈ P1, the rejection probability satisfies

ProbP{g(τnθ̂n/σ̂n) > G−1n,b,h(1− α)} → 1.

Proof. In the unstudentized case of full overlap, the behavior of Gn,b,h(x) corresponds exactly to that of (7) in the proof
of Theorem 3.1 when θ(P) = 0, and the argument is identical. The case of partial overlap is similar, and the studentized
extension straightforward. To prove (ii), the behavior of the subsampling critical value to a degenerate limit under P forces
the same behavior under a sequence of contiguous alternatives, and so the result follows by Slutsky’s Theorem. The proof
of (iii) follows the proof of Theorem 2.6.1(ii) of [1], except that the U-statistic argument there is replaced by the argument
used to show (6). �

Remark 5.1. For the validity of (23) and of part (ii) of Theorem 5.1, it is important that G(·, P) is assumed strictly increasing
at G−1(1 − α, P); this condition was inadvertently omitted from Theorem 2.1 of [2], as well as Theorem 2.6.1 of [1], and
should be added back to maintain their validity. Note, however, that the added assumption of strict monotonicity is used
only to get convergence of quantiles, i.e., (23); it is not needed for the asymptotic attainment of the correct size of the test,
i.e., (22).

6. Block size choice and estimated rates of convergence

6.1. The need for estimated rates of convergence and a different view of studentization

For motivation, consider again Example 2.1, and recall that the statistic θ̂n = X̄ (2) − X̄ (1) is asymptotically normal under
standard conditions so that Assumption 2.1 is satisfied. Assuming at least one of f2(0), f1(0) is nonzero, the convergence rate
of θ̂n is τn = (2π f2(0)/n2 + 2π f1(0)/n1)−1/2. Unfortunately, τn is seen to depend on the unknown parameters f2(0), f1(0).
Nevertheless, for the purposes of subsampling we can use an estimated convergence rate such as τ̂n = (2π f̂2,n2(0)/n2 +

2π f̂1,n1(0)/n1)
−1/2 where f̂2,n2(0), f̂1,n1(0) are the nonparametric estimates of f2(0), f1(0) mentioned in Example 2.1. This

definition of τ̂n allows us to also construct τ̂b = (2π f̂2,n2(0)/b2 + 2π f̂1,n1(0)/b1)
−1/2 which would be the quantity used in

the construction of the subsampling distribution.
Note that, in such a case, using an estimated rate is equivalent to looking at the studentized problem from a different

perspective since, in effect, we would be working with the studentized root τ̂n(θ̂n− θ). This implicit ‘‘studentization via rate
estimation’’ idea is applicable to the other two examples of Section 2 as well.
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We now leave the narrow framework of Example 2.1 to talk about the general case. Let τ̂b be an estimator of τb based on
the whole of the available data, i.e., a function of {X (k)1 , . . . , X

(k)
nk for k = 1, . . . , K}.

Corollary 6.1. If τ̂b/τb
P
−→ 1, then all the theorems of this paper remain valid under their respective conditions with τ̂b taking

the place of τb in the construction of the respective subsampling distributions.

Proof. Similar to the proof of Theorem 8.3.1 of [1]. �

6.2. Optimal choice of block sizes

The problem of optimal choice of the block sizes b1, . . . , bK is as difficult as it is important in practice. For the case K = 1,
treatments on optimally choosing the block size for subsampling (and for the related method of block bootstrap) have been
given by [6,16,1,17,12,18].
In this section, we consider the case K > 1, and develop a rough argument on how to choose the block sizes b1, . . . , bK

with the specific purpose of optimizing Ln,b(x) as an estimator of Jn(x, P). To this end, we should investigate the statistical
accuracy of Ln,b(x); instead, we will focus on the easier problem of studying the quantity Un,b(x) that was defined in (7) for
two reasons: (a) Un,b(x) is tantamount to the subsampling distribution Gn,b,1(x) that is the main vehicle for subsampling-
based hypothesis testing as in Section 5; and (b) as shown in the proof of Theorem 3.1, Un,b(x) ≈ Ln,b(x). As a matter of fact,
by an argument similar to one used in [6], p. 2039), in typical situationswe expect to have Ln,b(x)−Un,b(x) = O(τ 2b /τ

2
n ). But,

as will be apparent from what follows, τ 2b /τ
2
n is typically of smaller order of magnitude as compared to the error of Ln,b(x)

as an estimator of Jn(x, P). However, the rate τn is problem-specific and exceptions to the above claim are possible; hence,
we focus on Un,b(x) in what follows.
Recall that, throughout this paper, the rather minimal condition α(s) = maxk α(k)(s) → 0 as s → ∞ was assumed.

However, if it were further assumed that

∞∑
s=1

α(s) <∞, (24)

then
max
j
nj∑

s=1
sK−1α(s)

K∏
i=1
ni

= O
(
max
i

bi
ni

)
. (25)

To see this, note that all the ni are of same order of magnitude by (2). Hence,
∑maxj nj
s=1 sK−1α(s) ≤

∑maxj nj
s=1 maxj nK−1j α(s) =

O(nK−11
∑maxj nj
s=1 α(s)) which is O(nK−11 ) if

∑
∞

s=1 α(s) is finite, thereby implying (25). So, assuming (24), the proof of
Theorem 3.1 implies that

Var(Un,b(x)) = O


K∑
i=1

bi
ni
+

max
j
nj∑

s=1
sK−1α(s)

K∏
i=1
ni

 = O
(
max
i

bi
ni

)
. (26)

Now assume that the rate of the convergence stated in Assumption 2.1 is known, i.e., assume that an Edgeworth/
Berry–Esseen result of the type

Jn(x, P) = J(x, P)+ O(an) (27)

is available uniformly in x for some known nonnegative function an satisfying an → 0 as minj nj → ∞. In that case, as
argued by [19], we would also have Jb(x, P) = J(x, P)+ O(ab) and therefore

Jb(x, P) = Jn(x, P)+ O(ab). (28)

Since EUn,b(x) = Jb(x, P), putting (26) and (28) together gives

Un,b(x)− Jn(x, P) = O(ab)+ OP

(
max
i

√
bi
ni

)
. (29)
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Thus, since ab → 0 asminj bj →∞, to optimize the rate of convergence ofUn,b(x) as an estimator of Jn(x, P)wemust select
b1, . . . , bK to satisfy

ab ∼ max
i

√
bi
ni
. (30)

Of course, the single Eq. (30) is not enough to determine the values of the K free parameters b1, . . . , bK . Recall, however,
that by (2) all the nks have the same order of magnitude. Thus, it is natural to require that all the bks have the same order of
magnitude as well, i.e., that

C∗ ≤ bk/bk′ ≤ C∗ for all k, k′. (31)

In view of (2), a simple way to enforce (31) is to require

bi/bj ∼ ni/nj for all i, j. (32)

Relation (32) is intuitive since the relative proportions of the different samples are reflected in the subsamples. For example,
if n2 = 2 n1, then (32) implies b2 = 2 b1. Note that (32) can be equivalently re-written as

bk ∼ b1nk/n1 for k = 2, . . . , K . (33)

Formula (33) thus provides the additional K − 1 constraints that – coupled with (30) – can uniquely determine the optimal
rates of the K parameters b1, . . . , bK . An example of the applicability of this general idea will be given in the next section
with the help of a concrete example.

6.3. Block size choice for Example 2.1

We now give an application of the problem of optimal block size choice in the simple set-up of Example 2.1. To fix
ideas, consider the case g(x) = |x| leading to two-sided tests and symmetric confidence intervals. Although results such as
(27) are not yet available in the literature it is natural to conjecture that – under appropriate conditions – we would have
an = O(1/(n1 + n2)) = O(1/n1) since n1, n2 have the same order of magnitude. A similar bound for an would be expected
to hold in the case g(x) = x as well, provided that the first marginal distribution of each sample is symmetric, or that the
two time series have the same distributions (except for mean) and n1 = n2.
Consequently, (30) would then imply that the optimal choices for b1, b2 are given by bk ∼ ckn

β

k for β = 1/3 and two
positive constants c1, c2. As mentioned before, the discussion of Section 6.2 only suggests the optimal rates for b1, b2; there
remains the question of optimally choosing the constant c1—since c2 would be determined from (33) given c1. Nevertheless,
the fact that the rate b ∼ n1/3 is optimal is very useful, and – interestingly – coincides with the optimal block size rate
for subsampling estimation of the individual standard errors, i.e., looking at the sample mean of each time series separately
and focusing on optimizing the subsampling estimator of standard error. The latter is a well-studied problem for which
data-dependent block size choice methods are readily available; see e.g. [18].
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