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a b s t r a c t

The present work shows a new numerical treatment for wear simulation on 3D contact and rolling-con-
tact problems. This formulation is based on the boundary element method (BEM) for computing the elas-
tic influence coefficients and on projection functions over the augmented Lagrangian for contact
restrictions fulfillment. The constitutive equations of the potential contact zone are Signorini’s contact
conditions, Coulomb’s law of friction and Holm–Archard’s law of wear. The proposed methodology is
applied to predict wear on different contact and rolling-contact problems. Results are validated with
numerical solutions and semi-analytical models presented in the literature. The BEM considers only
the degrees of freedom involved on these kind of problems (those on the solids surfaces), reducing the
number of unknowns and obtaining a very good approximation on contact tractions using a low number
of elements. Together with the formulation, an acceleration strategy is presented allowing to reduce the
times of resolution.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction Andersson (1999a) and Põdra and Andersson (1999b) present a
Wear is one of the main reasons of inoperability in mechanical
components, what produces enormous costs. For this reason, and
thanks to the advances on measurements techniques, this phe-
nomena was started to be studied in-depth at the end of the first
half of the twentieth century. It has to be mentioned the works
of Holm (1946) and Archard (1953) which converged to the same
wear (by adhesion) model: the Holm–Archard wear law. Today,
there are more complex and specific wear laws, most of them col-
lected, for example, on Meng’s work (Meng, 1994). Even though,
the Holm–Archard wear law is still valid nowadays for engineering
applications. Also, it has to be mentioned the works of Rabinowicz,
which are collected on his book (Rabinowicz, 1995), together with
the main research about friction and wear.

In the area of numerical simulations, several different formula-
tions, using different methodologies and algorithms, have been
proposed for wear prediction. On contact problems, it has to be
mentioned the fundamental works of Johansson (1994), Strömbeg
et al. (1996), Strömbeg (1997), Christensen et al. (1998), Strömbeg
(1999) and Ireman et al. (2003), which present the formulations
and fundamentals for wear simulations. The works of Põdra and
ll rights reserved.
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sliding wear algorithm based on the FEM commercial code. On
the BEM area, the number of works related with wear is not very
ample, the main ones belongs to Sfantos and Aliabadi (2006a),
Sfantos and Aliabadi (2006b), Sfantos and Aliabadi (2007) and
Lee et al. (2009).

Wear simulation on rolling contact problems on lubricated
spherical roller thrust bearings has been tackled by Olofsson
et al. (2000). Jendel (2002) proposed a model for predicting wear
on train wheel profiles and compares the results with field mea-
surements. That model is completed by Enblom and Berg in their
work (Enblom and Mats, 2005). Also it has to be mentioned the
works of Telliskivi (2004) and Telliskivi and Olofsson (2004), where
a semi-winkler based model is presented and applied to simulate
wear on disc-on-disc and wheel-rail. Some of these mentioned
models are summarized in De Arizon et al. work (De Arizon
et al., 2007). Finally, Hegadekatte et al. (2008) have presented a
simplified model (GIWM: Global Incremental Wear Model) which
allow to estimate the maximum wear depth in pin on disc and twin
discs tribometers, but not the solids profiles and contact pressures
evolution.

The methodology suggested in this work for contact modeling is
based on an augmented Lagrangian formulation whose precursors
are Landers and Taylor (1985), Wriggers et al. (1985), Simo et al.
(1985), Alart and Cournier (1991) and Simo and Laursen (1992).
The books of Laursen (2002) and Wriggers (2002) compile all this
formulations together with the main strategies for numerical con-
tact problems.
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Fig. 1. Rotation plane (Pr) in which the solids particles trajectories are contained,
and solid particles traveling through the rolling-contact region.
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The rolling contact formulation is based on Kalker’s one, which
is collected on his book (Kalker, 1990) or in Johnson’s book (John-
son, 1985). This formulation it has been applied on 2D and 3D
problems, using the BEM, by González and Abascal (1998), Gon-
zález and Abascal (2000), González and Abascal (2002), Abascal
and Rodríguez-Tembleque (2007) and Rodríguez-Tembleque and
Abascal (2010), allowing to consider real solid geometries (not only
half-spaces) and unstructured meshes. Furthermore, there is a nor-
mal and tangential cross-influence relation.

This work presents a new BEM formulation for computing wear
on 3D contact and rolling-contact problems. The methodology,
based on previous works: (Sfantos and Aliabadi, 2006a; Sfantos
and Aliabadi, 2006b; Sfantos and Aliabadi, 2007, uses the BEM
for computing the elastic influence coefficients, and on the projec-
tion functions over the augmented Lagrangian for contact restric-
tions fulfilment. The BEM is a very suitable numerical method for
this kind of solids mechanical interaction problem, considering
only the boundary degrees of freedom involved on the problem,
and obtaining a very good approximation on contact tractions.
The material loss of the bodies is modeled using the Holm–Arch-
ard’s linear wear law, which is very extended for many engineering
applications. Finally, an acceleration strategy is applied on the
algorithm for the resolution of some examples, allowing to obtain
a considerable reduction on execution time.

2. Contact model

2.1. Contact kinematics

Let us consider the contact between two solids Xa (a = 1,2),
with boundaries Ca, and defined with respect to a Cartesian refer-
ence system: xi � {x1,x2,x3} en R3. The gap variable is defined at all
times (s) for the pair I � {P1,P2} of points (Pa 2Xa, a = 1,2), as

g ¼ BTðx2 � x1Þ; ð1Þ

where xa is the position of Pa at every instant, defined as:
xa ¼ Xa þ ua

o þ ua (Xa: global position; ua
o : rigid body global dis-

placement; ua: elastic displacement expressed in the global sys-
tem). Matrix B = [t1jt2jn], is a base change matrix expressing the
pair I gap in relation to the local orthonormal base {t1, t2,n} associ-
ated to every I pair. The unitary vector n is normal to the contact
surfaces with the same direction as the normal to C1 and expressed
in the global system. Vectors {t1,t2} are the tangential unitarian
vectors.

The expression (1) can be written as

g ¼ BTðX2 � X1Þ þ BTðu2
o � u1

oÞ þ BTðu2 � u1Þ; ð2Þ

being BT(X2 � X1) the geometric gap between two solids in the ref-
erence configuration (gg), and BTðu2

o � u1
oÞ the gap originated due

to the rigid body movements (go). Therefore, the gap of the I pair re-
mains as follows:

g ¼ ggo þ BT u2 � u1� �
; ð3Þ

where ggo = gg + go. Two components can be identified on (3): the
normal gap, gn ¼ ggo;n þ u2

n � u1
n , and the tangential gap or slip,

gt ¼ ggo;t þ u2
t � u1

t , being ua
n and ua

t the normal and tangential com-
ponents of the displacements ua : ½ua

t ua
n�

T ¼ BT ua.

2.2. Rolling kinematics

The solid particles are traveling through the contact zone be-
cause of the solids rotations (see Fig. 1). Therefore, the contact of
a pair I � {P1,P2} has to consider as kinematic variables the normal
gap, gn, and the tangential slip velocity, _gt . Formulating the problem
from an Eulerian point of view, like Kalker (1990), the contact pairs
relative tangential slip velocities are expressed with respect to a
system of reference which travel with the contact zone. Thus the
tangential slip velocity can be written as

_gt ¼
dgt

ds
¼ _ggo;t þ _u2

t � _u1
t

� �
; ð4Þ

where _ggo;t is the creep: _ggo;t ¼ v2
t � v1

t (being va
t the tangential

velocity of the solid Xa particles), and _ua
t ða ¼ 1;2Þ is the displace-

ment field ua
t

� �
material derivative:

_ua
t ¼

@ua
t

@s
þ va

t � rua
t : ð5Þ

In a rolling without total slip situation, the relative velocities are
similar, so ðv2

t ’ v1
t Þ. Therefore kv2

t � v1
t k � kv2

t þ v1
t k=2 (being

k � k the Euclid’s norm), and the expression (5) could be written as:

_ua
t ¼

@ua
t

@s
þ vt � rua

t ; ð6Þ

where vt is the mean rolling velocity: vt ¼ v1
t þ v2

t

� �
=2.

The creep or rigid body tangential slip velocity _ggo;t ¼ v2
t � v1

t

� �
is expressed in the literature (Kalker, 1990) as c:

_ggo;t ¼ c ¼ kvtknt; ð7Þ

where nt is the non dimensional creep: nt ¼ v2
t � v1

t

� �
=kvtk.

Defining the operator: Drð�Þ¼@ð�Þ=@sþv t1@ð�Þ=@xt1þv t2@ð�Þ=@xt2

(for the steady state rolling contact: Drð�Þ¼v t1@ð�Þ=@xt1þ
v t2@ð�Þ=@xt2 ), the expression (4) can be finally written, according
to (6) and (7), as

_gt ¼ cþ Dr u2
t � u1

t

� �
: ð8Þ
2.3. Contact and Rolling-contact laws

The unilateral contact condition and the law of friction defined for
any pair I � {P1,P2} 2 Cc (Cc: Contact Zone) of points in contact can
be compiled as follows, according to their contact status:
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Contact-Adhesion : tn 6 0; gn ¼ 0; _gt ¼ 0

Contact-Slip :
tn 6 0; gn ¼ 0

kttk ¼ ljtnj; _gt � tt ¼ �k _gtkkttk

�
ð9Þ

No contact : tn ¼ 0; gn P 0; tt ¼ 0:

In the expression above gn is the pair I normal gap, and tn is the nor-
mal contact traction defined as

tn ¼ BT
nt1 ¼ �BT

nt2; ð10Þ

where ta is the traction of point Pa 2 Ca
c expressed in the global sys-

tem of reference, and Bn = [n] is the last column in the change of
base matrix: B = [BtjBn] = [t1jt2jn]. The normal tractions acting upon
the pair I points are of the same value and opposite signs, in accor-
dance with Newton’s third law.

In order to approximate the time rate appearing in (9) for con-
tact problems (for rolling-contact it is considered directly from
(8)), a simple finite difference is introduced as (Strömbeg, 1997).
_gt can be expressed at time sk as: _gt ’ Dgt=Ds, where Dgt = gt(sk) �
gt(sk�1) and Ds = sk � sk�1.

2.4. Contact restrictions

For the contact tractions of any I pair of points in contact, the
contact laws define a admissible convex region in R3;Cf : Friction
Cone. In order to guarantee that contact traction values remain in
Cf, and that (9) is fulfilled, a reformulation of the restrictions is car-
ried out:

Uðt; gn; _gtÞ ¼ t� PCf
ðt�Þ ¼ 0 ð11Þ

(augmented Lagrangian contact tractions: ðt�ÞT ¼ ½ðt�t Þ
T t�n�), by

means of the following contact operators, presented on Rodrí-
guez-Tembleque and Abascal (2010):

PCf
ðt�Þ ¼

PC. ðt�t Þ
PR� ðt�nÞ

� �
: ð12Þ

PR� ðt�nÞ is the normal projection function acting over the mixed var-
iable or the augmented normal traction: t�n ¼ tn þ rgnðr 2 RþÞ. PC. ðt�t Þ
is the tangential projection function acting over the augmented tan-
gential tractions: t�t ¼ tt � r _gt , and over the disc C. which radium is:
. ¼ jlPR� ðt�nÞj.

The Eq. (11) compiles the unilateral contact law and the law of
friction, taking the following values depending on the rolling con-
tact status of the I pair of points:

� ðt�nÞI > 0 (No Contact): (t)I = 0
� ðt�nÞI 6 0 (Contact):

[–] kðt�t ÞIk < jlPR� ððt�nÞIÞj (Adhesion):
_gt

gn

� �
I

¼ 0.

[–] kðt�t ÞIkP jlPR� ððt�nÞIÞj (Slip): tt þ lt�nx
�
t

gn

� �
I
¼ 0
being x�t ¼ t�t =kt�t k.

3. Wear model

3.1. Holm–Archard’s law

The Holm–Archard’s wear law allow to compute the total vol-
ume of solid particles worn (W) by adhesive wear (Rabinowicz,
1995), as

W ¼ kad
Fn

H
Ds; ð13Þ

where Fn is the contact normal load, H is the surface hardness, Ds is
the sliding distance, and kad is the nondimensional wear coefficient,
which represents the probability of forming a substantial wear par-
ticle (by interpretation of Archard).

Expression (13) can be written locally for an infinitesimally
small apparent contact area as

gw ¼ kwtnDs; ð14Þ

being gw the wear depth, tn the normal contact pressure, and
kw = kad/H the dimensional wear coefficient. The total volume worn
(W) can be computed integrating the state variable, gw, on the con-
tact zone:

W ¼
Z

Cc

gwdC: ð15Þ

Wear process evolves over time, so Eq. (14) can be expressed in a
differential form

_gw ¼ kwtn
_Ds; ð16Þ

where _Ds is the tangential slip velocity module: _Ds ¼ k _gtk.

3.2. Wear in contact problems

Considering wear on the contact surfaces, governed by the
Holm–Archard’s law, the normal contact gap (gn) is rewritten as

gn ¼ ggo;n þ ðu2
n � u1

nÞ þ gw ð17Þ

for an instant si. For quasi-static contact problems, wear depth de-
fined on instant si, is computed as

gw ¼ gwðsk�1Þ þ kwtnkDgtk; ð18Þ

being tn and Dgt the normal contact pressure and the sliding dis-
tance (Dgt = gt(sk) � gt(sk�1)), respectively, calculated on the same
instant, and gw(sk�1) the wear depth value on instant sk�1.

Wear depth on each solid surface is computed from the total
wear depth gw as:

g1
w ¼

gw

1þ ðk2
w=k1

wÞ
g2

w ¼
gw

1þ ðk1
w=k2

wÞ
; ð19Þ

so: gw ¼ g1
w þ g2

w. ka
wða ¼ 1;2Þ is the solid Xa wear coefficient.

3.3. Wear depth in rolling-contact problems

Wear depth computing on 3D rolling-contact problem is based
on the work of Jendel (2002), having the following assumptions:

– Steady-state rolling contact, so the slip velocity (8) uses the sta-
tionary operator ðDrð�Þ ¼ v t1@ð�Þ=@xt1 þ v t2@ð�Þ=@xt2 Þ.

– The solid particles trajectories through the contact zone (Cc)
are straight with direction es, being contained on a plane Pr,
as Fig. 1 shows.

– The rolling contact semi-wide is denoted by ac, and it is differ-
ent for each rotation plane (Pr). These semi-wide are modified
with the number of rotations (nr).

– The normal contact pressures (tn) and the tangential slip veloc-
ity field ð _gtÞ remain constant while a solid particle travels
through the contact zone with direction es and velocity vt.

Considering these assumptions, the contact pairs come into
contact on position (s = 0), and during the rolling process, they tra-
vel through the contact-stick region (AB line, Fig. 1) and contact-
sliding region (BC line).

According to (16), wear depth at instant s that I pair accumu-
lates from position A, can be expressed as

gw ¼ gwðsAÞ þ
Z s

sA

kwtnk _gtkds; s < sC ; ð20Þ
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being sC the instant that I pair leaves the rolling contact zone. In the
expression (20), a temporal integration between instant sA (pair I
comes into contact) and instant s (pair I is at s 2 [0,2ac] position)
is done for computing the wear depth. The term gw(sA) is the initial
wear depth which in general conditions it is not null and comes
from the wear depth computed on previous rotations.

The product k _gtkds represents the sliding distance of I pair.
Therefore, as the particles travels with a known velocity (vt), the
Eq. (20) can be expressed in terms of a spatial integration

gw ¼ gw sAð Þ þ
Z SC

SA

kwtnk _gtk
ds
kvtk

: ð21Þ

In this case, the integration limits are: position A (s = SA = 0) and po-
sition C (s = SC = 2ac).

The wear depth obtained on each plane Pr using (21) modifies
the solids geometry profiles on each rotation. For this reason is
more appropriated to express gw as a function of rotation k

gðkÞw ¼ gðk�1Þ
w þ

Z SðkÞ
C

SðkÞ
A

kwtðkÞn k _gðkÞt k
ds
kvtk

: ð22Þ

The first term on the right hand side express the wear depth caused
on the previous rotation, and the second term express the wear
caused on k rotation. For the first rotation is assumed: gð0Þw ¼ 0.

Spin motion can be considered. In that case, it has to be known
the solids particles spin velocity field (vt), and the solid particles
spin trajectory s.

Wear depth on each solid surface is computed from the total
wear depth gw in the same way as contact case, using (19).
4. Discrete equations

4.1. Boundary element method

The BEM formulation for elastic continua X with boundary C is
well known and can be found in many classical texts such as (Breb-
bia and Dominguez, 1992; Aliabadi, 2002. For a boundary point
(P 2 C), the Somigliana identity can be written as:

CuðPÞ þ CPV
Z

C
t�udC

� �
¼
Z

X
u�bdXþ

Z
C

u�tdC; ð23Þ

where u, t and b are, respectively, the displacements, the boundary
tractions and the body forces of X. u� ¼ fu�ijðP;QÞg is the fundamen-
tal solution tensor for displacement, and t� ¼ ft�ijðP;QÞg for trac-
tions. Both are solution of Navier’s equation at point Q in the ith
direction due to a unit load applied at point P in the jth direction.
The matrix C is equal to 1

2 I for a smooth boundary C, and CPV {I}
is called the Cauchy Principal Value of the integral I. Expressions
for the fundamental solution tensors in elastostatics and matrix C
can also be found in Brebbia and Dominguez (1992) and Aliabadi
(2002).

Dividing the boundary C, into Ne elements, Ce 2 C, so:
C ¼

SNe
e¼1C

e and
TNe

e¼1C
e ¼ Ø, the integral Eq. (23) can be written

as follows:

CuðPÞ þ
XNe

e¼1

Z
Ce

t�udC
� �

¼
XNe

e¼1

Z
Ce

u�tdC
� �

ð24Þ

in case of absence of body loads (b = 0).
The fields u and t are approximated over each element Ce using

shape functions, as a function of the nodal values (de and pe):
u ’ û ¼ Nde and t ’ t̂ ¼ Npe, being N the shape function approxi-
mation matrix.

After the discretization, the Eq. (24) can be written as
Ciui þ
XN

j¼1

He
i de ¼

XN

j¼1

Ge
i pe; ð25Þ

being

He
i ¼

Z
Ce

t�NdC; Ge
i ¼

Z
Ce

u�NdC; ð26Þ

the integrals over the element e when the collocation point is the
node i.

Finally, the contribution for all i nodes can be written together
in matrix form to give the global system of equations,

Hd ¼ Gp; ð27Þ

where d and p are the displacements and tractions nodal vectors,
respectively. Matrices G and H are constructed collecting the terms
of matrices He

i and Ge
i .

Assuming that the displacement or the traction is known on
each node and direction, the boundary conditions can be imposed
rearranging the columns in H and G, and passing all the unknowns
to vector x on the left hand side. This gives the final system of
equations:

Ax ¼ F: ð28Þ
4.2. Contact discrete variables

To consider the contact between two solids, the contact trac-
tions (tc), the gap (g) the tangential slip velocity ð _gtÞ, and the solids
displacements (ua, a = 1, 2), are discretized over the contact inter-

face (Cc). To that end, Cc is divided into Nf
e elemental surfaces ðCe

cÞ,

thus: Cc ¼
SNf

e
e¼1C

e
c and

TNf
e

e¼1C
e
c ¼ Ø. These elements ðCe

cÞ constitute
a contact frame.

The contact tractions are discretized over the contact frame as:

tc ’ t̂c ¼
PNf

i¼1dPi
ki, where dPi

is the Dirac’s delta on each contact
frame node i, and ki is the Lagrange multiplier on the node
(i = 1, . . . ,Nf). The gap (g) is approximated in the same way:

g ’ ĝ ¼
PNf

i¼1dPi
ki, where ki is the nodal value. The tangential slip

velocity approximation will be described in details in the next sec-
tion: _g ’ st .

The discrete expression of Eq. (3) can be written as:

k ¼ Cgkgo þ ðC2ÞT x2 � ðC1ÞT x1; ð29Þ

being k the contact pairs gap vector and kgo the initial geometrical
gap and rigid body movement vector. The matrices Ca (a = 1, 2)

and Cg are defined as Ca ¼
PNa

i¼1

PNf

j¼1ði;jÞ�IðL
a
i Þ

T BjL
f
j and Cg ¼PNf

i¼1

PNf

j¼1ði;jÞ�IðL
f
i Þ

TLf
j , where La

i and Lf
i are Boolean assembling

operators: da
i ¼ La

i xa and ki ¼ Lf
i K. Matrix operator La

i allows to ex-

tract the contact node i displacement ðda
i Þ, from vector xa, and Lf

i

extracts from the multipliers vector (K), the variable associated to

node i (ki). Vector xa is organized as ðxaÞT ¼ ðxa
pÞ

Tðda
c Þ

T
h i

(xa
p: exter-

nal unknowns; da
c : contact displacement unknowns), so matrix Ca

has the following structure: ðCaÞT ¼ ½0ðeCaÞT �. The matrix Cg is equal
to the identity matrix: Cg = I.

4.3. BEM–BEM coupling

In case of modeling the solids Xa(a = 1, 2) using the BEM (28),
the solids coupling equations set can be expressed as:
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A1
x 0 A1

p
eC1 0

0 A2
x �A2

p
eC2 0

ðC1ÞT �ðC2ÞT 0 Cg

2664
3775

x1

x2

K

k

8>>><>>>:
9>>>=>>>; ¼

F1

F2

Cgkgo

8><>:
9>=>;; ð30Þ

being vector K the nodal contact tractions, so that: p1
c ¼ eC1K and

p2
c ¼ �eC2K.

The first two rows on (30) represents the boundary element
equations of each solid, and the third row, the kinematic contact
equations. Eq. (30) can be written in a more compact form as:

R1x1 þ R2x2 þ RkKþ Rgk ¼ F; ð31Þ

being,

R1 ¼
A1

0
ðC1ÞT

264
375; R2 ¼

0
A2

�ðC2ÞT

264
375; Rk ¼

A1
p
eC1

�A2
p
eC2

0

2664
3775;

Rg ¼
0
0
Cg

264
375; F ¼

F1

F2

Cgkgo

264
375:

ð32Þ
4.4. Tangential slip velocity approximation

The tangential slip velocity Eq. (8) could be discretized and ex-
pressed according to Rodríguez-Tembleque and Abascal (2010) as:

st ¼ �cþ eDrk; ð33Þ

where st is a vector which stores the slip velocity of every contact
pair IðI ¼ 1; . . . ;NpÞ; �c is a vector which stores the creep velocities,
and the vector k = kgo + (C2)Tx2 � (C1)Tx1, stores the gap of every
contact pair:

st ¼

ðstÞ1
..
.

ðstÞI
..
.

ðstÞNp

2666666664

3777777775
�c ¼

�c1

..

.

�cI

..

.

�cNp

2666666664

3777777775
k ¼

ðkÞ1
..
.

ðkÞI
..
.

ðkÞNp

2666666664

3777777775
;

kI ¼
kt

kn

� �
I

¼
0

kgo;n

� �
I

þ
d2

t

d2
n

" #
I

�
d1

t

d1
n

" #
I

:

ð34Þ

Finally, eDr is a 2Np 	 3Np square matrix defined in Rodríguez-Tem-
bleque and Abascal (2010):

eDr ¼

ðdrÞ11½I 0� . . . ðdrÞ1Np
½I 0�

..

. . .
. ..

.

ðdrÞNp1½I 0� . . . ðdrÞNpNp
½I 0�

26664
37775; ð35Þ

so eDrk approximates the convective term in (8), for the steady-state
case, using a Least-squares technique.

4.5. Wear equations for contact problems

The wear depth for every instant or rotation gðkÞw

� 	
can be dis-

cretized over de contact frame, as a function of the nodal values.
Therefore the wear variable is approximated over each contact
frame element as

gðkÞw ’ ĝðkÞw ¼ eNwe; ð36Þ

where eN is the shape functions matrix defined for the frame ele-
ment Ce

c , and we is the nodal wear depth vector of element Ce
c .

The discrete form of kinematic Eq. (17) for I pair, on instant k, is:
kðkÞ
� 	

I
¼ kðkÞgo

� 	
I
þ d2ðkÞ
� 	

I
� d1ðkÞ
� 	

I
þ Cg nwðkÞ
� �

I; ð37Þ

where matrix Cgn is constituted of the Cg columns which affect the
normal gap of contact pairs, and w(k) is a vector which contains the
contact pairs wear depth.

According to the Holm–Archard’s law (16), wear is caused by
the tangential slip ratio or the tangential slip velocity. In case of
a contact problem, the discrete for of Expression (18) can be ex-
pressed for I pair as

wðkÞ
� �

I ¼ wðk�1Þ� �
I þ DwðkÞ
� �

I;

DwðkÞ
� �

I ¼ kw KðkÞn

� 	
I

kk
t

� 	
I
� kðk�1Þ

t

� 	
I




 


; ð38Þ

where KðkÞn is a vector which contains the normal traction compo-
nents of contact pairs at instant k.

4.6. Wear equations for rolling-contact problems

Rolling-contact problem considers an Eulerian formulation. So
the wear depth increment on every rolling plane, Pr, is computed
according to (22), as:

wðkÞ
� �

I ¼ wðk�1Þ� �
I þ DwðkÞ
� �

Pr
;

DwðkÞ
� �

Pr
¼

XNI

I¼fI2Cc\Prg
Dskw KðkÞn

� 	
I

sðkÞt

� 	
I




 


; ð39Þ

being I the contact pairs on Pr, and ðsðkÞt ÞI their tangential slip
velocity:

sðkÞt

� 	
I
¼ ð�cÞI þ eDrk

ðkÞ
� 	

I
; ð40Þ

Dsis the time spent by a solid particle traveling from one node to
the consecutive one in direction es (the nodes in direction es have
equidistant positions, Fig. 2). Its value is

Ds ¼ T=NI; ð41Þ

where T is the residence time of a solid particle in the potential con-
tact zone, and NI the number of nodes in es direction.

The residence time is computed from the potential contact zone
width 2âc and the rolling velocity vt, as:

T ¼ 2âc=kvtk: ð42Þ
4.7. Rolling contact restrictions

The contact restrictions for every I pair, at instant k can be ex-
pressed as:

K�ðkÞn

� 	
I
� PR� K�ðkÞn

� 	
I

� 	
¼ 0 K�ðkÞt

� 	
I
� PC. K�ðkÞt

� 	
I

� 	
¼ 0: ð43Þ

The augmented contact variables are defines as: K�ðkÞn ¼ KðkÞn þ rnkðkÞn

and K�ðkÞt ¼ KðkÞt � rt kðkÞt � kðk�1Þ
t

� 	
, and the rolling contact ones, as:

K�ðkÞn ¼ KðkÞn þ rnkðkÞn and K�ðkÞt ¼ KðkÞt � rts
ðkÞ
t . The value of friction limit,

., for the tangential projection function (12), on I pair, is:

. ¼ l PR� K�ðkÞn

� 	
I

� 	��� ��� or . ¼ l PR� KðkÞn

� 	
I

� 	��� ���.
5. Resolution algorithm

5.1. Contact problems

The quasi-static contact problem considering wear (31), (32),
(37), (38) and (43) is solved as follows. The variables on instant
(k � 1) are known, and the instant (k) unknowns, z(k) = [(x1)T(x2)T



Fig. 2. Equidistant distribution of nodes on plane (Pr).
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KTkTwT], are computed using the following iterative Uzawa
scheme with index (n):

(I) Apply the rigid body rapprochement increment: DkðnÞo < 0.
(II) Initialize all the contact pair tractions and their wear depth:
KðnÞ
� �

I ¼ Kðk�1Þ
� 	

I
; wðnÞ
� �

I ¼ wðk�1Þ� �
I; DwðnÞ

� �
I ¼ 0:

ð44Þ
(III) Solve the linear equations set:
R1 R2 Rg

� 
 x1

x2

k

264
375
ðnÞ

¼�RkK
ðnÞ þ

F1ðkÞ

F2ðkÞ

kgþkðn�1Þ
o þDkðnÞo þCgn

wðnÞ

264
375:
ð45Þ
(IV) Compute the contact tractions, K(n+1), and the wear incre-
ment, Dw(n+1), for every contact pair I:
Kðnþ1Þ
n

� �
I ¼ PR� KðnÞn

� �
I þ rn kðnÞn

� 	
I

� 	
; ð46Þ

Kðnþ1Þ
t

� 	
I
¼ PC. KðnÞt

� 	
I
� rt ðkðnÞt ÞI � kðk�1Þ

t

� 	
I

h i� 	
; ð47Þ
being . ¼ ljðKðnþ1Þ
n ÞIj, and
(a)
Fig. 3. (a) Problem sketch. (b) Boundary e
DwðnÞ
� �

I ¼ kwðKðnþ1Þ
n ÞI kðnÞt � kðk�1Þ

t

� 	
I




 


;
wðnþ1Þ� �

I ¼ wðnÞ
� �

I þ DwðnÞ
� �

I:
ð48Þ
(V) Compute the error function:
W Kðnþ1Þ� �
¼ Kðnþ1Þ �KðnÞ


 

: ð49Þ
(a) If W(K(n+1)) 6 e, the solution for the instant (k):
z(k) = z(n+1). In case the applied boundary condition is

the external load i-component Q ðkÞi

� 	
, before reaching

the solution for instant (k), the resultant applied loads
on the contact zone (Cc) have to be calculated:
leme
Q ðnþ1Þ
i ¼

Z
Cc

Kðnþ1Þ
i dC; ð50Þ
� � � �

(a.1) If Q ðnþ1Þ

i
�� �� > Q ðkÞi

�� ��þ eload, modify DkðnÞo and return

to (II).
(a.2) Otherwise, the solution for instant (k) is reached:

z(k) = z(n+1).

(b) Otherwise, return to (III) evaluating: K(n) = K(n+1) and

w(n) = w(n+1), and iterate until the convergence is
reached.
After the solution at instant (k), z(k), is reached, the solution for
the next instant is achieved evaluating: z(k�1) = z(k) and returning
to (I).

5.2. Rolling-contact problems

Wear simulation in steady-state rolling-contact problems com-
putes the wear depth on solids profiles for rotation (k), considering
(31) and (32) and (39)–(43). In this case we solve the variables,
zT ¼ ½ðx1ÞTðx2ÞTKT kT sT

t wT �, on rotation (k), from the known values
on the previous rotation (k � 1).

The solving scheme is the same but on the step (IV), the expres-
sions are:

sðnÞt

� 	
I
¼ �cð ÞI þ eDrk

ðnÞ
� 	

I
; ð51Þ

Kðnþ1Þ
n

� �
I ¼ PR� KðnÞn

� �
I þ rn kðnÞn

� 	
I

� 	
ð52Þ

Kðnþ1Þ
t

� 	
I
¼ PC. KðnÞt

� 	
I
� rt sðnÞt

� 	
I

� 	
; ð53Þ
(b)
nt mesh details.
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being . ¼ ljðKðnþ1Þ
n ÞIj, and

DwðnÞ
� �

Pr
¼

XNI

I¼fI2Cc\Prg
Dt kw Kðnþ1Þ

n

� �
I sðnÞt

� 	
I




 


� 	
wðnþ1Þ� �

I ¼ wðnÞ
� �

I þ DwðnÞ
� �

Pr

ð54Þ
(a) (b
Fig. 4. Magnitudes on plane x = 0: (a) Normal elastic displacement un. (b) Normal contac
The presented algorithm can be accelerated using a fictitious
wear coefficient (kw), what leads to a fictitious wear depth incre-
ment, reducing considerably the number of revolutions. This idea
was proposed by Strömbeg (1997) for FEM fretting problems, and
can be applied on rolling-contact problems with satisfactory re-
sults, as the results will show.
) (c)
t traction tn. (c) Wear depth gw on the solid surface, for load steps: 0, 10, 20 and 40.



(a) (b) (c)
Fig. 5. (a) Initial geometrical gap. (b) Resulting normal contact traction distribution. (c) Resulting wear depth distribution.
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6. Numerical examples

The objective of the numerical examples is to show the excel-
lent capabilities of this 3D boundary elements methodology
proposed.

6.1. Punch indentation problem

This example was presented by Strömbeg (1999) and deals with
wear originated on an elastic tetrahedral by a rigid punch indenta-
tion. Wear is caused by the relative tangential slip between solids.
This example allow us to validate the boundary element formula-
tion and the algorithm proposed, applied to fretting problems.

Fig. 3a shows the problem sketch. The tetrahedral dimensions
are: Lo = 0.1 m and L1 = L2 = 1 m. The domain is discretized by lin-
ear quadrilateral boundary elements, using 20 	 20 elements on
the potential contact zone, as Fig. 3b shows.
(a) (b
Fig. 6. Normal pressure and wear depth after: (a)
The material properties are: Young module E = 210 GPa and
Poisson coefficient m = 0.3. The coefficient of friction considered is
l = 0.3, and the wear coefficient kw = 1.0 	 10�11 Pa�1.

The rigid punch has a radii R = 100 m, and causes and indenta-
tion of 0.07 mm on 40 load steps. On Fig. 4 we can see the evolu-
tion on plane x = 0 of: normal elastic displacements (un), normal
contact tractions (tn) and wear depth (gw) on the tetrahedral con-
tact area. Wear appears on the sliding zones. Fig. 5 shows, on a
quarter of the contact zone, the initial geometrical gap,
5 	 10�3(x2 + y2) m, the resulting normal contact traction distribu-
tion, and the resulting wear depth distribution. Results present an
excellent agreement with Strömberg solution in Strömbeg (1999).

The evolution of the wear depth and normal contact pressures
in a fretting process is illustrated in Fig. 6. The initial geometrical
gap is: 0.75(x4 + y4) m, the coefficient of wear is kw = 1.0 	
10�8 Pa�1. The punch is indented 0.07 mm during 500 cycles using
20 increments for each cycle. As in Strömbeg (1999), after 500 cy-
) (c)
1 load cycle, (b) 250 cycles, and (c) 500 cyles.
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cles, the wear depth is developed in the slipping region and contact
pressure is turned toward a value of zero. In the sticking zone a
hump in the contact pressure is developed, almost a four times
greater maximum value than the maximum in the first cycle.
6.2. Pin on disc sliding wear

Tribometers can be applied on the study of wear in complex mi-
cro-mechanical components, apart from measure the friction and
sliding wear properties of dry or lubricated surfaces of a variety
of materials.

This example presents the classic test of a pin on a rotating disc
(see Fig. 7a). In this problem the disc is assumed to be very hard
(a)

(c
Fig. 7. (a) Elastic pin on a rotatory disc. (b) Pin wear volume (W) and pin maxim

D

D

Fig. 8. Wear volume (W) and maximum wear depth (w) during sliding; proposed f
and its wear can be neglected compared to the pin wear. If the
pin is far from the disc axis and the contact zone is small, the tan-
gential slip velocity is constant and uniform during the wear pro-
cess. So all the points in the contact zone travel the same distance.

This problem has an analytical solution which has a very good
agreement with the experiments of Põdra and Andersson (1999a),
and the numerical simulations of Põdra and Andersson (1999a),
Sfantos and Aliabadi (2006a), Sfantos and Aliabadi (2006b) and
Sfantos and Aliabadi (2007). This solution considers, under the pre-
vious paragraph assumptions, the worn volume is a spherical ended
pin (see Fig. 7b), which expression is

W ¼ p
3
ð3R�wÞðwÞ2; ð55Þ
(b)

)
um wear depth (w). (c) Elastic half-space boundary elements mesh detail.

ormulation using different sliding increments compared with analytical model.
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where R is the pin radii and w is the wear depth. Using the Holm–
Archard’s law Eq. (13), the wear depth w can be computed for every
sliding distance, solving (55).

The pin and disc material Young’s modulus and Poisson’s ratio
are, respectively: 210 GPa and 0.3, being the wear coefficient
1.33 	 10�13 Pa�1. The pin, whose radius is 50 mm, is subjected
to a normal load of 10.2 N. During the numerical simulation the
friction is neglected (l = 0.0), and the sliding increment is consid-

ered constant: kðnÞt � kðk�1Þ
t

� 	
I




 


 ¼ ds.

For simplicity, the solids are modeled assuming classical ap-
proach, using a 30 	 30 linear quadrilateral 4-node boundary ele-
ments mesh in the potential contact zone (see Fig. 7c). A solids
half-space approximation is used to compare the contact tractions
distributions with classical solutions. During the wear simulation
the worn volume is computed considering each element wear con-
tribution, as

W ¼
X

e-element
on Cc

Z
Ce

c

NedC

( )
we; ð56Þ
(a)
Fig. 9. (a) Pin profile on y = 0 evolution during wear simulat

(a)
Fig. 10. Pin on disc initial and wear cross-section pro
where we is the nodal wear depth vector of the e-element.
The results obtained in this example are shown in Figs. 8 and 9.

In the first one the volume worn and the wear depth evolution dur-
ing the sliding distance are shown. The results are computed using
different sliding increments, (ds = 5 mm, 10 mm and 20 mm), and
compared with the analytical solution. The results have a high
agreement with the analytical model presented in Põdra and
Andersson (1999a). Increasing ds values, a time reduction on wear
simulation is obtained.

Fig. 9a shows the y = 0 plane pin profile during wear simulation
while Fig. 9b shows the normal pressure distribution. We can see
that the initial normal tractions distribution is equal to Hertz pres-
sure, being different as the sliding distance (Ds) increases. Normal
pressure decreases its value as the contact zone grows.

If the disc is considered to be worn, and according to (19), after
500 mm of sliding distance the resulting pin and disc profiles are
showed in Fig. 10, for solids wear coefficient relations:
kp

w ¼ kd
w ¼ 0:665	 10�13 Pa�1 (a) and kp

w ¼ 2kd
w ¼ 0:887	 10�13

Pa�1 (b).
(b)
ion. (b) Normal contact pressure distribution evolution.

(b)
files for the cases: (a) kp

w ¼ kd
w and (b) kp

w ¼ 2kd
w.
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6.3. Rolling twin discs

This tribometer system allow to study friction and wear on roll-
ing contact and rolling/sliding contact situations, like in gears or
tooth flanks rolling and sliding one against each other.

Fig. 11 shows the twin-disc tribometer system details and the
boundary element solid meshes. The solids are approximated by
an elastic half-spaces, discretizing the boundary with linear quad-
rilateral elements.

The applied normal force is F = 300 N, the rotation velocity is
x = 300 rev/min, and two creep situations are considered:
(a)

(b)
Fig. 11. (a) Twin disc rolling-contact problem. (b) Bound

Fig. 12. Wear depth evolution for a normal load of 300 N. Comp
Creep = 0.5% and 1.5%. The discs geometric parameters are:
R11 = 32.5 mm, R1 = 125 mm and R2 = 32.3 mm, the materials
properties: E1 = E2 = 208 	 103 N/mm2 and m1 = m2 = 0.3, l = 0.6,
and the wear coefficient: kw = 2 	 10�6 MPa�1.

The maximum wear depth of this problem can be computed
also using the GIWM presented by Hegadekatte et al. (2008), which
has been tested satisfactorily with experiments. Fig. 12 shows the
very good agreement between the total maximum wear depth evo-
lutions, during 30,000 rotations, obtained for the two creep cases
by the GIWM and the BEM formulation.
ary elements mesh details around the contact zone.

arison between GIWM and the BEM wear model (BEMWM).



(a) (b)
Fig. 13. (a) Normal contact pressure evolution on y = 0. (b) Tangential contact traction evolution on x = 0.
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The main advantage of this BEM formulation is that allows to
compute the contact traction evolution and distribution on the
contact zone during the wear process, what it is important for
general fretting-wear and fretting-fatigue studies, using a very
reduced number of degrees of freedom on the model and
obtaining a good accuracy. Fig. 13a and b shows the contact trac-
tions evolution from Hertz–Carter distributions, on planes y = 0
and x = 0, respectively, for a Creep = 0.5%, with the number of
rotations.

Considering that the hardness of disc 2 is two times the hard-
ness of disc 1, according with (19), the maximum wear depth evo-
lution of each solid is the evolution presented on Fig. 14a for the
creep values: Creep = 0.5% and Creep = 1.5%. After 30,000 revolu-
tions, the solids profiles are plotted on Fig. 14b.

Finally, we have extended the acceleration strategy proposed by
Strömbeg (1997) on FEM fretting problems, to 3D rolling-contact
problems. This strategy consists of using a fictitious wear coeffi-
cient (kw = 2 	 10�4 MPa�1), what leads to a fictitious wear depth
increment, what allows to reduce by one hundred, the cpu times,
without loss of accuracy, as Fig. 15 shows for the creep values:
0.5% (a) and 1.5% (b).
(a)
Fig. 14. (a) Maximum wear depth evolution on every disc. (b) Discs
7. Conclusions

This work presents a new BEM based methodology for wear
simulation on 3D contact and rolling-contact problems. The mate-
rial loss of the bodies is modeled using the Holm–Archard’s linear
wear law. The methodology is applied to consider wear on differ-
ent kind of contact conditions: fretting, sliding wear and rolling-
contact. The results obtained present a very good agreement with
previous numerical and semi-analytical ones presented in the liter-
ature. In this kind of solids mechanical interaction problems, the
BEM reveals to be a very suitable numerical method, considering
only the degrees of freedom involved on the problem (those on
the solids surfaces), and obtaining a very good accuracy on contact
tractions with a reduced number of elements. Besides these advan-
tages of the formulation, we have to add that is a 3D formulation,
what it is important for general fretting-wear and fretting-fatigue
studies. Furthermore, the proposed algorithm of resolution is easy
of programming, and can be accelerated, allowing to obtain a very
important reductions on wear simulations times. So the proposed
methodology is a useful and efficient numerical tool for wear com-
puting on 3D problems.
(b)
profiles after 30,000 revolutions for a creep of: 0.5 % and 1.5%.



(a) (b)
Fig. 15. Maximum wear depth evolution on every disc for a creep of: (a) 0.5% and (b) 1.5%, computed using the real wear coefficient (kw = 2 	 10�6 MPa�1) and a fictitious
wear coefficient (kw = 2 	 10�4 MPa�1).
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