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a b s t r a c t

Toll-like receptors (TLRs) play a crucial role in the innate immune system, but to date the roles of fish
TLRs in response to parasitic infection are still poorly understood. In the present study, we used channel
catfish (Ictalurus punctatus) and the ciliate parasite Ichthyophthirius multifiliis as a model to investigate
whether and which fish TLRs play important roles in the immune response against parasitic pathogens
by detecting the expression profiles of a complete set of TLRs in catfish at different time points after
infection with I. multifiliis. The expression profiles of TLR1 and TLR2 were similar, and both were
significantly up-regulated in the skin and head kidney at most time points after infection. Furthermore,
the expression of TLR2 was also up-regulated in the gill and spleen. TLR9 was induced in the skin and gill,
whereas TLR21 was induced in the head kidney and spleen after infection. For TLR19, significant up-
regulation was observed in the skin and gill, but significant down-regulation was detected in the head
kidney and spleen. In contrast to TLR19, TLR25 was significantly up-regulated in the head kidney and
spleen at some time points. No significant changes were observed for the rest of the TLRs at most time
points. The results indicated that some TLRs may play essential roles in catfish defense against I. multifiliis
infection.

� 2013 The Author. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Toll-like receptors (TLRs) are type I transmembrane proteins.
They contain an extracellular leucine-rich repeat (LRR) domain that
recognizes conserved pathogen-associated molecular patterns
(PAMPs), a transmembrane domain, and an intracellular Toll/IL-1
receptor (TIR) domain that activates downstream signaling path-
ways [1]. TLRs play an essential role in the activation of innate
immunity by recognizing their cognate ligands, such as lipopro-
teins, double-stranded RNA, single-stranded RNA, lipopolysaccha-
ride (LPS), flagellin, and genomic DNA [2].
.
nxing_li2002@yahoo.com.cn

Ltd. Open access under CC BY-NC-ND 
In mammals, several parasitic components have been shown to
be the ligands of host TLRs. Glycosylphosphatidylinositol (GPI)
-anchored proteins isolated from Toxoplasma gondii [3], Trypano-
soma cruzi [4], Leishmania major [5], and Plasmodium falciparum [6]
all could be recognized by TLR2 and/or TLR4. DNA from T. cruzi and
profilin-like protein from T. gondii could trigger TLR9 [7] and TLR11
[8], respectively. Fish have more TLRs than mammals, and at least
17 TLR types have been identified in different fish species to date
[9], but little information is available about the roles of fish TLRs in
the response to parasitic infection. Our previous studies revealed
that TLR2, TLR9, and TLR21 of Epinephelus coioideswere involved in
anti-Cryptocaryon irritans immune defense [10,11]. However,
whether and how other fish TLRs are involved in anti-parasite
immune defense is still largely unknown.

Channel catfish (Ictalurus punctatus) is one of themost important
aquaculture species worldwide. To date, all of the reported teleost
TLR genes, except TLR23, have been identified and sequenced in
catfish. In addition, TLR25 and TLR26, two previously unknown
TLRs, were found in catfish [12,13]. Thus, this species has one of the
most complete sets of TLRs known for teleosts. Ichthyophthirius
license.
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multifiliis, a highly virulent ciliate parasite, is responsible for ich-
thyophthiriosis, or “white spot disease”, which infects almost all
freshwater fish species and results in large economic losses to the
aquaculture industry. The life cycle of I. multifiliis includes three
stages: an infective theront, a parasitic trophont, and a reproductive
tomont [14]. Because I. multifiliis is naturally restricted to the surface
epithelia of the skin and gill, experimental infection can be easily
monitored under laboratory conditions. Therefore, it has been used
as a model of cutaneous immunity in fish [15]. Coincidentally,
I. multifiliis has been cultured and maintained by serial infections of
catfish in many laboratories, including our own, which provides a
stable material for detailed research [16e18].

In the present study, we used catfish and I. multifiliis as a model
to investigate whether and which fish TLRs play important roles in
the immune response against parasitic pathogens by detecting the
expression profiles of all reported catfish TLRs at different time
points after infectionwith I. multifiliis. To our knowledge, this is the
first study to investigate the expression profiles of a complete set of
TLRs in fish during parasitic infection.

2. Materials and methods

2.1. Fish

Healthy catfish with an average body weight of 43.2 g were
selected from the aquaculture base at Pearl River Fisheries Research
Institute, Guangdong Province, China for use in this study. 15
randomly selected catfish were examined under a microscope, and
no parasites were detected on the skin or gills of these fish, and no
immobilization occurred when theronts were incubated in fish
serum. Catfish were acclimatized for 3 weeks prior to the experi-
ment and fed twice a day with commercially produced food pellets.
Water temperature was maintained at 23 � 1 �C, and a 12 h light:
12 h dark photoperiod was used.

2.2. Parasites

The strain of I. multifiliis was originally isolated from infected
grass carp (Ctenopharyngodon idella) and maintained by serial in-
fections of catfish in a laboratory system using the previously
described method [17] with some modifications. To collect live
theronts for the infection experiment, some heavily infected catfish
with visible parasites over the entire body surface were placed in
Table 1
Primers used in real-time RT-PCR.

Gene Forward primer (50e30) Reverse primer (50e30)

TLR1 TCACCACGAACGAGACTTCATCC GACAGCACGAAGACACAGCATC
TLR2 GTGGTTTCTCTCAGCCTTCAG ACGGTCAGCGATGTCTCAG
TLR3 GGCTCAATACAACCAACAC CAGGAAGGCTAGAACCATC
TLR4a CCAGTATTCCTTCCACCGTAG AGAGTAGTCACATTCTTCACATT
TLR5b ACACTTCACTCTCCTCAA AATCAAGCAGCGTCATAG
TLR7 CTGTCCATCTCAAGCCATCTC GCCGTGTCAGTTCTATCGTAG
TLR8c CCGTCTCTATCCTATCACTAACTC CAGCAGCGAAGCACTCAG
TLR9 TAGCCTTAGACCTCTGTTCAAC CACAACCATTCTCAACGATCTC
TLR18 CTGGAGAGGATTGCTATTAGAAC AAGAGATTACGGAAACGAATGG
TLR19 CACTCACTGGAACTGTTGTATC ACCTGTGCTCGTGTATTCTG
TLR20d ATCACGGACAGCCTCTACAG CTCCAGGAACACCAGAACAAG
TLR21 GAGCAGTGGCGTCGTCTTC CGGTGGTGGAGGCAAAGTC
TLR22 CCTTCTGGTGTCGTTCATTTATC TATCCGTGTTGCTGGTGTATC
TLR25 CGAAGAGAATCAGGCTAATCAAG TGTTAATCAAGGTGTCCACAATG
TLR26 TGGACATCGTGGAGAACATC CTTGCTGCGGAGGTAGTG
b-actin CCGTGACCTGACTGAATACC GCCCATCTCCTGCTCAAAG

a Primers amplify both TLR4-1 and TLR4-2.
b Primers amplify TLR5-1, TLR5-2, and TLR5S.
c Primers amplify both TLR8-1 and TLR8-2.
d Primers amplify both TLR20-1 and TLR20-2.
several 5-L plastic beakers of dechlorinated water, and mature
trophonts were released from the fish into the water. Trophonts
were collected, transferred to culture dishes, and allowed to
develop into theronts.

2.3. Infection procedure and tissues sampling

For the infected group, 60 catfish were exposed to I. multifiliis at
a dose of 8000 live theronts per fish in a 60-L bucket for 2 h. Fish
then were transferred to a 300-L aquarium along with the water
used for the infection procedure. For the control group, 60 catfish
were treated using the same method as the infected group, except
no I. multifiliis theronts were added. Six fish from the infected group
and the control group were euthanized by an overdose of MS222
(200mg/L) at 6 h,12 h, 24 h, 36 h, 2 d, 3 d, 5 d, and 7 d after infection
with I. multifiliis. The skin and gills (the infection sites) and the head
kidney and spleen (the systemic immune organs) were removed
from each fish and snap frozen in liquid nitrogen.

2.4. Total RNA isolation and cDNA synthesis

Total RNA was extracted from each sample using Trizol Reagent
(Invitrogen, USA) following the manufacturer’s protocol. The con-
centration of RNAwas determined by measuring the absorbance at
260 nm in a spectrophotometer (GE, USA), and the purity was
checked by measuring the ratio of OD 260 nm/OD 280 nm. Total
RNA was incubated with RNase-free DNase I (Fermentas, USA) at
37 �C for 30 min to eliminate contaminated genomic DNA, and then
it was incubated with 1 mL EDTA (25 mM) at 65 �C for 10 min cDNA
was synthesized using ReverTra Ace-a-reverse transcriptase
(TOYOBO, Japan) as described by the manufacturer. The sample
thenwas diluted two times with water and used as the template for
real-time RT-PCR amplification.

2.5. Real-time RT-PCR analysis

The gene-specific primers were designed using Beacon Designer
8.0 software and are listed in Table 1 b-actin was used as the in-
ternal reference. Real-time RT-PCR was performed using a Roche
LightCycler480 Real-time PCR Detection System (Roche,
Switzerland) with the SYBR Green Real-time PCR Master Mix kit
(TOYOBO). Real-time RT-PCR was carried out in a 10-mL reaction
volume containing 5 mL of SYBR Green Real-time PCR Master Mix,
Product size (bp) Primer efficiency Genbank accession no.

93 1.95 HQ677713
98 2.00 HQ677714

188 1.98 HQ677715
G 172 2.06 HQ677716

116 2.02 HQ677717
143 1.96 HQ677718
161 2.03 HQ677718
118 2.00 HQ677720
185 2.04 HQ677721
170 2.02 HQ677722
150 1.94 HQ677723
146 2.01 HQ677724
117 1.97 HQ677725
123 2.04 HQ677726
86 1.97 HQ677727

139 2.01 DQ399027
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0.4 mL of cDNA template, 0.4 mL of each primer (10 mM), and 3.8 mL of
water. Real-time RT-PCR was conducted at 95 �C for 2 min, then 40
cycles at 95 �C for 15 s, 60 �C for 15 s, and 72 �C for 20 s. Each sample
was tested in triplicate. Specificity of amplified products was
assessed using melting curve analysis. PCR products were purified
using the E.Z.N.ATM Gel Extraction Kit (OMEGA, USA), ligated into
the pMD18-T vector (TaKaRa, Japan), and inserted into Escherichia
coli competent cells (DH5a). Plasmid DNA was isolated from over-
night cultures using the E.Z.N.A PlasmidMini Kit (OMEGA) and then
sequenced for sequence confirmation. A standard curve for each
primer pair was generated from serial dilutions of plasmid DNA
templates. The primer efficiency was calculated using the formula:
E ¼ 10(�1/slope).

2.6. Statistical analysis

The relative gene expression data were analyzed using the 2e
DDCt method [19]. The expression level of each target gene was first
normalized to b-actin. The expression level in the infected group
represented as the fold change relative to the average expression
level (set as 1) in the control group at the same time point. Data are
shown as mean � standard error (N ¼ 6). The data were subjected
to an unpaired, two-tailed t-test. P < 0.05 was considered to be
statistically significant.

3. Results and discussion

In the present study, we investigated the expression profiles of a
complete set of TLRs in catfish in the skin, gill, head kidney, and
spleen at different time points after infection with I. multifiliis. The
results (Table 2) showed that the expression of several TLRs, such as
TLR1, TLR2, TLR9, TLR19, TLR21, and TLR25, was significantly
different from the control at different time points or in different
tissues, whereas other TLRs, including TLR3, TLR4, TLR5, TLR7, TLR8,
TLR18, TLR20, TLR22, and TLR26, showed no significant change
relative to the control at most time points.

TLR1 was mainly induced in the skin and head kidney after
infection, and its induction peaked at 36 h (4.16-fold) and day 3
(4.36-fold), respectively. However, in the gill and spleen, TLR1
expression showed no significant changes throughout the experi-
ment, except in the spleen at 12 h (1.84-fold). Similarly, the
expression of TLR2 in the skin was significantly up-regulated at
most time points after I. multifiliis infection, and the expression
peak was observed at day 2 (4.85-fold). Expression in the gill
increased significantly only at 24 h and day 7. The expression of
TLR2 was significantly up-regulated both in the head kidney and
spleen at most time points. This was especially true in the head
kidney, which reached a maximum 12.98-fold increase at day 2.
This was consistent with our previous research in which E. coioides
TLR2 was greatly up-regulated in the head kidney and spleen
during infection with C. irritans [10]. C. irritans and I. multifiliis are
responsible for “white spot disease” of marine and freshwater fish
species, respectively. The two parasites may elicit similar immune
mechanisms, and they both contain GPI-anchored proteins [20,21].
GPI-anchored proteins isolated from some parasites were recog-
nized by mammalian TLR2 [3e6]. Although most TLRs appear to
function as homodimers, TLR2 forms heterodimers with TLR1 or
TLR6 for the recognition of various PAMPs. The TLR2eTLR1 dimer
and the TLR2eTLR6 dimer were shown to differentially recognize
the P. falciparum GPIs and sn-2 lyso derivatives, respectively [6,22].
This may partly explain the reason for the expression similarity
between TLR1 and TLR2. To date, the detailed function and struc-
ture of I. multifiliis GPIs and their derivatives remain unknown, but
they may serve as a kind of PAMP that can be recognized by fish
TLRs.
Recent studies demonstrated that chicken TLR21 had similar
functions to mammalian TLR9 in the recognition of CpG-ODN
[23,24]. TLR9 is absent in the chicken and TLR21 is absent in the
mammals [25], but both TLR9 and TLR21 have been identified in
fish. It is not known if fish TLR9 and TLR21 function in a manner
similar to that of mammalian TLR9. In the present study, the
expression of catfish TLR9 was rapidly up-regulated in the skin at
6 h (2.17-fold), followed by significant down-regulation at 24 h
(0.60-fold). A progressive increase then was observed, reaching a
peak (4.56-fold) at day 3, followed by up-regulation at the last two
time points. In contrast, TLR21 expression in the skin showed no
significant changes at any time point except at 12 h (0.64-fold
decrease) and day 7 (1.91-fold increase). In the gill, TLR9 expres-
sion was significantly up-regulated from 6 h to day 2 (except at
12 h) after infection, and it fluctuated slightly at the later time
points. TLR21 was significantly down-regulated at day 2. No sig-
nificant changes in TLR9 expression were observed in the head
kidney and spleen at most time points, whereas significant up-
regulation of TLR21 expression was observed at some time points.
This finding was not entirely consistent with our previous results,
in that E. coioides TLR9 and TLR21were up-regulated in the skin and
gill and down-regulated in the head kidney and spleen after
C. irritans infection [11]. This difference may be due to the inherent
species disparity in the structural features of TLRs. Recent studies
reported that mammalian TLR9 plays an important role during
infection with some parasites. TLR9-deficient mice were shown to
be more susceptible than wild-type mice to infection with T. cruzi
[7], T. gondii [26], and L. major [27]. Furthermore, DNA from L. major
and Trypanosoma brucei could stimulate cytokine responses from
macrophages and dendritic cells, possibly through unmethylated
CpG motifs detected by TLR9 [27,28]. However, which components
of I. multifiliis can be recognized by TLR9 and TLR21 remains
unknown.

TLR19 and TLR25 are unique to fish. To date, only zebrafish and
catfish TLR19 gene sequences (GenBank Accession Nos:
XM_002664846 and HQ677722) have been reported, and the
function of TLR19 is unknown. Therefore, the role of TLR19 in host
immunity against I. multifiliis infection requires further investiga-
tion. Herein, significant up-regulation of TLR19 was observed in the
skin and gill at some time points after infection, with a peak
occurring at day 2 (2.40-fold) and 36 h (3.06-fold), respectively. In
contrast, the expression levels of TLR19 were significantly down-
regulated in the head kidney and spleen at some time points,
although a significant up-regulation was detected in the spleen at
day 3 (1.79-fold). The expression levels of the TLR25 were up-
regulated significantly in the head kidney and spleen at some
time points, with expression peaks at day 5 (3.00-fold) and 12 h
(3.51-fold), respectively. However, in the skin and gill, TLR25
expression was not significantly affected by I. multifiliis infection,
with the exception of a significant change in the skin at day 3 (0.67-
fold decrease) and in the gill at 36 h (1.86-fold increase). TLR25 has
only been identified in catfish to date, and its function remains
completely unknown [12,13].

It is not surprising that the expression levels of TLR3, TLR7, and
TLR8 were not significantly changed at most time points after
I. multifiliis infection. In mammals, these TLRs are anti-viral re-
ceptors, TLR3 recognizes double-stranded RNA and TLR7 and TLR8
recognize single-stranded RNA [29,30]. Furthermore, recent studies
reported fish TLR3, TLR7, and TLR8 expressions could be regulated
by virus infection or viral agonists [31,32].

In mammals, glycoinositolphospholipids (GIPLs) from T. cruzi
could induce an inflammatory response in mice in a TLR4-
dependent manner. In addition, TLR4-deficient mice were more
susceptible to T. cruzi and T. gondii infection than wild-type mice
[33,34]. In our study, no significant changes in TLR4 expression



Table 2
The expression profiles analysis of a complete set of TLRs in catfish and at different time points after infection with I. multifiliis. Significant difference (P < 0.05) between the
infected group and the control group was indicated in bold with * (significant increase) or x (significant decrease).

TLRs Tissues Fold changes of the infected group relative to the control

6 h 12 h 24 h 36 h 2 d 3 d 5 d 7 d

TLR1 Skin 3.11 ± 0.56* 2.03 ± 0.11* 1.02 � 0.06 4.16 ± 0.28* 2.02 ± 0.19* 1.43 � 0.27 2.48 ± 0.43* 1.65 � 0.39
Gill 1.14 � 0.21 1.01 � 0.13 0.76 � 0.15 0.65 � 0.13 1.38 � 0.21 1.24 � 0.28 1.66 � 0.37 0.81 � 0.24
Head kidney 1.64 � 0.35 3.11 ± 0.26* 2.77 ± 0.42* 2.78 ± 0.29* 0.88 � 0.13 4.36 ± 0.68* 1.49 � 0.20 0.79 � 0.14
Spleen 0.78 � 0.13 1.84 ± 0.19* 1.52 � 0.11 1.25 � 0.17 0.86 � 0.24 0.92 � 0.27 0.74 � 0.09 0.87 � 0.19

TLR2 Skin 2.35 ± 0.19* 0.86 � 0.16 0.87 � 0.06 3.53 ± 0.18* 4.85 ± 0.31* 2.31 ± 0.06* 2.54 ± 0.21* 0.75 � 0.17
Gill 0.78 � 0.09 1.42 � 0.23 3.29 ± 0.17* 1.48 � 0.34 0.71 � 0.15 0.83 � 0.12 1.11 � 0.08 2.25 ± 0.36*
Head kidney 9.32 ± 1.54* 6.87 ± 0.87* 8.21 ± 1.31* 5.41 ± 0.23* 12.98 ±0.62* 8.53 ± 0.36* 6.53 ± 0.24* 1.71 � 0.35
Spleen 3.41 ± 0.21* 3.78 ± 0.12* 1.39 � 0.17 0.82 � 0.15 1.64 � 0.24 5.43 ± 0.38* 1.36 � 0.07 1.28 � 0.25

TLR3 Skin 0.84 � 0.14 1.36 � 0.25 1.21 � 0.31 1.33 � 0.07 0.64 � 0.08 1.42 � 0.23 0.82 � 0.20 0.92 � 0.17
Gill 0.71 � 0.03 0.34 ± 0.01x 1.53 � 0.25 1.68 � 0.32 0.62 � 0.02 2.35 ± 0.13* 0.97 � 0.26 0.85 � 0.14
Head kidney 2.47 ± 0.27* 0.68 � 0.03 0.55 ± 0.04x 0.60 � 0.02 1.32 � 0.24 0.93 � 0.31 1.34 � 0.12 0.88 � 0.03
Spleen 1.13 � 0.26 0.85 � 0.02 1.24 � 0.09 1.29 � 0.04 1.04 � 0.15 0.63 ± 0.03x 0.67 � 0.13 2.00 ± 0.13*

TLR4 Skin 1.54 � 0.30 0.75 � 0.15 1.02 � 0.11 1.45 � 0.17 0.84 � 0.12 0.55 ± 0.09x 1.27 � 0.16 1.11 � 0.14
Gill 1.76 ± 0.08* 0.89 � 0.13 1.27 � 0.09 1.58 � 0.22 0.48 ± 0.03x 0.87 � 0.01 1.41 � 0.33 1.55 � 0.42
Head kidney 1.38 � 0.16 1.51 � 0.22 0.69 � 0.13 1.36 � 0.09 2.87 ± 0.32* 1.01 � 0.04 0.82 � 0.07 1.43 � 0.22
Spleen 0.61 ± 0.16x 0.82 � 0.09 0.89 � 0.06 1.47 � 0.21 1.61 � 0.25 0.71 � 0.13 1.31 � 0.22 0.92 � 0.17

TLR5 Skin 1.21 � 0.08 1.12 � 0.16 0.77 � 0.15 0.85 � 0.17 1.48 ± 0.31* 0.86 � 0.07 0.91 � 0.13 1.31 � 0.24
Gill 0.83 � 0.06 1.78 � 0.12 1.41 � 0.20 2.16 ± 0.09* 1.33 � 0.18 0.99 � 0.11 1.43 � 0.23 1.91 ± 0.14*
Head kidney 1.23 � 0.08 1.09 � 0.08 0.43 ± 0.06x 0.52 ± 0.03x 0.77 � 0.03 1.11 � 0.18 1.29 � 0.15 1.42 � 0.15
Spleen 0.76 � 0.12 1.42 � 0.09 1.07 � 0.17 0.85 � 0.21 1.02 � 0.12 0.71 � 0.12 0.67 � 0.08 2.17 ± 0.09*

TLR7 Skin 1.66 � 0.32 1.03 � 0.27 1.35 � 0.05 0.87 � 0.05 1.62 � 0.29 0.73 � 0.08 0.82 � 0.11 1.45 � 0.17
Gill 0.74 � 0.04 0.77 � 0.11 1.26 � 0.09 1.89 ± 0.16* 1.38 � 0.07 1.54 � 0.18 1.00 � 0.12 0.86 � 0.07
Head kidney 0.63 � 0.14 0.73 � 0.05 1.21 � 0.15 0.99 � 0.07 0.70 � 0.12 1.30 � 0.08 0.81 � 0.09 0.62 ± 0.01x
Spleen 1.76 ± 0.07* 1.20 � 0.13 1.07 � 0.16 0.85 � 0.14 1.02 � 0.06 0.71 � 0.11 0.67 � 0.12 1.47 � 0.17

TLR8 Skin 1.17 � 0.04 0.80 � 0.14 0.84 � 0.17 1.43 � 0.11 1.56 � 0.22 2.14 ± 0.20* 0.77 � 0.08 1.48 � 0.02
Gill 1.38 � 0.02 1.41 � 0.25 1.23 � 0.07 0.66 � 0.10 1.65 � 0.12 1.86 ± 0.36* 1.41 � 0.20 0.75 � 0.08
Head kidney 1.21 � 0.06 0.83 � 0.22 0.62 � 0.15 1.85 ± 0.13* 0.84 � 0.06 0.66 ± 0.09x 0.98 � 0.09 0.76 � 0.08
Spleen 0.58 ± 0.14x 0.76 � 0.17 1.55 � 0.23 0.71 � 0.12 1.95 ± 0.07* 1.38 � 0.26 1.04 � 0.03 1.35 � 0.18

TLR9 Skin 2.17 ± 0.11* 0.89 � 0.17 0.60 ± 0.04x 2.20 ± 0.32* 3.78 ± 0.24* 4.56 ± 0.33* 3.89 ± 0.37* 2.13 ± 0.12*
Gill 1.88 ± 0.31* 1.56 � 0.23 2.34 ± 0.12* 3.56 ± 0.26* 5.68 ± 0.44* 0.87 � 0.09 1.54 � 0.13 1.33 � 0.08
Head kidney 1.36 � 0.25 1.02 � 0.21 1.25 � 0.23 0.73 � 0.14 0.82 � 0.03 0.98 � 0.22 1.58 � 0.13 1.63 � 0.36
Spleen 1.41 � 0.13 0.98 � 0.12 1.46 � 0.31 1.51 � 0.38 0.74 � 0.09 0.78 � 0.08 0.58 ± 0.01x 1.29 � 0.13

TLR18 Skin 1.45 � 0.14 1.21 � 0.18 0.82 � 0.16 0.93 � 0.11 1.33 � 0.10 1.02 � 0.04 1.51 � 0.21 1.29 � 0.17
Gill 1.33 � 0.21 1.56 � 0.31 0.44 ± 0.02x 0.98 � 0.13 1.67 � 0.26 2.56 ± 0.12* 0.68 � 0.22 0.87 � 0.14
Head kidney 0.84 � 0.15 0.68 � 0.14 1.35 � 0.33 1.69 ± 0.05* 0.78 � 0.16 1.02 � 0.17 1.47 � 0.25 0.71 � 0.13
Spleen 1.57 � 0.24 2.57 ± 0.12* 1.23 � 0.28 1.37 � 0.09 1.22 � 0.09 0.33 ± 0.02x 0.68 � 0.12 0.89 � 0.20

TLR19 Skin 1.11 � 0.20 1.89 ± 0.21* 2.34 ± 0.15* 0.78 � 0.13 2.40 ± 0.31* 0.88 � 0.11 1.42 � 0.19 1.23 � 0.08
Gill 0.81 � 0.08 1.94 ± 0.21* 0.88 � 0.17 3.06 ± 0.12* 1.43 � 0.23 2.29 ± 0.12* 0.90 � 0.17 1.21 � 0.10
Head kidney 1.39 � 0.05 0.36 ± 0.02x 0.55 ± 0.01x 0.93 � 0.03 0.72 � 0.14 1.37 � 0.14 0.24 ± 0.03x 0.41 ± 0.04x
Spleen 0.26 ± 0.02x 0.51 ± 0.05x 1.36 � 0.11 1.13 � 0.12 0.67 ± 0.09x 1.79 ± 0.16* 0.94 � 0.05 0.87 � 0.23

TLR20 Skin 1.34 � 0.22 0.58 ± 0.03x 0.89 � 0.07 1.36 � 0.19 1.68 ± 0.08* 1.02 � 0.01 0.81 � 0.10 1.41 � 0.17
Gill 0.70 � 0.14 1.33 � 0.31 0.89 � 0.05 0.68 � 0.12 1.31 � 0.18 1.05 � 0.17 0.74 � 0.12 1.43 � 0.13
Head kidney 1.20 � 0.17 1.15 � 0.13 0.78 � 0.14 0.73 � 0.17 1.89 ± 0.15* 1.16 � 0.14 0.86 � 0.09 0.63 ± 0.02x
Spleen 0.79 � 0.05 1.09 � 0.06 0.81 � 0.04 0.67 � 0.10 1.16 � 0.12 0.51 ± 0.03x 1.43 � 0.08 1.39 � 0.05

TLR21 Skin 1.45 � 0.23 0.64 ± 0.05x 0.76 � 0.23 0.87 � 0.34 1.36 � 0.28 1.39 � 0.11 1.30 � 0.22 1.91 ± 0.26*
Gill 0.78 � 0.08 1.36 � 0.12 1.54 � 0.12 0.89 � 0.14 0.45 ± 0.07x 0.76 � 0.07 1.07 � 0.11 1.46 � 0.13
Head kidney 0.70 � 0.09 2.13 ± 0.33* 1.89 ± 0.27* 3.87 ± 0.48* 4.23 ± 0.34* 1.05 � 0.12 0.84 � 0.02 1.03 � 0.08
Spleen 1.03 � 0.21 5.66 ± 0.82* 2.06 ± 0.36* 2.95 ± 0.14* 1.00 � 0.15 0.65 ± 0.13x 1.28 � 0.28 1.20 � 0.14

TLR22 Skin 1.32 � 0.13 1.45 � 0.13 1.76 ± 0.18* 1.56 � 0.25 0.78 � 0.11 1.37 � 0.06 1.55 � 0.27 0.93 � 0.15
Gill 0.61 ± 0.09x 1.42 � 0.12 0.72 � 0.14 1.68 ± 0.08* 1.03 � 0.07 1.44 � 0.08 0.55 ± 0.11x 1.02 � 0.27
Head kidney 1.02 � 0.05 1.40 � 0.24 1.05 � 0.11 1.09 � 0.05 0.96 � 0.30 1.75 ± 0.08* 1.24 � 0.04 1.67 � 0.22
Spleen 1.26 � 0.22 1.16 � 0.13 1.15 � 0.08 0.77 � 0.05 1.11 � 0.23 1.44 � 0.10 0.85 � 0.14 0.74 � 0.11

TLR25 Skin 1.43 � 0.24 1.29 � 0.24 0.83 � 0.13 1.57 � 0.20 1.08 � 0.07 0.67 ± 0.04x 0.91 � 0.06 0.96 � 0.14
Gill 0.70 � 0.09 1.47 � 0.18 0.95 � 0.16 1.86 ± 0.12* 1.29 � 0.17 0.90 � 0.15 0.84 � 0.09 1.32 � 0.21
Head kidney 1.23 � 0.11 2.35 ± 0.09* 2.82 ± 0.32* 1.11 � 0.07 1.43 � 0.21 0.83 � 0.07 3.00 ± 0.24* 2.14 ± 0.13*
Spleen 2.12 ± 0.23 * 3.51 ± 0.45* 1.31 � 0.17 1.79 ± 0.16* 0.56 ± 0.10x 0.96 � 0.20 1.28 � 0.19 0.85 � 0.15

TLR26 Skin 1.38 � 0.20 0.73 � 0.13 0.82 � 0.09 1.40 � 0.31 1.34 � 0.18 0.87 � 0.13 1.20 � 0.26 1.32 � 0.18
Gill 1.08 � 0.21 1.50 � 0.24 1.28 � 0.17 0.80 � 0.16 0.91 � 0.21 1.52 � 0.19 0.76 � 0.19 1.18 � 0.20
Head kidney 0.80 � 0.10 0.57 ± 0.06x 0.92 � 0.16 0.70 � 0.15 0.88 � 0.08 1.78 ± 0.08* 1.22 � 0.09 1.26 � 0.08
Spleen 0.90 � 0.22 1.60 � 0.33 1.09 � 0.19 1.75 ± 0.16* 0.90 � 0.23 1.49 � 0.23 1.10 � 0.17 0.80 � 0.14
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were observed at most time points after I. multifiliis infection. Most
fish species lack TLR4, and it has been identified only in catfish [12]
and some cyprinidae species, such as zebrafish [35], grass carp [36],
and rare minnow [37]. Two experiments in zebrafish showed that
fish TLR4 could not recognize LPS, which is a typical ligand recog-
nized by mammalian TLR4 [38,39].

Unlike mammalian TLR5, some teleost fish have two TLR5 iso-
forms: a membrane form (TLR5M) and a soluble form (TLR5S).
TLR5M is orthologous to mammalian TLR5, but TLR5S lacks a
transmembrane domain and a TIR domain and is not present in
mammals [40]. No significant changes in TLR5 expression were
observed at most time points after infection, which suggests that
I. multifiliis infection does not necessarily induce TLR5 expression.

TLR18, TLR20, TLR22, and TLR26, which are fish-specific TLRs,
have been identified in several fish species, but their functions are
still largely unclear [9]. No significant expression level changes in
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these TLRs were observed after I. multifiliis infection, except at a few
time points. Like zebrafish TLR18, catfish TLR18 may correspond to
TLR14 of other fish. TLR14 was classified as a TLR1 family member,
thus TLR14 might also partner with TLR2 and substitute for the
function of mammalian TLR6 or TLR10 [25]. Phylogenetic analysis
indicated that catfish TLR20 was closely related to murine TLR11
and TLR12 [41]. Moreover, TLR11 was shown to recognize a profilin-
like protein from T. gondii [8]. Some studies suggested that TLR22
recognizes double-stranded RNA and is mainly involved in antiviral
protection [42,43]. Like TLR25, TLR26 has only been found in cat-
fish, and its function remains completely unknown.

In summary, the present study showed the expression levels of
catfish TLR1, TLR2, TLR9, TLR19, TLR21, and TLR25 were regulated
by infection with I. multifiliis, indicating that these TLRs may play
crucial roles in the immune response against I. multifiliis infection.
Further studies in our laboratory will focus on the identification of
molecules in I. multifiliis that can be recognized by these TLRs.
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