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Algebras Related to Matroids Represented in Characteristic Zerd

DaviD G. WAGNER

Let k be a field of characteristic zero. We consider graded subalgebrask(x, ..., Xml/
(xf ..... xrzn) generated by linearly independent linear forms. Representations of matroids over
k provide a natural description of the structure of these algebras. In return, the numerical properties
of the Hilbert function ofA yield some information about the Tutte polynomial of the correspond-
ing matroid. Isomorphism classes of these algebras correspond to equivalence classes of hyperplane
arrangements under the action of the general linear group.
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1. INTRODUCTION

We consider the following class of graded algebras over a kedfl characteristic zero.
Let B := K[X1, ..., Xml/(X2,...,x2) with the standard grading (sB = P, B;j and
dimg Bj = (T)) and letA = @'j“:o Aj be a subalgebra dB generated byl linearly in-
dependent forms of degree one. Two examples motivate the investigation of such algebras.

ExAMPLE 1.1. Let G be a finite undirected graph witm edges,and orient each edge
arbitrarily. Fixing a bijection between the edge<®and the indeterminatds; }, we regard a
linear form inB; as a linear combination of the edges®fLet A; be the ‘cycle-space’ ob
(that is, the subspace & consisting of linear combinations of the oriented edges satisfying
Kirchhoff's First Law: at every vertex the net flux is zero), and Aebe the subalgebra of
B generated byA;. In [8] it is shown that this construction may be symmetrized to obtain
a gradedhlgebrad. (G, k) which is independent of the choice of orientation of the edges of
G, and which is covariantly functorial with respect to graph morphisms. Formbllys, k)
resembles a cohomology ring for the graptwith coefficients in the fieldk.

ExXAMPLE 1.2. LetG be a connected complex semisimple Lie group, with Borel subgroup
B androot systenn\, and consider the homogeneous manifdle= G/B (the ‘flag manifold’
of type G). Postnikovet al. [5] (see also Shapiret al. [6]) identify differential two-forms
{¢pe : o € A}on X such thatp_, = —¢q, ¢§ = 0, and thep,, pairwise commute. Any
weight of G determines a holomorphic Hermitian line bundlg on X, and the curvature
form ®(L;) of this line bundle is a linear combination of th¢, : « € A}. The subalgebra
C(X) of the algebra of differential forms oK generated by the curvature for®sL ) is of

the kind considered here, and the cohomology KhgX, C) is a quotient ofC(X).

In the next section we show that an isomorphism class of algebessabove corresponds
to a linear equivalence class of representations of a matroid over thekfiglquivalently,
this corresponds to an equivalence class of hyperlane arrangefiieatk® under the ac-
tion of the general linear group L(k%). One direction of this correspondence is immediate
(Lemma2.2) while the other requires substantial preliminaries (Thed®en We establish
a deletion/contractioshort exact sequence which proves to be useful (The@&m We
presentA as aquotient of a polynomial ring modulo an explicitly given ideal (Theor2m),
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and prove an analogue of half of the Strong Lefschetz Theorem for these algebras (Theo-
rem2.11). In Section3 we discuss inequalities on the Hilbert functionAterived from the
algebraic structure oA. The Poinca& polynomial ofA is a specialization of the Tutte polyno-

mial of the corresponding matroid, giving the Hilbert function a combinatorial interpretation
(Theorem3.2). Having computed a few hundred random examples, it seems that the Hilbert
function of A is logarithmically concave, and we prove this generically and in the dase.

These results go some way towards addressing Problems 6.8 and 63].0 of [

2. ALGEBRAIC STRUCTURE

For a natural numben we use the notatiopn] := {1,2,...,n}. For0 < j < m, let
Aj be the set of square-free monomiafsof degreej in {xy, ..., Xm}, SOA = U’J-“ZOAJ-
is ak-basis forB. Endomorphisms oB; are represented by square matrices with rows and
columns indexed byAj. A monomial matrixhas exactly one nonzero entry in each row and
each column.

LEMMA 2.1. The k-algebra automorphisms of B form a grofwpty (B) whichis isomor-
phic to the group of monomial matrices acting onw&ith respect to the basis;.

PROOF Note thatiff € By issuchthatf2 = 0, thenf = cxj forsomec € kandj e [m].
Thus, for any automorphisigh : B — B there is a permutatios : [m] — [m] and nonzero
scalarsej € k such thatp(xj) = cjx,(j) for all j € [m]. Conversely, any such choice of
and{cj} determines an automorphism Bf a

Let M = (m;;) be ad-by-m matrix overk for which the rowspace dfl is A;. (Henceforth
we identify row vectors of lengtim with linear combinations of the indeterminates }.)
SinceM determinesA we will often use the notatio®(M). The linearly independent sets
of columns ofM form the independent sets of a matrGil and M is arepresentation of
M over k (For background information on matroids consult Oxley [4] or Welk}j.] Two
representation® andN of M arelinearly equivalenif there is a monomial matriR and an
invertible matrixQ such thatQMP = N.

LEmMMA 2.2. Let M and N be two d-by-m matrices of rank d over the field k. If M and N
are linearly equivalent representations of the same matroid, thev A~ A(N).

PrRoOOE If QMP = N with Q invertible andP a monomial matrix, then by Lemnial,
P determines &-algebraautomorphism oB such thatA; (M) ~ A;(MP) = A;(N). Since
A(M) andA(N) are generated by linear forms, it follows thtM ) and A(N) are isomorphic
k-algebras. O

The converse of Lemma.2 also holds but the proof relies on a presentatiol\Oi) as a
quotientof a polynomial ring, which takes some work to derive.

Lemma2.2 has an interesting geometric interpretation; see Orlik and Terao [3] for back-
ground onmyperplane arrangements.

EXAMPLE 2.3. LetH be a (nonreduced, central, essential) arrangementtofperplanes
in a d-dimensionalkk-vectorspacé/. Choose an arbitrary basi of V*, an arbitrary enu-
meration = {Hi, ..., Hn} of 3, and arbitrary linear formégs, ..., ¢y, in V* such that
Hj = ker(¢j) for j e [m]. Writing each?; as a column vector with respect to the b&Bis
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determines a-by-m matrix M of rankd. If N is another such matrix obtained froifa by
different choices of basis, enumeration, and linear forms, then there is an invertilytel
matrix Q (for the change of basis) and amby-m monomial matrixP (for change of enu-
meration and rescaling of linear forms) such taM P = N. Therefore, by Lemm&.2,

the algebraA(H) := A(M) is a well-defined invariant of the hyperplane arrangement. More-
over, if H' is a hyperplane arrangement which is equivaledt(tander the action oG L(V),
then the corresponding matrickkandM’ are linearly equivalent representations of the same
matroid, and sAA(H') ~ A(H).

Lemma2.4 prepares for Theore.5.

LEMMA 2.4. Consider linear forms if= x + ZT‘zd+lcijxj in By fori € [d], and a
polynomial fzy, ..., zq4) inK[zy, ..., zg]. If fip(fy, ..., fq) = >, S«X¥ # Othen there is
somex* € A which is divisible by xand such thatgs # 0.

PROOF Sincefip(fy, ..., fq) # 0, there is somg? € A with sg # 0. LetT be the set of
j € [m] such thatx; dividesx?, c1j # 0, and the coefficient; of xﬁxj‘1 in p(fy,..., fq)
is nonzero. Thusss = ;.7 c1jwj. If x; dividesx” then the result is proved, so we may
assume thak; does not dividex?, and hence that & T. SinceT is not empty there is
somej € T; now consider the monomiad® := x:xfx1. We claim that this occurs in
fip(fy, ..., fg) with coefficients, = wj, which is nonzero. However, this is clear, since
in fip(fy,..., fqg) = Zgzl Qa(fo, ..., fg) f2 the terms contributing t@,x* correspond
bijectively with the terms contributing ts,gxﬁ1 which choosexj from some factorf;. The
correspondence is made simply by replackagy x; in each such term, and the ratio of the
coefficients of corresponding terms is &y . ]

For ad-by-m matrix M and j € [m], let M ~\ j be thed-by-(m — 1) matrix obtained by
deleting thejth column fromM. If this column is identically zero theA(M \ j) ~ A(M),
as is easily seen. As a result, we are free to assumeMhhas no zero columns in what
follows. If columnj of M is not zero then let € [d] be the greatest index such timaj # O,
and produceM’ by adding—min /mjj times columnj to columnh of M, for eachh € [m].
Finally, M/j is the(d — 1)-by-(m— 1) matrix obtained by deleting thi¢h row andjth column
from M’.

Theorem2.5 is an analogue of the sequence (3.1) df [Fhe notationA(M ~ j)(-1)
merely indicateshat the grading oA(M ~ 1) has been shifted up by one degree.)

THEOREM2.5. Let M be a d-by-m matrix of rank d over the field k. For eacle jm]
such that column j of M is not zero, there is a short exact sequence of graded k-spaces

0— AM < j)(=1) — AM) = A(M/j) — 0
in whichr is a k-algebra homomorphism.
PROOF ReplacingM, if necessary, by a linearly equivalent representation of the same
matroid, we may assume thapt= 1 and thatM has the block structurl®! = [I N] in which

| is thed-by-d identity matrix. Letf, ..., fq be the rows oMM, let f;, ..., f} be the rows
of M\ 1, and letf), ..., f{ be the rows oM/1. There is certainly an exact sequence

0— (f1) — A(M) — A(M)/(f1) — 0
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for the principal ideal f1) of A(M). It remains only to establish isomorphisrAsM /1) ~
AM)/(f1) andAM ~ 1)(—1) =~ (f1).

Now, since column 1 oM is zero except in row 1f” = fj for 2 <i < d; thus, there is
a well-defineck-algebra homomorphism frola(M) to A(M/1) given by f; — 0 and f;
f/ for 2 < j < d. Clearly this is surjective and has kerriél). For the other isomorphism,
notice thatf; = x4+ f{and fj = f/for2 < i < d. Thus, f? = (f))? + axl(fl/)""*l for
every natural numbaea; it follows that for any polynomiap(zy, ..., zg),

p(f, ..., fa) = p(fl, ..., f) +xap'(ff, ..., f).

in which p'(2) := (3/9z1) p(2). Thus, the rulgp(fy, ..., fq) = p'(f], ..., fy) gives a well-
definedk-linear homomorphisnp : A(M) — A(M . 1)(—1); this is just the extraction of the
coefficient ofx; from p(fy, ..., fg). Since for every polynomiai(z) there is a polynomial
p(2) such that(d/9z1)z1 p(2) = q(2), it follows that the restriction ap to ( f1) is surjective
onto A(M \ 1)(-1). Finally, Lemma2.4 shows that the restriction @f to ( f1) is injective,
establishing the isomorphis®(M ~\ 1)(—1) =~ (fy). O

We next presenA(M) as a quotient of the polynomial ring := k[z1, ..., zg]. For any
linear form f = YT, ¢jx; in By, letv(f) := #{j : ¢j # 0O}. Note thatf"(" 5 0 and
f1+v(f) — 0. Identifying a linear formp in Ry with a row vector of lengthd, there is a
corresponding linear forrpM in B;. Define the ideall (M) of R by

IM) = (pH" W pe Ry).

LEMMA 2.6. Let M and N be two d-by-m matrices of rank d over the field k. If M and N
are linearly equivalent representations of the same matroid, th@v \J>~ J(N).

PrROOE LetN = QM P with Q invertible andP a monomial matrix. Certainly(pQM P)
= v(pQM) for everyp € R;. The rulep — pQ for p € Ry definines &-algebra automor-
phism¢ : R — R, and

J(M) = {(pQHPM : pe Ry},

Therefore, since
J(N) = (p* PN 2 pe Ry},

it follows that the restriction op to J(N) is an isomorphism frond (N) to J(M). O

Theorem2.7 generalizes Theorem 4.8 of [8] and Proposition 1.1 of Shagdied. [6].
THEOREM2.7. For M a d-by-m matrix of rank d over the field k() ~ R/J(M).

PROOF We apply Theoren2.5for somej e [m] indexing a nonzero column ofl. By
Lemmas2.2and2.6 we may replaceéM, if necessary, by a linearly equivalent representation
of the same matroid. Thus we may assume that 1 and thatM has the block structure
M = [I NJin which | is thed-by-d identity matrix. Letfy, ..., fq be the rows oM, let
fl,..., fjbetherows oM \ 1, and letf), ..., f} be the rows oM/1.

Define ak-algebra homomorphism : R — A(M) by ¢ (z) := fj fori e [d]. Certainlyyr
is surjective, a®\; generate®\. We claim that ker(y)= J(M), which we prove by induction
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ond andm, thebasesd = 1 andm = d being easily seen. It is clear thatM) C ker(y)
since for anyp € Ry we havey(p) = pM and (pM)®PM — 0 in A(M). For the
converse, define B-algebra homomorphismy” : R — A(M ~ 1) by ¥'(z) = f/ for
i € [d], and define)” : K[z, ..., zg] — A(M/1) by ¢"(z) := f"for2 <i < d. Thereis
a commutative diagram

0 — R(—1) 2 R X Kzm,...,zg] — O

VR Ly Ly
0 — AM~1)(-1) — AM) —  AM/1) — O

in which the bottom row is the sequence of Theor2m. From the proof of Theorerd.5
one sees that the homomorphisms in the top row are given(pyz)) := p(0, 2z, ..., zg)
andn(p(2)) := [ p(z)dz; for all p(z) € R. Sincey’ is surjective, the kernel-cokernel exact
sequence (see, e.g., Lemma I1.5.2 of Mac Lane [2]) implies that Rer(yy') — ker(y) —
ker(y/") — 0 is exact. By induction, we deduce that

ker(y) = n(J(M \ 1(-1)) ® «(J(M/1)),

in whicht : k[z, ..., zg] — Ris the natural inclusion.

To prove that kery) € J(M), it thus suffices to show thatJ(M/1)) € J(M) and
n(I(M \ 1)(-1)) € J(M). The first of these claims is trivial, since the generators of
t(J(M/1)) are exactly those generators &M) which do not involve the indeterminate
z;1. For the second claim, bi-linearity it suffices to prove thai(z¥g(z)) € J(M) for any
monomialz” and generatog(z) of J(M ~\ 1)(—1). So, letp(2) := 121 + - - - + ¢4zg and let
v = v(C fj+---4cq f}), and considen(z” p(2)*"). If ¢y = Othenv(cy fi+- - -+Cq fg) = v
and [z p(2**Vdzy = 271 p(2)**V/(y1 + 1) is in J(M). On the other hand, i # O then
v(cy fr + -+ ¢cq fq) = v + 1; however, applying integration by parts repeatedly we obtain

Y 2+v 9z (Z)2+v
y 1+vd — z p(z) _ / e p d
/Z Py =" o) 240

= =d@p@*""

for some polynomiati(z) € R. Sincep(z)2+” is a generator of (M), the result follows. O

Although TheorenR2.7 gives a good picture oA(M), it would be preferable to have a
standard monomial theory for this algebra. Presumably this would rely on matroid-theoretic
structure as in the proof of Theoredr2 below, but as yet the situation remains unclear.

We can now establish the converse of Lemiha the proof of which uses the following
‘tomographic’ lemma (valid for any infinite fielkl).

LEMMA 2.8. LetL and L’ be finitemultisets of lines in the d-dimensional k-vectorspace
V, each line passing through the origin. Assume that for every hyperplaae\H the number
of lines ofL in H equals the number of lines &f in H. Thenl = L',

PrROOF Arguing by contradiction, assume that# L. Replacingl by £ ~ L' andL’ by
L'\ L, we may assume thétN L' = @. At least one ofL or L is nonempty; by symmetry,
consider any € L. Sincek is infinite andL’ is finite, there is a hyperpland c V which
containst but does not contain any lines 6f; this contradicts the hypothesis. m]
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THEOREM2.9. Let M and N be two d-by-m matrices of rank d over the field k. Then
A(M) and A(N) are isomorphic as k-algebras if and only if M and N are linearly equivalent
representations of the same matroid.

PrROOE Lemmaz2.2establishes one direction. For the converse, assume thai(M) —
A(N) is ak-algebraisomorphism. By the remarks preceding Theorz®, we may assume
that M and N have no zero columns. Lefy, ..., fy be the rows ofM, and letgy, ..., gq
be the rows ofN. ReplacingN, if necessary, by a linearly equivalent representation of the
same matroid, we may assume that A;(M) — A1(N) is determined by (f;) = g; for
alli € [d]. Now letR := K[z, ..., z4] and defineyy : R — A(M) andy’ : R — A(N)
by v (z) := fi andy/(z) := g; foralli € [d]. From Theoren?2.7 it follows that J(M) =
ker(y) = kery’) = J(N). Let £ be the multiset of lines ikd consisting of the scalar
multiples of the columns oM. Let L’ be the corresponding multiset of lines fir. Since
J(M) = J(N) and¢ : A(M) — A(N) is determined by (fj) = gj fori < [d], it follows
that for any linear fornp € Ry, v(pM) = v(pN); that is, the number of lines df in ker(p)
equals the number of lines &f in ker(p). By Lemmaz2.8it follows thatl = L’. Thus,there
is anm-by-m monomial matrixP such thatM P = N. This completes the proof. O

COROLLARY 2.10. Let A and A be subalgelas of B generated by linear forms. Any k-
algebra isomorphism : A — A’ extends to an automorphism of B.

PrROOFR Let A = A(M) and A" = A(N) for d-by-m matricesM and N of rankd. By
Theorem2.9 there is arm-by-m monomial matrixP suchthat A;(MP) = A;(N) and for
f e Ai(M), ¢(f) = fP. By Lemma2.1, P determines amautomorphism oB extending
¢:A— A, O

We close this section with an analogue of half of the Strong Lefschetz Theorem, generaliz-
ing Theorem 4.10 of [8].

THEOREM2.11. Let M be a d-by-m matrix of rank d over the field k, and assume that M
has nozero columns. Let g Z’j“:l CjXj € Al(M) be suchthatg# Oforall j € [m]. Then
for each0 < j < m/2, the homomorphisryg™2) : Aj(M) — Am_;j(M) is injective.

PROOF. Fix any 0 < j < m/2. Let W be the matrix with rows indexed bymn_; and
with columns indexed by j, with Wya s := 1 if x? dividesx* andW,« ,s := 0 otherwise.
Multiplication by the elemeng™ 2 of A(M) induces a homomorphispg™2i : Bj —
Bm—j; let G be the matrix representing this homomorphism with repsect to the Bgsasd
Am-j. Thatis, ifx?|x* thenG,« s = []{cj : Xj|x*7#}, andG,« 45 := O otherwise. LeP
be the diagonal square matrix indexedMy, j, with Pys s := ]_[{cj DX Ix#}, and letQ be
the diagonal square matrix indexed fy, with Qe x« := [[{cj : Xj|x*}. By the hypothesis
on g, both P and Q are invertible. One verifies that the matrix equat®® = QW holds,
and hence dé6) = det Q) det(W) det(P)~. Wilson [11] proves that

I —_iom-GI

h=0

’

and therefore déG) # 0. Thus,-g™2 : Bj(M) — Bp_j(M) is an isomorphism, and so
g™ 2 Aj(M) — An_j(M) is injective. o
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3. HILBERT FUNCTIONS

ThePoincaié polynomiabf a finite-dimensional gradddspaceA = @J —0AjisP(A 1) :=
Z _o(dimy A,)tJ The coefficients oP (A; t) form theHilbert functionof A. TheTutte poly-
nom|al Tv (X, y) of a matroidM is the class oM in the Grothendieck ring of the category of
matroids; seel], 4, 10].

PROPOSITION3.1. Let M be a d-by-m matrix of rank d with no zero columns, representing
the matoid M over the field k. Then the Poindapolynomial of AM) depends only oM
andis POV(; t) := P(A(M); t) = t™ 9T\ (1 + t, t™1).

ProoFE From Theoren®.5we obtain the recursion
P(A(M); t) =tP(AM \ }); ) + P(A(M/)); 1) (3.1)

for the Poincag polynomialswith initial conditionsP(A(M); t) = 1ifd = 0, andP(A(M); t)
1+t+---+tMifd =1andM hasm nonzero columns. Def|n|n§(A(M) t) :

td mP(A(M) t) we haveP (A(M); t) = P(AMM . j): t) + P(A(M/j); t). Whend = 0and
=1lwe haveP(A(M) t) =t~1, and wherd = 1 andm = 1 we haveP(A(M) t) = 1+t.

Smce Tm (X, y) is the universal Tutte Grothendieck invariant of the category of matroids

(see Brylawski and Oxleyl]), it follows by induction ond and m that P(A(M);t) =

Tm@+t,t™h. |

For the next result we need some operations on sets of columns of the lathgr S C
[m], let spap(S) be thek-space spanned by the columnshfin S, and letS be the set of
columnsof M contained in spgi(S). Therankof Sisr (S) := dim, span(9). Let| (S) be the
lexicographically earliest basis of spa) contained inS. A column j is externally active
for Sifand only if j € S~ Sandl(SU {j}) = 1(S). Let EA(S) be the set of columns
externally active foiS, and let ea$) be the cardinality of this set.

What follows is a new proof of Theorem 2 of Postniketval. [5].

THEOREM3.2. Let M be a d-by-m matrix of rank d with no zero columns, representing
the matoid M over the field k. FoO < j < m,dimg Aj(M) is the number of independent
sets ofM such that m— #S — eqS) = j.

PROOFE The rank-polynomial expansion (see (6.12) of Brylawski and OXIgyof Ty (X, Y)

is
M, y) = Z (x — 13Ty — 1SS

SC[m]

Making the substitution of Proposition 3.1 leads to

scimy Scim] Tcsri(s)
_ Z m—#R Z (—1)fT = Z tm—#R
RC[m] TCEAR) RC[m]: EA(R)=7

For the third equality, notice th& ~\. 1 (S) € EA(I (9)) for everyS C [m]. Thus, if T C
S~ 1(9 andR:= S\ T thenl (R) = I (S andT € EA(R). Conversely, ifT € EA(R)
thenT C(RUT) I (RUT).
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SinceEA(R) = EA(I (R)) \ R, it follows thatEA(R) = @ ifandonlyif R =1 (R) U
E A(l (R)). Conversely, ifS is independent theh(SU EA(S)) = S. Thus, the functions
R+ I (R)andS+— SU E A(S) are mutually inverse bijections between the $&<C [m] :
EAR) = g} and{S C [m] : Sisindependentid}. Therefore,

P(AM); t) = > MR =y ymoAS-ea®, (3.2)
RC[m]: EA(R)=7 IS
with the last sum over the independent set¥of O

The notatiordj (M) := dimy Aj (M) will be convenient. For positive integexand j there

iS a unigue expression
a: ai_ .
=(3)+ (7))

such thaj > aj_1 > --- > & >i > 0. Thejth pseudopower of &
aj +1) (aj_1+1> (a- +1)
i@ =" + : +-- 4 :

Vi@ <J+l i i+1

PrROPOSITION3.3. Let M be a d-by-m matrix of rank d with no zero columns. Then
do(M) = 1, h(M) = d, dn(M) = 1, and for j € [m — 1], we haved < dj;1(M) <
¥ (dj(M)).

PrROOFE SinceAg(M) = k and dinx A1(M) = d, the first two statements are clear. Since
M has no zero columns aridis infinite, there is a linear forng € A; with v(g) = m.
Thus, g™ is a nonzero multiple ok - - - Xm; since By, is one-dimensional it follows that
dn(M) = 1. The remaining inequalities are a direct application of Macaulay’s Theorem (see
Theorems 11.2.2 and 11.2.3 of Stanley][/since A is generatedby linear forms. O

PrOPOSITION3.4. Let M be a d-by-m matrix of rank d with no zero columns. Then
do(M) < di(M) < --- < dimy2)(M), and if0 < j < m/2, then d(M) =< dm—;j(M).

PROOF SinceM has nazero columns and is infinite, there is a linear forrg € A; with
v(g) = m. The monomorphism@m—zi : Aj(M) — An_j(M) of Theorem2.11show that
dj(M) < dn_j(M) forall 0 < j < m/2. Since each of these maps is injective, each of
the mapsg : Aj(M) — Aj;1(M) for 0 < | < m/2 must also be injective, implying the
remaining inequalities. O

Note thatd; (M) < (d+Jj‘1) for all j > 0 sinceA is generated byl linear forms, and
thatd; (M) < (’J“) for all j > 0 sinceA is a subalgebra oB. Next, we see that generically

these bounds are attained. Recall that the uniform mattfjitias for its independent sets all
subsets ofm] of size at most.

PROPOSITION3.5. Let M be a d-by-m matrix over the field k representing the uniform

matroidUZ, of rank d on m elements. Then for< j < m, dj(M) = min{(d+11‘1), (M}
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PROOF Whend > 2, M \ 1 represent%(%_1 andM/1 representt(ﬁ;_ll. Thus, from (3.1)
we obtain
PUG: 1) = tPUS_5: ) + PAUG: D

m

ford > 2, with initial conditionsP(uﬁq; t) = 1+t+---+t™ The result follows by induction
ond andm, using familiar recurrences for binomial coefficients. |

Let A(m, d) be the collection of all graded subalgebras- B generated byA; and with
dimg A1 = d. This A(m, d) is a sub-bundle of the trivial vector-bundB By, d) x B over the
Grassmann variet§ (B;, d) of d-dimensional subspaces Bf; for a givend-planeA; C By,
the fibre overA; is the subalgebra d@ generated byA;. As the Poinca polynomialP (A; t)
varies with A;, the rank ofA(m, d) is not constant, sal(m, d) is not complete. By upper
semicontinuity, the rank of the fibre of(m, d) over Aj(M) attains its generic value if the
matroid represented byl is uniform. We next prove the converse, giving equations in local
coordinates for the degeneracy locusigim, d). Consider the affine open ché&ric G(Bg, d)
of d-planesA; C Bj of the form A1 (M) for ad-by-m matrix M = [I N] with | thed-by-
d identity matrix. The entries oN = (n;j) are local coordinates o@. SinceG(By, d) is
covered by affine opens which are in the orbiCafinder Auk(B), it suffices to consider just
this one char®.

PROPOSITION3.6. Let M = [I N] be a d-by-m matrix with | the d-by-d identity matrix,
representing the matroidi{ over the field k. The following are equivalent:

(a) M is not the uniform matroid(d,.
(b) For some je [m], dj(M) < min{(d+11_l), ('J")}
(c) For some he [min{d, m — d}] and some h-by-h submatrix’ lf N,detN’) = 0.

PROOFE Proposition3.5 shows that (b) implies (a). To see that (a) implies (c)ylifis not
uniform then there is al-by-d submatrixM’ of M which is singular. Deleting the rows and
columns ofM’ which contain a 1 from thé block of M produces a singular square submatrix
of N, proving (c). This argument may be reversed to show that (c) also implies (a). Finally,
assuming (a), iM is notu‘r’n then from (3.2, with Sranging wer the independent sets bf,

P(A(M);1)=XS:1< (?)+(T)+-~-+<Z‘)zgjmin{<d+; _1)<T>}

and (b) follows. ]

A sequencéd, . .., dn) of positive integers isogarithmically concavef dj2 > dj_1dj 41
forall 2 < j < m— 1. From Propositior3.5it follows that if M represents thaniform ma-
troid u% then the Hilbert function oA(M) is logarithmically concave. (The argument is easy:
each of the sequencé%ﬂ‘l) and (") for 0 < j < mis logarithmically concave, and the
coefficientwise minimum of two logarithmically concave sequences is also logarithmically
concave.) Thus, generically, the sequence of ranks of the graded piedémod)) is loga-
rithmically concave. Whether or not this remains true over the degeneracy logusntl)
is an interesting question; one possible approach is as follows.

As observed in [9], the Hilbert function of a grad€dspaceA = @’]-“:0 Aj is logarith-
mically concave if and only if there is a representationsB{C) on A ® A for which the
standard basis elemer{is, Y, H} of s>(C) act such thaX : Aj ® Aj — Ai_1 ® Aj41 and
Y:A®A - A 1®Aj_;foralli andj. Hence, such a representation exists on the generic
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fibre of A(m, d) ® A(m, d). Thedifficulty lies in degenerating this generic representation over
SpedC[u] so that au = 0 a representation on the fibre above an arbitrary poi@ @, d)

is obtained. It is not clear how (or whether!) this can be done, but the following degenerations
of the irreducible representations €6(C) seem relevant. For a propositiéh let (P) be 1

if P istrue and O ifP is false. For integers ¥ r < n of the same parity, I1eXn ( (U) be the
n-by-n matrix with entries

jufi=n—t=n-njfj=j_1,

n,r (Wij { 0 otherwise,

let Yn r () be then-by-n matrix with entries

—pul=n-n-=0=n jfj=ij+1
Ynr(Wii = (n—Ju ! J' ,
nr (Wi {O otherwise,

and letHnp y (u) = Xnr (W) Ynr (U) — Ynr (U)X r (U). For example, witm = 5 andr = 3,

Ouo0OO0 O 0O 00O
0020 O 4ul 00 0O
Xs53(2:=[0 0 0 3 O and Ys3(2:=| 0 3 0 0 Of.
0 0 0 0 4utl 0 0200
0000 O 0O 0O0Ouo O

For 0+# u € C these matrices define an irreducible representatiefp ) onC". Asu — 0
these linear transformations cease to be defined on &l'ofAt u = 0 they remain defined
on anr-dimensional subspace, on which they still provide an irreducible representation of
5(>(C).

In the special case af = 2 we can establish a property stronger than logarithmic concavity
by other means.

THEOREM3.7. Let M be a2-by-m matrixof rank 2 over the field k. Then the sequence
dj (M) —dj_1(M) is nonincreasing as j goes frointo m. Consequently, the Hilbert function
of A(M) is logarithmically concave.

PrROOFE We may assume thal = [I N] with | the 2-by-2 identity matrix, and denote the
rows of M by f; and f,. By Theoren2.7, A(M) >~ R/J(M) in which R = k[z;, z,] and

J(M) := ((C1z1 + Czp)tv@fitea . ¢ ¢, c k).

The columns oM are partitioned uniquely into subseis, ..., Es such that column$ and
j’ belong to the same paEj if and only if they are proportional; for eadh € [s], let
en := #Ep. For eachh € [s] there is a particular ratio; : c; such that thejth entry of
c1 f1+cofais zeroif and only ifj € Ep. Thus, for each € [s] there is a linear fornp, € R

such thab(pnM) = m — ey, and in factd (M) is generated byp, ™™, ..., pi™™ %}. For
eachO< j <mletwj:=#he[s]: 1+m—e, = j}.
Now dimg Rj = j + 1 forall j > O, and dimg An(M) = 1 by Proposition 3.3, so

dimg Jm(M) = m. However

S S
dim Jn(M) < 3 dime(pr™ M)m =Y M- @+m—ey) + 1 =m,
h=1 h=1
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and since equality holds, the fornpz;%““_en for h € [s] imposeindependent conditions on
homogeneousg-forms inR, forall0 < j < m. Thus, foreach & j <m,

i
dimg Aj(M) = j +1-=> wi(j —i +1).
i=0

From this the inequalitied; (M) — dj_1(M) > dj1(M) — dj(M) for j € [m — 1] follow.
By the inequality of arithmetic and geometric means it follows thaM) > (dj_1(M) +
dj+1(M))/2 > (dj_1(M)dj;+1(M))¥/2, completing the proof.
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