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AlgebrasRelated to Matroids Represented in Characteristic Zero†

DAVID G. WAGNER

Let k be a field of characteristic zero. We consider graded subalgebrasA of k[x1, . . . , xm]/

(x2
1, . . . , x2

m) generated byd linearly independent linear forms. Representations of matroids over
k provide a natural description of the structure of these algebras. In return, the numerical properties
of the Hilbert function ofA yield some information about the Tutte polynomial of the correspond-
ing matroid. Isomorphism classes of these algebras correspond to equivalence classes of hyperplane
arrangements under the action of the general linear group.
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†Dedicated tothe memory of François Jaeger.

1. INTRODUCTION

We consider the following class of graded algebras over a fieldk of characteristic zero.
Let B := k[x1, . . . , xm]/(x2

1, . . . , x2
m) with the standard grading (soB =

⊕m
j=0 B j and

dimk B j =
(m

j

)
), and letA =

⊕m
j=0 A j be a subalgebra ofB generated byd linearly in-

dependent forms of degree one. Two examples motivate the investigation of such algebras.

EXAMPLE 1.1. Let G be a finite undirected graph withm edges,and orient each edge
arbitrarily. Fixing a bijection between the edges ofG and the indeterminates{x j }, we regard a
linear form inB1 as a linear combination of the edges ofG. Let A1 be the ‘cycle-space’ ofG
(that is, the subspace ofB1 consisting of linear combinations of the oriented edges satisfying
Kirchhoff’s First Law: at every vertex the net flux is zero), and letA be the subalgebra of
B generated byA1. In [8] it is shown that this construction may be symmetrized to obtain
a gradedalgebra8·(G, k) which is independent of the choice of orientation of the edges of
G, and which is covariantly functorial with respect to graph morphisms. Formally,8·(G, k)
resembles a cohomology ring for the graphG with coefficients in the fieldk.

EXAMPLE 1.2. LetG be a connected complex semisimple Lie group, with Borel subgroup
B androot system1, and consider the homogeneous manifoldX = G/B (the ‘flag manifold’
of type G). Postnikovet al. [5] (see also Shapiroet al. [6]) identify differential two-forms
{φα : α ∈ 1} on X such thatφ−α = −φα, φ2

α = 0, and theφα pairwise commute. Any
weightλ of G determines a holomorphic Hermitian line bundleLλ on X, and the curvature
form2(Lλ) of this line bundle is a linear combination of the{φα : α ∈ 1}. The subalgebra
C(X) of the algebra of differential forms onX generated by the curvature forms2(Lλ) is of
the kind considered here, and the cohomology ringH ·(X,C) is a quotient ofC(X).

In the next section we show that an isomorphism class of algebrasA as above corresponds
to a linear equivalence class of representations of a matroid over the fieldk. Equivalently,
this corresponds to an equivalence class of hyperlane arrangementsH ⊂ kd under the ac-
tion of the general linear groupGL(kd). One direction of this correspondence is immediate
(Lemma2.2) while the other requires substantial preliminaries (Theorem2.9). We establish
a deletion/contractionshort exact sequence which proves to be useful (Theorem2.5). We
presentA as aquotient of a polynomial ring modulo an explicitly given ideal (Theorem2.7),
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and prove an analogue of half of the Strong Lefschetz Theorem for these algebras (Theo-
rem2.11). In Section3 we discuss inequalities on the Hilbert function ofA derived from the
algebraic structure ofA. The Poincaŕe polynomial ofA is a specialization of the Tutte polyno-
mial of the corresponding matroid, giving the Hilbert function a combinatorial interpretation
(Theorem3.2). Having computed a few hundred random examples, it seems that the Hilbert
function of A is logarithmically concave, and we prove this generically and in the cased = 2.
These results go some way towards addressing Problems 6.8 and 6.10 of [8].

2. ALGEBRAIC STRUCTURE

For a natural numbern we use the notation[n] := {1,2, . . . ,n}. For 0 ≤ j ≤ m, let
1 j be the set of square-free monomialsxα of degreej in {x1, . . . , xm}, so1 :=

⋃m
j=01 j

is a k-basis forB. Endomorphisms ofB j are represented by square matrices with rows and
columns indexed by1 j . A monomial matrixhas exactly one nonzero entry in each row and
each column.

LEMMA 2.1. The k-algebra automorphisms of B form a groupAutk(B) which is isomor-
phic to the group of monomial matrices acting on B1 with respect to the basis11.

PROOF. Note that if f ∈ B1 is suchthat f 2
= 0, then f = cxj for somec ∈ k and j ∈ [m].

Thus, for any automorphismφ : B→ B there is a permutationσ : [m] → [m] and nonzero
scalarsc j ∈ k such thatφ(x j ) = c j xσ( j ) for all j ∈ [m]. Conversely, any such choice ofσ
and{c j } determines an automorphism ofB. 2

Let M = (mi j ) be ad-by-m matrix overk for which the rowspace ofM is A1. (Henceforth
we identify row vectors of lengthm with linear combinations of the indeterminates{x j }.)
SinceM determinesA we will often use the notationA(M). The linearly independent sets
of columns ofM form the independent sets of a matroidM, and M is a representation of
M over k. (For background information on matroids consult Oxley [4] or Welsh [10].) Two
representationsM andN of M arelinearly equivalentif there is a monomial matrixP and an
invertible matrixQ such thatQM P = N.

LEMMA 2.2. Let M and N be two d-by-m matrices of rank d over the field k. If M and N
are linearly equivalent representations of the same matroid, then A(M) ' A(N).

PROOF. If QM P = N with Q invertible andP a monomial matrix, then by Lemma2.1,
P determines ak-algebraautomorphism ofB such thatA1(M) ' A1(M P) = A1(N). Since
A(M) andA(N) are generated by linear forms, it follows thatA(M) andA(N) are isomorphic
k-algebras. 2

The converse of Lemma2.2 also holds but the proof relies on a presentation ofA(M) as a
quotientof a polynomial ring, which takes some work to derive.

Lemma2.2 has an interesting geometric interpretation; see Orlik and Terao [3] for back-
ground onhyperplane arrangements.

EXAMPLE 2.3. LetH be a (nonreduced, central, essential) arrangement ofm hyperplanes
in a d-dimensionalk-vectorspaceV . Choose an arbitrary basisB of V∗, an arbitrary enu-
merationH = {H1, . . . , Hm} of H, and arbitrary linear forms̀1, . . . , `m in V∗ such that
H j = ker(`j ) for j ∈ [m]. Writing each` j as a column vector with respect to the basisB
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determines ad-by-m matrix M of rank d. If N is another such matrix obtained fromH by
different choices of basis, enumeration, and linear forms, then there is an invertibled-by-d
matrix Q (for the change of basis) and anm-by-m monomial matrixP (for change of enu-
meration and rescaling of linear forms) such thatQM P = N. Therefore, by Lemma2.2,
the algebraA(H) := A(M) is a well-defined invariant of the hyperplane arrangement. More-
over, if H′ is a hyperplane arrangement which is equivalent toH under the action ofGL(V),
then the corresponding matricesM andM ′ are linearly equivalent representations of the same
matroid, and soA(H′) ' A(H).

Lemma2.4prepares for Theorem2.5.

LEMMA 2.4. Consider linear forms fi = xi +
∑m

j=d+1 ci j x j in B1 for i ∈ [d], and a
polynomial p(z1, . . . , zd) in k[z1, . . . , zd]. If f1 p( f1, . . . , fd) =

∑
α sαxα 6= 0 then there is

somexα ∈ 1 which is divisible by x1 and such that sα 6= 0.

PROOF. Since f1 p( f1, . . . , fd) 6= 0, there is somexβ ∈ 1 with sβ 6= 0. LetT be the set of
j ∈ [m] such thatx j dividesxβ , c1 j 6= 0, and the coefficientw j of xβx−1

j in p( f1, . . . , fd)
is nonzero. Thus,sβ =

∑
j∈T c1 jw j . If x1 dividesxβ then the result is proved, so we may

assume thatx1 does not dividexβ , and hence that 16∈ T . SinceT is not empty there is
some j ∈ T ; now consider the monomialxα := x1xβx−1

j . We claim that this occurs in
f1 p( f1, . . . , fd) with coefficientsα = w j , which is nonzero. However, this is clear, since
in f1p( f1, . . . , fd) =

∑b
a=1 qa( f2, . . . , fd) f a

1 the terms contributing tosαxα correspond
bijectively with the terms contributing tosβxβ which choosex j from some factorf1. The
correspondence is made simply by replacingx1 by x j in each such term, and the ratio of the
coefficients of corresponding terms is 1: c1 j . 2

For ad-by-m matrix M and j ∈ [m], let M r j be thed-by-(m− 1) matrix obtained by
deleting thej th column fromM . If this column is identically zero thenA(M r j ) ' A(M),
as is easily seen. As a result, we are free to assume thatM has no zero columns in what
follows. If column j of M is not zero then leti ∈ [d] be the greatest index such thatmi j 6= 0,
and produceM ′ by adding−mih/mi j times columnj to columnh of M , for eachh ∈ [m].
Finally, M/j is the(d−1)-by-(m−1)matrix obtained by deleting thei th row andj th column
from M ′.

Theorem2.5 is an analogue of the sequence (3.1) of [8]. (The notationA(M r j )(−1)
merely indicatesthat the grading ofA(M r 1) has been shifted up by one degree.)

THEOREM 2.5. Let M be a d-by-m matrix of rank d over the field k. For each j∈ [m]
such that column j of M is not zero, there is a short exact sequence of graded k-spaces

0−→ A(M r j )(−1)−→ A(M)
π
−→ A(M/j ) −→ 0

in whichπ is a k-algebra homomorphism.

PROOF. ReplacingM , if necessary, by a linearly equivalent representation of the same
matroid, we may assume thatj = 1 and thatM has the block structureM = [I N ] in which
I is thed-by-d identity matrix. Let f1, . . . , fd be the rows ofM , let f ′1, . . . , f ′d be the rows
of M r 1, and let f ′′2 , . . . , f ′′d be the rows ofM/1. There is certainly an exact sequence

0−→ ( f1) −→ A(M) −→ A(M)/( f1) −→ 0
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for the principal ideal( f1) of A(M). It remains only to establish isomorphismsA(M/1) '
A(M)/( f1) andA(M r 1)(−1)' ( f1).

Now, since column 1 ofM is zero except in row 1,f ′′i = fi for 2 ≤ i ≤ d; thus, there is
a well-definedk-algebra homomorphism fromA(M) to A(M/1) given by f1 7→ 0 and fi 7→
f ′′i for 2 ≤ j ≤ d. Clearly this is surjective and has kernel( f1). For the other isomorphism,
notice that f1 = x1 + f ′1 and fi = f ′i for 2 ≤ i ≤ d. Thus, f a

1 = ( f ′1)
a
+ ax1( f ′1)

a−1 for
every natural numbera; it follows that for any polynomialp(z1, . . . , zd),

p( f1, . . . , fd) = p( f ′1, . . . , f ′d)+ x1 p′( f ′1, . . . , f ′d),

in which p′(z) := (∂/∂z1)p(z). Thus, the rulep( f1, . . . , fd) 7→ p′( f ′1, . . . , f ′d) gives a well-
definedk-linear homomorphismφ : A(M)→ A(Mr1)(−1); this is just the extraction of the
coefficient ofx1 from p( f1, . . . , fd). Since for every polynomialq(z) there is a polynomial
p(z) such that(∂/∂z1)z1 p(z) = q(z), it follows that the restriction ofφ to ( f1) is surjective
onto A(M r 1)(−1). Finally, Lemma2.4 shows that the restriction ofφ to ( f1) is injective,
establishing the isomorphismA(M r 1)(−1)' ( f1). 2

We next presentA(M) as a quotient of the polynomial ringR := k[z1, . . . , zd]. For any
linear form f =

∑m
j=1 c j x j in B1, let ν( f ) := #{ j : c j 6= 0}. Note that f ν( f )

6= 0 and
f 1+ν( f )

= 0. Identifying a linear formp in R1 with a row vector of lengthd, there is a
corresponding linear formpM in B1. Define the idealJ(M) of R by

J(M) := (p1+ν(pM)
: p ∈ R1).

LEMMA 2.6. Let M and N be two d-by-m matrices of rank d over the field k. If M and N
are linearly equivalent representations of the same matroid, then J(M) ' J(N).

PROOF. Let N = QM P with Q invertible andP a monomial matrix. Certainlyν(pQM P)
= ν(pQM) for every p ∈ R1. The rulep 7→ pQ for p ∈ R1 definines ak-algebra automor-
phismφ : R→ R, and

J(M) = {(pQ)1+ν(pQM)
: p ∈ R1}.

Therefore, since
J(N) = {p1+ν(pN)

: p ∈ R1},

it follows that the restriction ofφ to J(N) is an isomorphism fromJ(N) to J(M). 2

Theorem2.7generalizes Theorem 4.8 of [8] and Proposition 1.1 of Shapiroet al. [6].

THEOREM 2.7. For M a d-by-m matrix of rank d over the field k, A(M) ' R/J(M).

PROOF. We apply Theorem2.5 for some j ∈ [m] indexing a nonzero column ofM . By
Lemmas2.2and2.6we may replaceM , if necessary, by a linearly equivalent representation
of the same matroid. Thus we may assume thatj = 1 and thatM has the block structure
M = [I N ] in which I is thed-by-d identity matrix. Let f1, . . . , fd be the rows ofM , let
f ′1, . . . , f ′d be the rows ofM r 1, and let f ′′2 , . . . , f ′′d be the rows ofM/1.

Define ak-algebra homomorphismψ : R→ A(M) byψ(zi ) := fi for i ∈ [d]. Certainlyψ
is surjective, asA1 generatesA. We claim that ker(ψ)= J(M), which we prove by induction
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on d andm, thebasesd = 1 andm = d being easily seen. It is clear thatJ(M) ⊆ ker(ψ)
since for anyp ∈ R1 we haveψ(p) = pM and (pM)1+ν(pM)

= 0 in A(M). For the
converse, define ak-algebra homomorphismψ ′ : R → A(M r 1) by ψ ′(zi ) := f ′i for
i ∈ [d], and defineψ ′′ : k[z2, . . . , zd] → A(M/1) byψ ′′(zi ) := f ′′i for 2 ≤ i ≤ d. There is
a commutative diagram

0 −→ R(−1)
η
−→ R

π
−→ k[z2, . . . , zd] −→ 0

↓ ψ ′ ↓ ψ ↓ ψ ′′

0 −→ A(M r 1)(−1) −→ A(M) −→ A(M/1) −→ 0

in which the bottom row is the sequence of Theorem2.5. From the proof of Theorem2.5
one sees that the homomorphisms in the top row are given byπ(p(z)) := p(0,z2, . . . , zd)

andη(p(z)) :=
∫

p(z)dz1 for all p(z) ∈ R. Sinceψ ′ is surjective, the kernel-cokernel exact
sequence (see, e.g., Lemma II.5.2 of Mac Lane [2]) implies that 0→ ker(ψ ′)→ ker(ψ)→
ker(ψ′′)→ 0 is exact. By induction, we deduce that

ker(ψ)= η(J(M r 1)(−1))⊕ ι(J(M/1)),

in which ι : k[z2, . . . , zd] → R is the natural inclusion.
To prove that ker(ψ) ⊆ J(M), it thus suffices to show thatι(J(M/1)) ⊆ J(M) and

η(J(M r 1)(−1)) ⊆ J(M). The first of these claims is trivial, since the generators of
ι(J(M/1)) are exactly those generators ofJ(M) which do not involve the indeterminate
z1. For the second claim, byk-linearity it suffices to prove thatη(zγ g(z)) ∈ J(M) for any
monomialzγ and generatorg(z) of J(M r 1)(−1). So, letp(z) := c1z1+ · · · + cdzd and let
ν := ν(c1 f ′1+· · ·+cd f ′d), and considerη(zγ p(z)1+ν). If c1 = 0 thenν(c1 f1+· · ·+cd fd) = ν
and

∫
zγ p(z)1+νdz1 = zγ z1p(z)1+ν/(γ1 + 1) is in J(M). On the other hand, ifc1 6= 0 then

ν(c1 f1+ · · · + cd fd) = ν + 1; however, applying integration by parts repeatedly we obtain∫
zγ p(z)1+νdz1 =

zγ p(z)2+ν

2+ ν
−

∫ (
∂zγ

∂z1

)
p(z)2+ν

2+ ν
dz1

= · · · = q(z)p(z)2+ν

for some polynomialq(z) ∈ R. Sincep(z)2+ν is a generator ofJ(M), the result follows. 2

Although Theorem2.7 gives a good picture ofA(M), it would be preferable to have a
standard monomial theory for this algebra. Presumably this would rely on matroid-theoretic
structure as in the proof of Theorem3.2below, but as yet the situation remains unclear.

We can now establish the converse of Lemma2.2, the proof of which uses the following
‘tomographic’ lemma (valid for any infinite fieldk).

LEMMA 2.8. Let L andL′ be finitemultisets of lines in the d-dimensional k-vectorspace
V , each line passing through the origin. Assume that for every hyperplane H⊂ V , the number
of lines ofL in H equals the number of lines ofL′ in H. ThenL = L′.

PROOF. Arguing by contradiction, assume thatL 6= L′. ReplacingL by Lr L′ andL′ by
L′ rL, we may assume thatL∩L′ = ∅. At least one ofL or L′ is nonempty; by symmetry,
consider anỳ ∈ L. Sincek is infinite andL′ is finite, there is a hyperplaneH ⊂ V which
contains̀ but does not contain any lines ofL′; this contradicts the hypothesis. 2
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THEOREM 2.9. Let M and N be two d-by-m matrices of rank d over the field k. Then
A(M) and A(N) are isomorphic as k-algebras if and only if M and N are linearly equivalent
representations of the same matroid.

PROOF. Lemma2.2establishes one direction. For the converse, assume thatφ : A(M)→
A(N) is a k-algebraisomorphism. By the remarks preceding Theorem2.5, we may assume
that M and N have no zero columns. Letf1, . . . , fd be the rows ofM , and letg1, . . . , gd

be the rows ofN. ReplacingN, if necessary, by a linearly equivalent representation of the
same matroid, we may assume thatφ : A1(M) → A1(N) is determined byφ( fi ) = gi for
all i ∈ [d]. Now let R := k[z1, . . . , zd] and defineψ : R → A(M) andψ ′ : R → A(N)
by ψ(zi ) := fi andψ ′(zi ) := gi for all i ∈ [d]. From Theorem2.7 it follows that J(M) =
ker(ψ) = ker(ψ ′) = J(N). Let L be the multiset of lines inkd consisting of the scalar
multiples of the columns ofM . Let L′ be the corresponding multiset of lines forN. Since
J(M) = J(N) andφ : A(M) → A(N) is determined byφ( fi ) = gi for i ∈ [d], it follows
that for any linear formp ∈ R1, ν(pM) = ν(pN); that is, the number of lines ofL in ker(p)
equals the number of lines ofL′ in ker(p). By Lemma2.8it follows thatL = L′. Thus,there
is anm-by-m monomial matrixP such thatM P = N. This completes the proof. 2

COROLLARY 2.10. Let A and A′ be subalgebras of B generated by linear forms. Any k-
algebra isomorphismφ : A→ A′ extends to an automorphism of B.

PROOF. Let A = A(M) and A′ = A(N) for d-by-m matricesM and N of rank d. By
Theorem2.9 there is anm-by-m monomial matrixP suchthat A1(M P) = A1(N) and for
f ∈ A1(M), φ( f ) = f P. By Lemma2.1, P determines anautomorphism ofB extending
φ : A→ A′. 2

We close this section with an analogue of half of the Strong Lefschetz Theorem, generaliz-
ing Theorem 4.10 of [8].

THEOREM 2.11. Let M be a d-by-m matrix of rank d over the field k, and assume that M
has nozero columns. Let g=

∑m
j=1 c j x j ∈ A1(M) be such that cj 6= 0 for all j ∈ [m]. Then

for each0≤ j ≤ m/2, the homomorphism·gm−2 j
: A j (M)→ Am− j (M) is injective.

PROOF. Fix any 0 ≤ j ≤ m/2. Let W be the matrix with rows indexed by1m− j and
with columns indexed by1 j , with Wxα,xβ := 1 if xβ dividesxα andWxα,xβ := 0 otherwise.
Multiplication by the elementgm−2 j of A(M) induces a homomorphism·gm−2 j

: B j →

Bm− j ; let G be the matrix representing this homomorphism with repsect to the bases1 j and
1m− j . That is, ifxβ |xα thenGxα,xβ =

∏
{c j : x j |xα−β}, andGxα,xβ := 0 otherwise. LetP

be the diagonal square matrix indexed by1m− j , with Pxβ ,xβ :=
∏
{c j : x j |xβ}, and letQ be

the diagonal square matrix indexed by1 j , with Qxα,xα :=
∏
{c j : x j |xα}. By the hypothesis

on g, both P and Q are invertible. One verifies that the matrix equationG P = QW holds,
and hence det(G) = det(Q) det(W) det(P)−1. Wilson [11] proves that

det(W) =

j∏
h=0

(
m− j − h

j − h

)(mh)−( m
h−1)

,

and therefore det(G) 6= 0. Thus,·gm−2 j
: B j (M) → Bm− j (M) is an isomorphism, and so

·gm−2 j
: A j (M)→ Am− j (M) is injective. 2
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3. HILBERT FUNCTIONS

ThePoincaŕe polynomialof a finite-dimensional gradedk-spaceA =
⊕m

j=0 A j is P(A; t) :=∑m
j=0(dimk A j )t j . The coefficients ofP(A; t) form theHilbert functionof A. TheTutte poly-

nomial TM(x, y) of a matroidM is the class ofM in the Grothendieck ring of the category of
matroids; see [1, 4, 10].

PROPOSITION3.1. Let M be a d-by-m matrix of rank d with no zero columns, representing
the matroid M over the field k. Then the Poincaré polynomial of A(M) depends only onM
and is P(M; t) := P(A(M); t) = tm−dTM(1+ t, t−1).

PROOF. From Theorem2.5we obtain the recursion

P(A(M); t) = t P(A(M r j ); t)+ P(A(M/j ); t) (3.1)

for the Poincaŕe polynomials,with initial conditionsP(A(M); t) = 1 if d = 0, andP(A(M); t)
= 1 + t + · · · + tm if d = 1 and M hasm nonzero columns. Defining̃P(A(M); t) :=
td−mP(A(M); t) we haveP̃(A(M); t) = P̃(A(Mr j ); t)+ P̃(A(M/j ); t). Whend = 0 and
m= 1 we havẽP(A(M); t) = t−1, and whend = 1 andm= 1 we havẽP(A(M); t) = 1+t .
Since TM(x, y) is the universal Tutte–Grothendieck invariant of the category of matroids
(see Brylawski and Oxley [1]), it follows by induction ond and m that P̃(A(M); t) =
TM(1+ t, t−1). 2

For the next result we need some operations on sets of columns of the matrixM . For S⊆
[m], let spank(S) be thek-space spanned by the columns ofM in S, and letS be the set of
columnsof M contained in spank(S). Therankof S is r (S) := dimk spank(S). Let I (S) be the
lexicographically earliest basis of spank(S) contained inS. A column j is externally active
for S if and only if j ∈ Sr S and I (S∪ { j }) = I (S). Let E A(S) be the set of columns
externally active forS, and let ea(S) be the cardinality of this set.

What follows is a new proof of Theorem 2 of Postnikovet al. [5].

THEOREM 3.2. Let M be a d-by-m matrix of rank d with no zero columns, representing
the matroid M over the field k. For0 ≤ j ≤ m, dimk A j (M) is the number of independent
sets ofM such that m− #S− ea(S) = j .

PROOF. The rank-polynomial expansion (see (6.12) of Brylawski and Oxley [1]) of TM(x, y)
is

TM(x, y) =
∑

S⊆[m]

(x − 1)d−r (S)(y− 1)#S−r (S).

Making the substitution of Proposition 3.1 leads to

P(M; t) =
∑

S⊆[m]

tm−#S(1− t)#S−r (S)
=

∑
S⊆[m]

tm−#S
∑

T⊆SrI (S)

(−1)#T t#T

=

∑
R⊆[m]

tm−#R
∑

T⊆E A(R)

(−1)#T
=

∑
R⊆[m]: E A(R)=?

tm−#R.

For the third equality, notice thatSr I (S) ⊆ E A(I (S)) for every S ⊆ [m]. Thus, if T ⊆
Sr I (S) andR := Sr T then I (R) = I (S) andT ⊆ E A(R). Conversely, ifT ⊆ E A(R)
thenT ⊆ (R∪ T)r I (R∪ T).
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SinceE A(R) = EA(I (R)) r R, it follows that E A(R) = ∅ if and only if R = I (R) ∪
E A(I (R)). Conversely, ifS is independent thenI (S∪ E A(S)) = S. Thus, the functions
R 7→ I (R) andS 7→ S∪ E A(S) are mutually inverse bijections between the sets{R⊆ [m] :
E A(R) = ∅} and{S⊆ [m] : S is independent inM}. Therefore,

P(A(M); t) =
∑

R⊆[m]: E A(R)=?
tm−#R

=

∑
S

tm−#S−ea(S), (3.2)

with the last sum over the independent sets ofM. 2

The notationd j (M) := dimk A j (M) will be convenient. For positive integersa and j there
is a unique expression

a =

(
a j

j

)
+

(
a j−1

j − 1

)
+ · · · +

(
ai

i

)
such thata j > a j−1 > · · · > ai ≥ i > 0. The j th pseudopower of ais

ψ j (a) :=

(
a j + 1

j + 1

)
+

(
a j−1+ 1

j

)
+ · · · +

(
ai + 1

i + 1

)
.

PROPOSITION3.3. Let M be a d-by-m matrix of rank d with no zero columns. Then
d0(M) = 1, d1(M) = d, dm(M) = 1, and for j ∈ [m − 1], we have0 < d j+1(M) ≤
ψ j (d j (M)).

PROOF. SinceA0(M) = k and dimk A1(M) = d, the first two statements are clear. Since
M has no zero columns andk is infinite, there is a linear formg ∈ A1 with ν(g) = m.
Thus, gm is a nonzero multiple ofx1 · · · xm; since Bm is one-dimensional it follows that
dm(M) = 1. The remaining inequalities are a direct application of Macaulay’s Theorem (see
Theorems II.2.2 and II.2.3 of Stanley [7]), sinceA is generatedby linear forms. 2

PROPOSITION3.4. Let M be a d-by-m matrix of rank d with no zero columns. Then
d0(M) ≤ d1(M) ≤ · · · ≤ dbm/2c(M), and if0≤ j ≤ m/2, then dj (M) ≤ dm− j (M).

PROOF. SinceM has nozero columns andk is infinite, there is a linear formg ∈ A1 with
ν(g) = m. The monomorphisms·gm−2 j

: A j (M) → Am− j (M) of Theorem2.11show that
d j (M) ≤ dm− j (M) for all 0 ≤ j ≤ m/2. Since each of these maps is injective, each of
the maps·g : A j (M) → A j+1(M) for 0 ≤ j < m/2 must also be injective, implying the
remaining inequalities. 2

Note thatd j (M) ≤
(d+ j−1

j

)
for all j ≥ 0 sinceA is generated byd linear forms, and

thatd j (M) ≤
(m

j

)
for all j ≥ 0 sinceA is a subalgebra ofB. Next, we see that generically

these bounds are attained. Recall that the uniform matroidUd
m has for its independent sets all

subsets of[m] of size at mostd.

PROPOSITION3.5. Let M be a d-by-m matrix over the field k representing the uniform
matroidUd

m of rank d on m elements. Then for0≤ j ≤ m, dj (M) = min
{(d+ j−1

j

)
,
(m

j

)}
.



Represented matroid algebras 709

PROOF. Whend ≥ 2, M r1 representsUd
m−1 andM/1 representsUd−1

m−1. Thus, from (3.1)
we obtain

P(Ud
m; t) = t P(Ud

m−1; t)+ P(Ud−1
m−1; t)

for d ≥ 2, with initial conditionsP(U1
m; t) = 1+ t+· · ·+ tm. The result follows by induction

ond andm, using familiar recurrences for binomial coefficients. 2

Let A(m, d) be the collection of all graded subalgebrasA ⊆ B generated byA1 and with
dimk A1 = d. ThisA(m, d) is a sub-bundle of the trivial vector-bundleG(B1, d)×B over the
Grassmann varietyG(B1, d) of d-dimensional subspaces ofB1; for a givend-planeA1 ⊆ B1,
the fibre overA1 is the subalgebra ofB generated byA1. As the Poincaŕe polynomialP(A; t)
varies with A1, the rank ofA(m, d) is not constant, soA(m, d) is not complete. By upper
semicontinuity, the rank of the fibre ofA(m, d) over A1(M) attains its generic value if the
matroid represented byM is uniform. We next prove the converse, giving equations in local
coordinates for the degeneracy locus ofA(m, d). Consider the affine open chartC ⊂ G(B1,d)
of d-planesA1 ⊆ B1 of the form A1(M) for a d-by-m matrix M = [I N ] with I thed-by-
d identity matrix. The entries ofN = (ni j ) are local coordinates onC. SinceG(B1, d) is
covered by affine opens which are in the orbit ofC under Autk(B), it suffices to consider just
this one chartC.

PROPOSITION3.6. Let M = [I N] be a d-by-m matrix with I the d-by-d identity matrix,
representing the matroidM over the field k. The following are equivalent:

(a) M is not the uniform matroidUd
m.

(b) For some j∈ [m], dj (M) < min{
(d+ j−1

j

)
,
(m

j

)
}.

(c) For some h∈ [min{d,m− d}] and some h-by-h submatrix N′ of N,det(N′) = 0.

PROOF. Proposition3.5 shows that (b) implies (a). To see that (a) implies (c), ifM is not
uniform then there is ad-by-d submatrixM ′ of M which is singular. Deleting the rows and
columns ofM ′ which contain a 1 from theI block of M produces a singular square submatrix
of N, proving (c). This argument may be reversed to show that (c) also implies (a). Finally,
assuming (a), ifM is notUd

m then from (3.2), with S ranging over the independent sets ofM,

P(A(M); 1)=
∑

S

1<

(
m

0

)
+

(
m

1

)
+ · · · +

(
m

d

)
=

m∑
j=0

min

{(
d + j − 1

j

)
,

(
m

j

)}
,

and (b) follows. 2

A sequence(d0, . . . , dm) of positive integers islogarithmically concaveif d2
j ≥ d j−1d j+1

for all 2 ≤ j ≤ m− 1. From Proposition3.5 it follows that if M represents theuniform ma-
troid Ud

m then the Hilbert function ofA(M) is logarithmically concave. (The argument is easy:
each of the sequences

(d+ j−1
j

)
and

(m
j

)
for 0 ≤ j ≤ m is logarithmically concave, and the

coefficientwise minimum of two logarithmically concave sequences is also logarithmically
concave.) Thus, generically, the sequence of ranks of the graded pieces ofA(m, d) is loga-
rithmically concave. Whether or not this remains true over the degeneracy locus ofA(m,d)
is an interesting question; one possible approach is as follows.

As observed in [9], the Hilbert function of a gradedC-spaceA =
⊕m

j=0 A j is logarith-
mically concave if and only if there is a representation ofsl2(C) on A ⊗ A for which the
standard basis elements{X,Y,H} of sl2(C) act such thatX : Ai ⊗ A j → Ai−1 ⊗ A j+1 and
Y : Ai ⊗A j → Ai+1⊗A j−1 for all i and j . Hence, such a representation exists on the generic



710 D. G.Wagner

fibre ofA(m, d)⊗A(m, d). Thedifficulty lies in degenerating this generic representation over
SpecC[u] so that atu = 0 a representation on the fibre above an arbitrary point ofG(B1, d)
is obtained. It is not clear how (or whether!) this can be done, but the following degenerations
of the irreducible representations ofsl2(C) seem relevant. For a propositionP, let 〈P〉 be 1
if P is true and 0 ifP is false. For integers 1≤ r ≤ n of the same parity, letXn,r (u) be the
n-by-n matrix with entries

Xn,r (u)i j :=

{
iu〈i≤r 〉−〈 j>n−r 〉 if i = j − 1,
0 otherwise,

let Yn,r (u) be then-by-n matrix with entries

Yn,r (u)i j :=

{
(n− j )u〈i>n−r 〉−〈 j≤r 〉 if i = j + 1,
0 otherwise,

and letHn,r (u) = Xn,r (u)Yn,r (u)− Yn,r (u)Xn,r (u). For example, withn = 5 andr = 3,

X5,3(z) :=


0 u 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4u−1

0 0 0 0 0

 and Y5,3(z) :=


0 0 0 0 0

4u−1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 u 0

 .
For 0 6= u ∈ C these matrices define an irreducible representation ofsl2(C) onCn. As u→ 0
these linear transformations cease to be defined on all ofCn. At u = 0 they remain defined
on anr -dimensional subspace, on which they still provide an irreducible representation of
sl2(C).

In the special case ofd = 2 we can establish a property stronger than logarithmic concavity
by other means.

THEOREM 3.7. Let M be a2-by-m matrixof rank 2 over the field k. Then the sequence
d j (M)−d j−1(M) is nonincreasing as j goes from1 to m. Consequently, the Hilbert function
of A(M) is logarithmically concave.

PROOF. We may assume thatM = [I N] with I the 2-by-2 identity matrix, and denote the
rows of M by f1 and f2. By Theorem2.7, A(M) ' R/J(M) in which R= k[z1, z2] and

J(M) := ((c1z1+ c2z2)
1+ν(c1 f1+c2 f2) : c1, c2 ∈ k).

The columns ofM are partitioned uniquely into subsetsE1, . . . , Es such that columnsj and
j ′ belong to the same partEh if and only if they are proportional; for eachh ∈ [s], let
eh := #Eh. For eachh ∈ [s] there is a particular ratioc1 : c2 such that thej th entry of
c1 f1+ c2 f2 is zero if and only ifj ∈ Eh. Thus, for eachh ∈ [s] there is a linear formph ∈ R
such thatν(phM) = m− eh, and in factJ(M) is generated by{p1+m−e1

1 , . . . , p1+m−es
s }. For

each 0≤ j ≤ m letw j := #{h ∈ [s] : 1+m− eh = j }.
Now dimk Rj = j + 1 for all j ≥ 0, and dimk Am(M) = 1 by Proposition 3.3, so

dimk Jm(M) = m. However

dimk Jm(M) ≤
s∑

h=1

dimk(p
1+m−eh
h )m =

s∑
h=1

[m− (1+m− eh)+ 1] = m,
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and since equality holds, the formsp1+m−eh
h for h ∈ [s] imposeindependent conditions on

homogeneousj -forms in R, for all 0≤ j ≤ m. Thus, for each 0≤ j ≤ m,

dimk A j (M) = j + 1−
j∑

i=0

wi ( j − i + 1).

From this the inequalitiesd j (M) − d j−1(M) ≥ d j+1(M) − d j (M) for j ∈ [m− 1] follow.
By the inequality of arithmetic and geometric means it follows thatd j (M) ≥ (d j−1(M) +
d j+1(M))/2≥ (d j−1(M)d j+1(M))1/2, completing the proof. 2
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