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Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous
system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions
in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their
functions and involvement in neurological disorders. Gap junctions mediate intercellular communication
among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes
in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote
communication between cellular compartments of myelinating glia that are separated by layers of compact
myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation,
calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunc-
tions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcel-
lular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane
potential after axonal activity via electrical coupling and the re-distribution of potassium ions released
from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribu-
tion of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying
demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models
of X-linked Charcot–Marie–Tooth disease (CMTX) and Pelizaeus–Merzbarcher-like disease (PMLD), which are
caused bymutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research iden-
tifying the expression and regulation of gap junctions inmyelinating glia is likely to provide a better understand-
ing of myelinating glia in nervous system function, plasticity, and disease. This article is part of a Special Issue
entitled: The Communicating junctions, roles and dysfunctions.

© 2012 Published by Elsevier B.V.
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1. Introduction

1.1. Myelinating glia: Schwann cells and oligodendrocytes

Myelin consists of a membrane sheath that wraps around an axon,
speeding the conduction of action potentials to provide efficient im-
pulse propagation in large size animals [1]. Since it was first described
by Ehrenberg in 1833, the concept of myelin has evolved from being
viewed as a static component surrounding the axons to a current under-
standing of a complex and dynamic process of cell–cell interaction [2,3]
that supports axonal integrity and survival [4], and can be modified by
functional experience [5].

The structure of myelinated fibers is similar both in the PNS and
CNS. Myelinated segments of nerve fibers known as internodes are
delimited by areas of naked axons, the nodes of Ranvier [6], where ac-
tion potentials are generated. The portion of myelin adjacent to the
nodes is the paranodal region, which is where the terminal lamellae
of non-compact myelin contact the axon (see Fig. 1).

Two different types of glial cells, Schwann cells and oligodendro-
cytes, are responsible for myelinating the PNS and the CNS respectively.
Schwann cells originate from theneural crest and develop into Schwann
cell precursors and immature Schwann cells before reaching their ma-
ture state [7]. Oligodendrocytes originate from oligodendrocyte precur-
sor cells (OPC) which are generated at the ventral neuroepithelium of
the neural tube during embryogenesis or dorsal spinal cord and hind-
brain in early post-natal life [8]. Both types ofmyelinating glial cells con-
tact the axons they are going to myelinate early in development;
however, each myelinating Schwann cell associates with a single short
axonal segment, whereas a single multipolar oligodendrocyte can inter-
act with up to 40 segments on multiple axons [2]. The initial events in
myelination by oligodendrocytes are stimulated by electrical activity in
axons. This suggests that electrically active axons will be preferentially
myelinated, leading to the possibility that environmental experience
may modulate neural development and the functional properties of
neural circuits as a result of the increased conduction velocity inmyelin-
ated axons [9]. In the CNS, oligodendrocytes are coupled through gap
junctions to astrocytes, which are bushy shaped glial cells that partici-
pate in brain homeostasis by removing excess neurotransmitter from
the synaptic cleft. Astrocytes are also involved in synapse formation
and modulation [10]. In the PNS, Schwann cells must exert all the func-
tions of both kinds of glia in the CNS, which indicates a remarkable plas-
ticity of these cells. This heterogeneity of functions is accompanied by
changes in gap junction expression and intercellular contacts. Schwann
cells express a basal lamina of extracellular matrix that surrounds the
node of Ranvier; whereas in the CNS, node structure does not include
basal lamina and it is instead contacted by astrocytic processes [11]
(see Fig. 1).

Gap junctions inmyelinating glia are involved inmany physiological
processes beyond cell-to-cell communication, including growth con-
trol, regulation of cell permeability and calcium signaling. Moreover,
in the CNS, gap junctions are hypothesized to play an important role
in brain homeostasis by facilitating restoration of membrane poten-
tial after axonal activity via electrical coupling and re-distribution of
potassium ions [12]. Coupling between myelinating glia and astro-
cytes constitutes a glial network [13] that promotes the intracellular
diffusion of potassium released from axons firing action potentials
[14,15].
2. Gap junctions

Gap junctions are formed by members of the connexin family of
transmembrane proteins which converge evolutionary from innexins,
the protein channels responsible for gap junction communication in
invertebrates [16]. In addition, three members of a protein channel
subtype homologous to innexins, the pannexins, have been identified
in the CNS of vertebrates. It remains unclear whether pannexins can
form gap junctions in vivo or instead, if they serve as hemichannels,
which act as conduits through the plasma membrane to allow release
of ATP [17], a neurotransmitter and important cell–cell signaling mole-
cule [18]. Multiple gap junction channels cluster in the cell membrane
to form gap junction plaques. Each gap junction results from the dock-
ing of two hemichannels or connexons of adjacent cells, which in turn
are composed of six connexins. Each connexin contains four transmem-
brane domains linked by two extracellular loops and one intracellular
loop. Single gap junction channels can be made of similar (homotypic)
or different (heterotypic) subtypes of connexins [19] (see Fig. 2). Any
two compatible connexins can theoretically be coupled, but functional
and biochemical experiments have shown that in general, not all
connexin pairs are compatible and only connexins that are closely
related to each other can form functional heterotypic channels
[20]. Heterotypic channels often exhibit distinct electrophysiologi-
cal and ion selective properties from those found in homotypic
channels [21].

The opening of gap junction channels allows communication be-
tween neighboring cells by facilitating the exchange of small molecules
and metabolites. Connexin channel opening is highly regulated in
several different manners, including gating by transmembrane voltage
[22], phosphorylation [23], and extracellular calcium concentration. For
example, conduction through hemichannels, which mediates commu-
nication between the cytoplasm of myelinating glia and the extracellu-
lar space, is suppressed by the millimolar concentrations of calcium in
the extracellular fluid [24].

In vertebrates, gap junctions are generally permeable to molecules
smaller than 1 kDa, including cyclic nucleotides, vitamins and amino
acids, as well as ions [25]. The permeability of channels formed by dif-
ferent connexins can exhibit some chemical selectivity beyond exclu-
sion simply by molecular weight, indicating some chemical or charge-
specific effects on permeability of different types of molecules [26,27].
Metabolic coupling between cells and transfer of cell signaling mole-
cules is an important function of gap junctions in general, but this has
not been studied extensively in myelinating glia. Gap junctions also
enable formation of ensembles of cells coupled together into commu-
nication compartments that are jointly regulated by the concentra-
tion of a second messenger or metabolite. For example, in the
neocortex gap junctions are believed to coordinate the activity of in-
hibitory neurons [28].
3. Gap junction communication in the myelinating glia

3.1. Glial network

Glial cells coupled to each other constitute a network that was
firstly known as a “panglial” syncytium [29]. However, it has been re-
cently suggested that the expression “glial network” may be more



Fig. 1. Illustration modified from Poliak and Peles et al. [11] showing the differences between myelinated fibers in the Peripheral Nervous System (PNS) and the Central Nervous
System (CNS). A. Oligodendrocytes myelinate the CNS wrapping their processes around multiple axonal segments. Schwann cells are the myelinating cell type in the PNS and con-
tact single axonal segments. Discontinuities of the myelin sheath along the axon known as nodes of Ranvier are contacted by perinodal astrocytes in the case of the CNS, whereas in
the PNS Schwann cells extend microvilli to the node that is surrounded by basal lamina, highlighting the multifunctional capacity of these cells. B. Representation of a longitudinal
cut of the myelinated fiber surrounding a node of Ranvier in the PNS (top) and CNS (bottom). The paranode, adjacent to the nodes, is formed by non-compact myelin and contains
reflexive gap junctions establishing a communication compartment across the membranous myelin layers. The juxtaparanode (JXP) is composed of compact myelin and divides the
paranodal region of the internodal region.
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adequate to describe the functional and plastic properties exhibited
by heterocellular glial coupling [30].

The work of Rouach et al. [31] in hippocampal slices demonstrated
the existence of a metabolic astroglial network in which the degree of
connectivity among astrocytes is activity dependent being enhanced
by glutamatergic synaptic activity. These findings also encourage con-
sideration of neuroglial and gliovascular interactions at a network
level [32].



Fig. 2. A. Schematic representation of hemichannels or connexons from neighboring cells docking to form functional gap junctions that enable communication between the cyto-
plasm of cell 1 and the cytoplasm of cell 2. Connexons can be assembled from the same subset of connexins (homomeric) or different subsets of connexins (heteromeric). Moreover,
gap junctions can present either identical connexon composition of connexin subtypes (homotypic) or different connexon composition of connexin subtypes (heterotypic). B. Con-
nexins are transmembrane proteins composed of four transmembrane domains with alpha helix, two extracellular loops and an intracellular loop. Both N- and C-terminals are in-
tracellular. The two extracellular loops contain three highly conserved cysteine residues responsible for the selectivity of hemichannel interactions.
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Apart frommetabolic support, glial networks mediate clearance of
potassium and other ions after axon excitation, which is crucial to en-
sure the normal resting potential in axons and essential for electrical
excitation and neuronal viability. Accumulation of potassium would
lead to an osmotically driven water gradient resulting in pathological
axonal swelling [33]. This becomes more critical when axons are
tightly wrapped by myelin; highlighting the importance of gap junc-
tion communication across myelinating glia to provide a diffusion
pathway from the axon out to the extracellular space. This may be
the main function of the gap junctions formed between neighboring
oligodendrocytes, astrocytes, between astrocytes and oligodendro-
cytes, and between the layers of myelin membrane in compact mye-
lin formed by oligodendrocytes [34] and Schwann cells [35]. Gap
junctions between axons and myelinating glia are not known to
occur in adult mice but they have been described in brain slices of
neonatal rats [36] and in cultures of human fetal brain cells [37] and
embryonic rat brain cultures [38,39].

Gap junctions are relatively common between oligodendrocytes
and astrocytes (O/A) [40,41], but the coupling between these cell
types is weak. Some evidence suggests directional coupling, with
dye flowing more freely from astrocytes into oligodendrocytes than
in the reverse direction [41] [42]. This is consistent with the hetero-
typic coupling between different gap junction hemichannels in each
cell, as astrocytes and oligodendrocytes do not share any of the
same connexins. Dye coupling between adjacent oligodendrocytes
varies widely in different parts of the brain and under different condi-
tions, and when dye-coupling is observed, only a relatively small
number of cells are coupled. Oligodendrocytes can exchange metabo-
lites, ions and other gap-junction permeable molecules among them-
selves much easier than with astrocytes [55].

Coupling between oligodendrocytes (O/O) occurs through adja-
cent cell bodies [43]. Little if any gap junction coupling between oli-
godendrocytes had been observed in white matter of the corpus
callosum [44] and spinal cord previously [45], but more recent evi-
dence supports O/O communication through gap junctions (see
below). 20% of oligodendrocytes in spinal cord gray matter are dye
coupled [45]. Electrical coupling is seen in 3/4 of oligodendrocyte
cell pairs tested in cell culture [46].

3.2. Reflexive gap junction across the myelin sheath

Reflexive gap junctions are gap junctions formed between different
processes of the same cell. Such coupling is particularly important in
myelin because of the unique topology presented by the multilaminar
spiralwrapping of compactedmembrane around axons, whichpresents
a long and restricted pathway for diffusion of cytoplasmic components.
In the PNS, connexin 32 (Cx32) is expressed at the paranodes together
with myelin-associated glycoprotein (MAG) and E-cadherin. The func-
tionality of this particular location of Cx32was explored by injecting in-
tracellular dyes into living myelinating cells. This experiment revealed
that only low molecular mass dyes, such as 5, 6-carboxyfluorescein
(not high molecular mass dyes) diffuse across the myelin sheath
through the paranodes and the periodic expansions in compact myelin,
also known as Schmidt–Lanterman incisures (see Fig. 3). This was the
first functional evidence that gap junctions mediate a radial pathway
of diffusion across themyelin layers, which provides a shortcut to diffu-
sion that is one million times faster than the circumferential pathway
[25]. However, this gap junction pathway is still present in Cx32 KO
mice, suggesting that other connexins must be present at these loca-
tions as well. Nevertheless, these other connexins are not sufficient to
preserve the functional or structural integrity of myelin, as Cx32 KO
mice develop peripheral demyelinating neuropathy.

In the CNS, Cx32 is localized to the paranodes where it most likely
forms reflexive channels (Cx32/Cx32). However, it is not known if
they form reflexive channels in any other regions as is the case in pe-
ripheral myelin [47].
4. Types of connexins expressed in myelinating glia

Schwann cell protein expression of connexin subtypes Cx32, Cx43,
Cx29 and Cx46 is regulated during development. Nonmyelinating
Schwann cells are dye-coupled, but this abates when the cells begin
to myelinate [48]. Schwann cells express Cx46 early in development
while they are still proliferating and re-express it again after nerve in-
jury [49]. Cx46 expression seen during the proliferating phase ceases
when the cells undergo myelination [50]. Moreover, Cx29 is not
expressed in neural crest cells, but later it is expressed in Schwann
cell precursors both in vivo and in vitro, and as such, is used as a
marker in Schwann cell lineage progression in mice [51].

Immunofluorescence studies show positive staining for Cx32 in
Schwann cells at postnatal stages coinciding with the onset of myeli-
nation [51]. Cx32 enhances the proliferative response of Schwann
cells to neuregulin-1 (NRG1), highlighting its role in primary myeli-
nating and remyelinating events [52].

Oligodendrocytes and astrocytes express distinct sets of connexin
proteins. Oligodendrocytes express Cx47 [53–55], Cx32 [56,57], and
Cx29 [58,59]. Astrocytes express Cx43 and Cx30 [60,61], and possibly

image of Fig.�2


Fig. 3. Schematic representation from Balice-Gordon et al. [25] showing the diffusion of low (green) and high (red) molecular mass compounds (or lowmolecular mass compounds
in the presence of gap junction blockers) across the PNS myelin sheath following perinuclear dye injection. Low molecular mass dyes as 5, 6-carboxyfluorescein diffuse across the
myelin sheath through the paranodes and the periodic expansions in compact myelin, also known as Schmidt–Lanterman incisures. High molecular mass dyes are not able not cross
the myelin layers and accumulate outside the myelin sheath. This study provided the first evidence of gap junctions mediating a radial pathway across the myelin sheath in the PNS
which is one million times faster than the circumferential pathway. A Schwann cell has been unwrapped in the middle of the figure showing the location of Cx32 in the regions of
non-compact myelin (Schmidt–Lanterman incisures and paranodes).
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Cx26 [62,60]. Oligodendrocytes couple not only to astrocytes and
other oligodendrocytes, but also to OPCs [63,64].

Cx47 is expressed in oligodendrocytes in early embryonic periods
and shows local and temporal restrictions in the corpus callosum, the
striatum, the cerebellum, and the spinal cord in adult animals [55].
Cx29 and Cx32 expression levels are detectable at the beginning of
myelination and expression increases in adult brain [55]. However,
Cx29 has not been shown to form hemichannels in the adaxonal
membrane [14,65].

It was believed that oligodendrocytes were only coupled to astro-
cytes [12] using Cx47/Cx43 and Cx32/Cx30 heterotypic channels
[66,58]. However, Wasseff and Scherer [67] report that oligodendro-
cytes can also couple to each other (O/O) in the corpus callosum, cor-
roborating the finding by Maglione et al. [64]. These recent findings
suggest that the earlier failure to find O/A or O/O coupling in the cor-
pus callosum [44,68,45,40] may be explained in part by the inability
of Lucifer Yellow to cross Cx32/Cx30 channels [69]. This is consistent
with other research showing that biocytin did not label oligodendro-
cytes [70] when injected into astrocytes. Whether O/O coupling is
mediated primarily by Cx32/Cx32 or by Cx47/Cx47 homotypic
Table 1
Coupling characteristics in KO and dKOmice for the major oligodendrocytic and astrocytic ga
major connexin subtype mediating O/O coupling. Maglione et al. [64] found a pronounced r
mice while Wasseff and Scherer [67] results suggest the opposite. The later authors discuss
ability assays was different in both studies as well as the genetic background of the mice u
remains in either the corpus callosum or neocortex of Cx47/Cx32 dKO mice. Maglione et al.
The lack of Cx43 alone diminished the coupling of oligodendrocytes to immature oligodend
gression. B. Studies from Maglione et al. [64] and Wasseff and Scherer [67] failed to find ro
oligodendrocytes were only coupled to astrocytes. However, the weak O/A coupling observed
dKO and Cx30/Cx43 dKO. C. Conditional deletion of Cx43 in astrocytes results in 50% decay [7
on the astroglial hippocampal coupling. However, A/A coupling is completely impaired by

Connexins (A) O/O coupling (B) O/A coupling

Cx47 KO Pronounced reduction [64] but other studies did not
find differences [67]

Reduced [64]

Cx32 KO Present [64] but other studies found partial
disruption [67]

Present [64]

Cx29 KO Present [64] Present [64]
Cx43 (fl/fl):
Hgfap-Cre

Coupling of oligodendrocytes to immature
oligodendrocyte subpopulation impaired [64]

Present [64]

Cx30 KO Not determined Not determined
Cx32/Cx47
dKO

No coupling remains in the neocortex [67] and the
corpus callosum [64]

No coupling remains
and the corpus callo

Cx30/Cx43
dKO

Reduced [64] Almost abolished [64
channels is not yet established, but evidence suggests that Cx47, but
not Cx32, is required for O/A coupling [67].

Maglione et al. [64] report that the number of oligodendrocytes
coupled to other oligodendrocytes in white matter is significantly re-
duced in Cx47 KO mice. Moreover, no O/A coupling remains after
Cx47 ablation. After Cx32 ablation O/A remains but Cx30 is vastly re-
duced [71]. Intercellular coupling was absent in Cx32/Cx47 dKO mice
and the loss of oligodendrocyte gap junctions results in an increase in
the oligodendrocytic input resistance [64]. O/A coupling was almost
absent in Cx43/Cx30 dKO mice [72,73], but some O/A coupling
remained in Cx43 deficient animals even though no coupling from ol-
igodendrocytes to OPCs was observed (see Table 1) [64]. In hippo-
campus, lack of astroglial Cx43 or Cx30 caused a reduction of 50%
[74] or 20% [75] in A/A coupling respectively. Apart from the nervous
system, Cx43 is located in other tissues like heart and epithelial cells.
Mutations in the gene GJA1 encoding for Cx43 cause a rare autosomal
dominant inherited disorder known as occulodentodigital dysplasia
syndrome (ODDD). Dye transfer assessment in acute brain slices
and dual patch clamp measurements in cells cotransfected with WT
Cx43 and G60S, a dominant Cx43 mutation that cause ODDD, did
p junctions that participate in glial networks. A. There are some discrepancies about the
eduction in O/O coupling in Cx47 deficient mice but it was unaffected in Cx32 deficient
that discrepancies can be due to methodological aspects as the dye used in the perme-
sed as control. However, both investigations agree in the finding that no O/O coupling
[64] further inspected O/O coupling in Cx30/Cx43 dKO which was found to be reduced.
rocyte subpopulation suggesting a role for astrocytic Cx43 in precursor population pro-
bust O/A coupling in the corpus callosum in contraposition to the traditional view that
in control mice was reduced in Cx47 deficient mice and totally abolished in Cx47/Cx32
4] of the A/A coupling in the hippocampus while loss of Cx30 causes 20% reduction [71]
the deletion of both astrocytic connexins [72].

(C) A/A coupling

Not determined

Loss of Cx30 in gray matter astrocytes [71]

Not determined
50% reduced in hippocampus
Cx30 upregulated partially compensate the loss of Cx43[74]
20% reduced in hippocampus hippocampal slices [75]

in the neocortex [67]
sum [64]
] Absent [72]

image of Fig.�3
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not reveal any reduction in A/A coupling [76]. These results open a
possibility that connexins may play other roles beyond intercytoplas-
matic cell communication.

Potassium buffering among astrocytes, oligodendrocytes, and be-
tween oligodendrocytes and astrocytes through gap junction coupling
are important formyelinmaintenance [73,72]. This glial network is me-
diated predominantly by oligodendrocytes in white matter coupled
among each other through Cx47 and Cx32 [64]. The formation of a
glial network in the corpus callosum and also in the neocortex [28], re-
flects the importance of distributingmetabolites intercellularly through
gap junctions during myelin formation and development.

5. Hemichannel permeability to ATP in physiology and disease

During the biogenesis of gap junctions, connexons reach the plas-
ma membrane and find their appropriate locations by an unknown
mechanism. However it is a matter of discussion if these individual
connexons or hemichannels are present in the plasma membrane as
transient structures or if they play a physiological role [77].

The work done by Geoffrey Burnstock unveiled the role of ATP as a
neurotransmitter when released or co-released after synaptic vesicle
exocytosis [78]. The action of ATP and other adenine derivatives not
only plays a role in neuronal communication, but also in glial activity.
In this regard, calcium waves recorded in cultured astrocytes are trig-
gered by ATP-induced ATP release, generating an extracellular propa-
gation wave of ATP that, in turn, activates the intracellular calcium
wave [79]. There is growing evidence that the activation of astrocytes
is related to synaptic plasticity, and ATP-dependent activation of as-
trocytes modulates distant synaptic activity [80]. Much astrocytic re-
lease of ATP does not fit with an exocytotic source, and it was
suggested that ATP would reach the extracellular medium by crossing
the hemichannels built up by Cx43, a subtype of connexin present in
different cells and organs throughout the body and expressed at very
high levels in the central nervous system, specifically in astrocytes.
Single channel recording in combination with luciferin–luciferase
assay provided direct evidence that the large single channel conduc-
tance of Cx43 was accompanied with an increase of luminescence
due to ATP crossing the hemichannel [81]. HeLa cells transfected
with Cx43mimicked the astrocytic intracellular calciumwavesmediated
by extracellular ATP, indicating that ATP crossed the plasmamembrane
using the intramolecular tunnel of Cx43 [82]. HeLa cells also release ATP
under low extracellular calcium concentrations that induce an increase
of permeability of Cx43 [83]. In C6 glioma cell line, the release of ATP is
strongly decreased when Cx43 is knocked down with siRNA [84].

Interestingly, astrocytes isolated from Cx43 null mice do not release
ATP when stimulated by Benzoyl-ATP (BzATP), a P2X7R agonist [85].
This is attributed to a lower cytoplasmic ATP concentration in Cx43-
null astrocytes, but because knockdown of Pannexin 1 (Panx1) pre-
vented ATP release, the authors conclude that Panx1 and not Cx43 hemi-
channels provide sites of ATP release. However, other authors have not
obtained similar results when transfecting with Panx1 [84]. Pannexins
are a group of membrane proteins that differ from connexins in amino
acid sequence, but they have similar organization within the lipidic
membrane. They have four transmembrane regions, two extracellular
loops, one intracellular loop and intracellular N and C termini [86].
Panx1 is ubiquitous in tissues and organs, and has been implicated in
the controlled ATP release in many cell and tissues including erythro-
cytes, which lack secretory granules, and astrocytes [87–91]. It has
been suggested that Panx1 is always and exclusively forming hemichan-
nels “in vivo”, but the possibility that they might also form gap junction
channels remains. Thework of Bruzzoneet al. [92] pointed out thatwhen
expressed in paired Xenopus laevis oocytes, they form a large conduc-
tance connection. Because of the high conductance of Panx1 and the pur-
inergic receptor P2X7, it was suggested that some kind of direct
interactions could explain how P2X7 receptors may support low and
high conductance open states; but as a matter of fact, experimental
results favored the view that they correspond to two independent struc-
tures [93–95]. However, activation of Panx1 delivers ATP to different
kinds of purinergic receptors [96] and it seems that among other
physiological roles, Panx1may be involved in cell apoptosis by control-
ling ATP release [97]. Panx1 can also trigger neuronal death being acti-
vated through excessive ATP and glutamate release from astrocytes in
proinflammatory conditions [98].

The relationship between different types of connexins and ATP re-
lease has been assessed using not only glial or neural cell lines but also
other cell types. In X. laevis oocytes, activation of the endogenous Cx38
with low extracellular divalent concentration triggers the release of ATP
[99]. Cx26, a CO2 dependent connexin found in astrocytes from the respi-
ratory centers of the medulla oblonga, is permeable to ATP under CO2

acidifying conditions [100,101]. In colonic epithelial cells, Cx26 becomes
permeable to ATP when interacting with Shigella [102]. In organotypic
cultures of mouse cochlea, ATP release is linked to the activation of
Cx26 and alsowith Cx30 [103]. The adhesion ofmacrophages to endothe-
lial cells is mediated by a release of ATP by means of Cx37 [104].

There is evidence of the presence of functional connexin hemi-
channels in the plasma membrane of oligodendrocytes [105] and
Schwann cells [107] communicating the cytoplasm of the cell with
the extracellular space. This evidence is supported by the selective
permeability and reduction of the permeability after treatment with
gap junction blockers exhibited by several cell types [106]. It is hy-
pothesized that under physiological conditions, connexin hemichan-
nels remain closed to prevent leakage of cytoplasmatic components,
metabolites and ions. Nevertheless, mutations S85C [106] and F235C
[107] affecting different parts of the Cx32 protein induce a greater
conductance of the mutant hemichannels present in the plasma
membrane with a reduction in the threshold of opening when
expressed in Xenopus oocytes. Both mutations were cloned from pa-
tients suffering from X-linked Charcot–Marie–Tooth disease
(CMTX), a peripheral neuropathy caused by mutations in the gene
encoding for Cx32. The data obtained from these mutations suggest
that in pathological conditions hemichannels may be opened at rest-
ing membrane potentials inducing metabolic stress due to hemichan-
nel leakage and therefore leading to Schwann cell death.

There is an open question about the presence of Cx32 hemichan-
nels at the node or Ranvier and their hypothetical permeability to
ATP. It would be of interest to know if Cx32 mutations causing
CMTX show differences in conducting ATP. Results obtained in Cx32
transfected C6 glioma cell line are in accordance with the view that
ATP reaches the extracellular space crossing connexin hemichannels,
which in turn are activated by an increase of cytoplasmatic calcium
concentration [108]. Moreover, repetitive electrical field stimulation
of isolated sciatic nerve provokes the release of ATP; glutamate also
triggers the release of ATP [109]. Cultured Schwann cells also release
important amounts of ATP under UTP stimulation [110], which mimic
the release of ATP from astrocytes, suggesting that glial cells from CNS
and PNSmay share somemechanisms for releasing ATP and activating a
pathway of purinergic signaling.

6. Mutations in gap junctions lead to demyelinating neuropathy in
both PNS and CNS

Further understanding of the functional importance of gap junc-
tional coupling in myelination and axonal survival comes from dis-
eases resulting from mutations in genes encoding for Cx47 (GJC2)
and Cx32 (GJB1), which are the causes of Pelizaeus–Merzbarcher-
like disease (PMLD) and CMTX respectively.

6.1. Pelizaeus–Merzbarcher-like disease (PMLD)

PMLD is a recessive inherited severe leukoencephalopathy in humans
caused bymutations in the gene GJC2 encoding for Cx47. Patients affect-
ed share many clinical features with Pelizaeus–Merzbarcher disease
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(PMD) patients, including nystagmus, progressive spasticity, ataxia and
hypomyelination on MRI imaging. PMD is an X-linked disease caused
bymutations in themajormembrane protein of the CNSmyelin, Proteo-
lipid Protein 1 (PLP1). Therefore, PMD and PMLD are caused by muta-
tions in myelin proteins (Cx47 and PLP1 respectively) and patients
show similar symptomatology [111].

Twenty-four mutations compromising different parts of Cx47 pro-
tein have been described, but despite this genetic heterogeneity, the
degree of impairment shown by the patients is the same. Mutations
can cause the protein to be retained in intracellular compartments
such as the endoplasmic reticulum, or can impair the docking of
hemichannels thus impeding the passage of molecules between
cells and leading to loss of function [112].

A mutation that disrupts the SOX10 transcriptional activation site
in the GJC2 promoter region has been described in a family with a
mild PMLD phenotype. The fact that another mutation in the binding
site of SOX10 in GJB1 is linked to CMTX suggests that transcriptional
regulation of GJC2 and GJB1 genes may be critical in myelination of
both the CNS and the PNS, respectively [113].

The generation of Cx47 KO mice showed no significant alterations
in the CNS apart from minor ultrastructural changes, such as vacuola-
tion of the myelinated fibers in the optic nerve [54]. The generation of
a mouse expressing the Cx47 M282T mutation showed impaired
motor function, reduced myelin basic protein (MBP) expression, and
astrogliosis in the cerebellum of juvenile mice, a phenotype that
was completely restored in three-month-old mice [114]. However,
Cx32/Cx47 dKO or Cx32 KO mice expressing M282T mutation exhibit
a severe phenotypewith tremors and tonic seizures as a result of devas-
tating broad demyelination of the CNS that causes death by the sixth
postnatal week [53,114]. These observations lead to the conclusion
that Cx47 andCx32play a key role inmyelination of the CNS and display
redundant functionality in the mice CNS, which would not happen in
humans considering the affection of PMLD patients. The phenotype
exhibited by dKO animals also suggests that the main role of these con-
nexins is to ensure homeostasis of CNS tissue by coupling oligodendro-
cytes and astrocytes into a network for potassium clearance after
nervous activity.

6.2. X-linked Charcot–Marie–Tooth disease (CMTX)

CMTX is a dominant inherited sensory and motor peripheral neu-
ropathy caused by mutations in the gene GJB1 encoding for Cx32
linked to the X chromosome. This is the second most common form
of demyelinating Charcot–Marie–Tooth disease type 1 (CMT1), repre-
senting 10–15% of all cases. CMTX is characterized by progressive
weakness and atrophy of the distal limb muscles that can result in se-
vere deformities like feet drop [115]. Males are uniformly affected but
female carriers show variable clinical features due to random
X-chromosome inactivation [116]. More than 300 mutations for the
gene GJB1 have been described (http://www.molgen.ua.ac.be/
CMTMutations/default.cfm; Inherited Peripheral Neuropathies Muta-
tion Database) leading to impaired Cx32 trafficking [117], voltage gat-
ing defects [106,118] and inability to form functional gap junctions
across the myelin sheath once inserted into the plasma membrane
[119].

Patients affected by CMTX do not show severe CNS symptoms sug-
gesting that Cx47 can compensate for the loss of Cx32 function. How-
ever, some studies show subtle central alterations and few mutations
have been suggested to involve CNS dysfunction [120,121]. There are
a few mutations related to CMTX that do not directly affect the GJB1
gene but instead affect the binding of the transcription factors
SOX10 [122] or EGR2/Knox20 to the P2 promoter that regulates
Cx32 expression in Schwann cells [123].

A useful tool for the study of CMTX came from the generation of
Cx32 KOwhich shows a late-onset demyelinating neuropathy that re-
sembles human CMTX [116]. During the first months of life these
mice show only dysfunctions in the liver where Cx32 is abundantly
expressed [124,125]. The progressive peripheral demyelination starts
at 3 months of age and it is characterized by unusually thin myelin
sheaths, cellular onion-bulb formations, increased Schwann cell pro-
liferation and enlarged periaxonal collars. Motor fibers are more se-
verely affected than sensory fibers [116], but conduction velocity is
only slightly decreased [126].

Strong evidence that CMTX is caused by mutations of Cx32 in
Schwann cells and not in other cell types was provided by Scherer
et al. [127] by expressing human Cx32 in Cx32 KO under the myelin
protein zero (MPZ) promoter specific for Schwann cells, and rescuing
the pathologic phenotype observed in peripheral nerves, but not in
liver or spinal cord of the Cx32 KO mice [127]. Further characteriza-
tion of Cx32 KO revealed new features, including alterations in the
distribution of proteins such as potassium channels Kv1.1 [128], in-
creased expression of GFAP [129], and increased number of OPCs
[130].

How the lack of Cx32 leads to disease is not fully understood. The
main function attributed to Cx32 is to form reflexive gap junctions
across the peripheral myelin sheath mediating a faster pathway of
diffusion to the adaxonal cytoplasm than would be possible without
a pathway for radial diffusion across the myelin lamellae. However,
analysis of the diffusion rate of fluorescent dyes in Cx32 KO was not
slower than in the wild-type, suggesting that other gap junctions
may mediate this pathway [25]. Moreover, the fact that reflexive
channels exhibit different permeabilities to molecules such as cAMP
suggests that gap junctions may regulate or sustain signaling cascades
that favor the survival and myelination of the axons. For example, gap
junctions together with ATP, mediate calcium signaling between the
networks of branched Schwann cells covering the lanceolate ending
of the rat hair follicles [131].

It might be interesting to further explore the consequences of
changes in permeability or block of signaling cascades induced by
the lack or deficiencies in the channels formed by mutated proteins.
Previous studies have shown that ionophoresis or changes in trans-
junctional voltage in Cx43 and Cx45 can change the permeability of
these gap junctions to intracellular injected dyes [132]. Therefore it
would be important to determine if defects on the voltage gating of
Cx32 mutants induce new selective properties in the channels that
can lead to disease.

7. Conclusions

Gap junction communication in myelinating glia is crucial for
myelination and axonal survival in both the PNS and the CNS. There
are many open questions about the signaling pathways and functions
sustained by gap junctions in myelinating glia. Connexin expression
changes during differentiation of Schwann cells, indicating the di-
verse roles that these junctions play in glial cell biology. Reflexive
coupling via gap junctions solves a unique problem presented by
the diffusion barriers in compact myelin, but many other important
roles of gap junctions in myelinating glia are not well understood.
This is evidenced by the failure to understand the pathophysiological
basis for many myelin disorders associated with genetic mutations in
connexins in myelinating glia.

The fundamental facts about gap junction coupling amongmyelinat-
ing glia in the CNS are only now emerging. Coupling among oligoden-
drocytes and between oligodendrocytes and astrocytes has not been
studied extensively, considering the critical importance of communica-
tion among these cells and with axons in maintaining normal physio-
logical function. Beyond potassium buffering, gap junction coupling
among oligodendrocytes could be important in maintaining axonal ex-
citability, providing nutritional support, transfer of intercellular signal-
ing molecules necessary for maintenance of myelin, and remodeling
myelin under appropriate circumstances, as could coupling between as-
trocytes and oligodendrocytes. Why OPCs are coupled through gap

http://www.molgen.ua.ac.be/CMTMutations/default.cfm
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junctions to oligodendrocytes is unclear, but these progenitor cells are
highly responsive to neural injury, suggesting a possible role in intercel-
lular communication during nervous system repair or remyelination. In
addition to the functional significance of gap junction coupling among
myelinating glia, the physiological regulation of these channels is not
well explored. Future research to elucidate the function and regulation
of gap junctions in myelinating glia could lead to development of new
therapeutic treatments for CMTXand PMLD and othermyelin disorders,
while deepening understanding of themeans bywhichmyelinating glia
contribute to nervous system function and plasticity.
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