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Abstract

We prove that a pointwise recurrent, orientation preserving homeomorphism of the 2-s
which is different from the identity and whose fixed points are stable in the sense of Lya
must have exactly two fixed points. If moreover there are no periodic points, other than fixed
every stable minimal set is connected and its complement has exactly two connected comp
Finally, we study liftings of the restriction to the complement of the fixed point set to the univ
covering space.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A homeomorphismf :X → X of a compact metrizable spaceX is calledpointwise
recurrentif x ∈ L+(x) ∩ L−(x) for everyx ∈ X, where

L+(x) = {
y ∈ X :f nk (x) → y for somenk → +∞}
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is the positive limit set ofx with respect tof andL−(x) is the positive limit set ofx
with respect tof −1. A pointwise recurrent, orientation preserving homeomorphism oS1

is topologically conjugate to a rotation. This is not true for pointwise recurrent, orient
preserving homeomorphisms of the 2-sphereS2 and it is an interesting problem to se
for additional conditions which ensure topological conjugacy to a rotation. A first
towards a characterization of rotations modulo topological conjugacy in the class of
wise recurrent, orientation preserving homeomorphisms ofS2 would be a theorem whic
guarantees the existence of only two fixed points.

A weakly almost periodic homeomorphism of a compact metrizable space is poin
recurrent. It is proved in [6] that a weakly almost periodic, orientation preserving ho
morphism ofS2, different from the identity, has exactly two fixed points. In this note
generalize this result to the class of pointwise recurrent homeomorphisms with stabl
points. More precisely, we prove that iff :S2 → S2 is a pointwise recurrent, orientatio
preserving homeomorphism, different from the identity, and if every fixed point off is
stable, thenf must have exactly two fixed points. A compact invariant set off is stable,
if it has a neighbourhood basis consisting off -invariant, open sets. Iff is weakly almost
periodic, then every orbit closure off is stable.

The idea of proof was inspired by the proof for weakly almost periodic homeo
phisms in [6], but is considerably simpler and shorter. This is due to the fact we prove
that a stable fixed point of a pointwise recurrent, orientation preserving homeomor
f of S2 has a neighbourhood basis consisting off -invariant topological open discs (se
Corollary 3.2). This permits us to use the Brouwer Translation Theorem instead
theory of prime ends, as it is done in [6].

Although pointwise recurrence is a property which is inherited by the iterates of a h
omorphism of a metric space, the stability of fixed points is not. It is clear howeve
if f :S2 → S2 is a pointwise recurrent, orientation preserving homeomorphism, diffe
from the identity, which has stable fixed points and has no periodic point, other than
thenf n has the same properties forn �= 0. As an application of the main theorem, w
show that every stable minimal set of a homeomorphism in this class is connected
complement inS2 has exactly two connected components, which generalizes Theo
in [6].

In the final section we are concerned with the problem of whether a lifting to the
versal covering spaceR2 of the restriction of a pointwise recurrent, orientation preserv
homeomorphismf of S2, which is different from the identity and has stable fixed poin
to the complement of the fixed point set, is topologically conjugate to translation. T
closely related to a conjecture made by Winkelnkemper in [9]. We give a partial affirm
answer in casef is aC1 diffeomorphism near the fixed points, under the assumption
the infinitesimal rotation numbers at the fixed points are non-zero (see Theorem 4.2

2. The fixed point set

Let f :S2 → S2 be an orientation preserving homeomorphism. Thenf has degree 1
and is homotopic to the identity. Therefore, the Lefschetz number off coincides with
the Euler characteristic ofS2, which is 2. From the Lefschetz Fixed Point Theorem
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have thatf has at least one fixed point, sayx0. If f is pointwise recurrent, it must hav
a second fixed point, from the Brouwer Translation Theorem (see [3]), becauseS2 \ {x0}
is f -invariant and homeomorphic toR2. We shall study the fixed point set of orientati
preserving, pointwise recurrent homeomorphisms ofS2.

Lemma 2.1. If f :S2 → S2 is an orientation preserving, pointwise recurrent homeom
phism, different from the identity, then the fixed point setFix(f ) of f is not connected an
no connected component ofS2 \ Fix(f ) is topologically an open disc.

Proof. Suppose that Fix(f ) is connected. Then,H1(S
2 \ Fix(f );Z) = 0, by Alexander

Duality (see [7] or [8]), and therefore each connected component ofS2 \ Fix(f ) is topo-
logically an open disc. By a theorem of Brown and Kister (see [2]),f (U) = U for every
connected componentU of S2 \ Fix(f ). Sincef is not the identity, there exists such anU ,
and becausef has no fixed point inU , every point ofU must be wandering underf , by
the Brouwer Translation Theorem. This cannot happen iff is pointwise recurrent. Th
same argument proves the second assertion also.�

Let K ⊂ R
2 be a continuum. Theacyclic hull A(K) of K is the union ofK and

the bounded connected components ofR
2 \ K . Obviously,A(K) is compact, connected

∂A(K) ⊂ K andR
2 \ A(K) is the unbounded connected component ofR

2 \ K . Hence
A(K) is acyclic, meaning that it has the integral Alexander–Spanier cohomology
point. If F is any other acyclic continuum containingK , thenR

2 \ F is an unbounded
connected subset ofR2 \ K . Therefore,A(K) ⊂ F . In other words,A(K) is the smalles
acyclic continuum containingK , andK is acyclic if and only ifA(K) = K . If K , L are
two disjoint continua inR2, then it is easy to see that eitherA(K), A(L) are disjoint or one
contains the other.

Let D be a topological open disc andK ⊂ D be a continuum. Theacyclic hullAD(K)

of K in D is the union ofK and the connected components ofD \K with compact closure
in D. If h :D → R

2 is a homeomorphism, thenh(AD(K)) = A(h(K)).
The following theorem was essentially proved in [5].

Theorem 2.2 (M.W. Hirsch). If f :S2 → S2 is an orientation preserving, pointwise r
current homeomorphism, different from the identity, thenFix(f ) has at least two acycli
connected components.

Proof. Since Fix(f ) is not connected, by Lemma 2.1, it has at least two connected co
nents, sayK1, K2. There exists a simple closed curveC separating them (see [7]). LetD

be the connected component ofS2\C containingK1. LetC be the set of connected comp
nents of Fix(f ) contained inD. OnC we consider the partial ordering� defined byL � K

if and only if L ⊂ AD(K). Note thatL � K andL �= K if and only if AD(L) ⊂ intAD(K).
Let A be a maximal totally ordered subset ofC. The setZ = ⋂

K∈A AD(K) is nonempty
and compact. Ifz ∈ ∂Z, there is a uniqueL ∈ A such thatz ∈ ∂AD(L). If L′ corresponds
to another pointz′ ∈ ∂Z andL � L′, L �= L′, thenz′ ∈ AD(L) ⊂ intAD(L′), contradic-
tion. This shows that there is a uniqueL ∈A such that∂Z ⊂ L andL is a minimal elemen
of A. We shall prove thatL is acyclic. If it is not,S2 \ L has a connected componentU
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whose closure is contained inD, andU is a topological open disc. From the theorem
Brown and Kister, the pointwise recurrence off and the Brouwer Translation Theorem,f

must have a fixed point inU . It follows that there is a connected componentJ of Fix(f )

which is contained inU , sinceJ ∩ ∂U ⊂ J ∩ L = ∅. This means thatJ ∈ C andJ � L,
J �= L, which contradicts the fact thatL is a minimal element ofA. Similarly, the con-
nected component ofS2 \ C which containsK2 contains an acyclic connected compon
of Fix(f ). �

We remark that each setAD(K) in the proof of Theorem 2.2 isf -invariant. To see this
it suffices to prove that every connected componentW of D \K with compact closure inD
is f -invariant. IfV is a connected component ofW \ Fix(f ), then∂V ⊂ ∂W ∪ Fix(f ) ⊂
K ∪ Fix(f ) = Fix(f ), which implies thatV is a connected component ofS2 \ Fix(f ). By
the theorem of Brown and Kister,V is f -invariant. Thus, every connected componen
W \ Fix(f ) is f -invariant, and hence alsoW .

3. Stability of fixed points

In this section we shall prove the main result of the paper, namely Theorem 3.4 b
We shall need the following.

Proposition 3.1. Letf :S2 → S2 be an orientation preserving, pointwise recurrent hom
omorphism. LetA ⊂ S2 be anf -invariant continuum andD be a topological closed dis
containingA in its interior. There exists anf -invariant continuumK with the following
properties:

(i) A ⊂ K ⊂ D.
(ii) Every simple closed curve inK bounds a topological disc inK .

(iii) K ∩ ∂D �= ∅.

Proof. LetB0 = intD and inductively letBn+1 be the connected component off (Bn)∩B0

which containsA. Then,{Bn: n ∈ N} is a decreasing sequence of topological open di
Let

K =
∞⋂

n=0

�Bn.

Assertion (i) is obvious, while (ii) follows from the Jordan–Schönflies Theorem. To
thatK is f -invariant, note first thatf −1(K) ⊂ K . Sincef is pointwise recurrent, for eac
x ∈ K there are integersnk → +∞ such thatf −nk (x) → x. It follows that

x ∈
∞⋂

f −nk (K) =
∞⋂

f −n(K).
k=1 n=0
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This shows thatf −1(K) = K . To prove (iii), suppose by contradiction thatK ∩ ∂D = ∅.
Then,�Bn0+1 ∩ ∂D = ∅ for some integern0 � 0 and for any integerj � 0 we have

∂Bn0+j ⊂ ∂f (Bn0+j−1) ∪ ∂B0 = ∂f (Bn0+j−1) ∪ ∂D,

and therefore∂Bn0+j ⊂ ∂f (Bn0+j−1). Since both are simple closed curves, necess
∂Bn0+j = ∂f (Bn0+j−1) andBn0+j = f (Bn0+j−1), becauseBn0+j ⊂ f (Bn0+j−1). Hence

Bn0+j = f j (Bn0) for everyj � 0. If now f j (�Bn0) ∩ ∂Bn0 = ∅ for somej � 0, then

f j+n(�Bn0) = �Bn0+j+n ⊂ �Bn0+j = f j (�Bn0) ⊂ Bn0.

If x ∈ ∂Bn0, this means thatf n+j (x) ∈ f j (�Bn0) for every integern � 0 and hence
L+(x) ⊂ f j (�Bn0), that isL+(x) ∩ ∂Bn0 = ∅, which contradicts the fact thatx ∈ L+(x).
Thus,f j (�Bn0) ∩ ∂Bn0 �= ∅ for every integerj � 0 and soK ∩ ∂Bn0 �= ∅. But ∂Bn0 ⊂
∂D ∪ f (∂D) ∪ · · · ∪ f n0(∂D) and consequentlyK ∩ f n(∂D) �= ∅ for some intege
0� n � n0. It follows thatK ∩ ∂D = f −n(K) ∩ ∂D �= ∅. �

If f :X → X is a homeomorphism of a topological spaceX, a compactf -invariant
set A ⊂ X is calledf -stable if for every open setU ⊂ X with A ⊂ U there exists an
f -invariant open setV ⊂ X such thatA ⊂ V ⊂ U .

Recall that ifA ⊂ S2 is an acyclic continuum, thenS2 \ A is a topological open disc
by Alexander Duality. It follows that for every open neighbourhoodU of A there exists a
topological closed discD such thatA ⊂ intD ⊂ D ⊂ U .

Corollary 3.2. Let f :S2 → S2 be an orientation preserving, pointwise recurrent hom
omorphism. IfA ⊂ S2 is an f -stable,f -invariant, acyclic continuum, then every neig
bourhood ofA contains anf -invariant open neighbourhood ofA which is topologically
an open disc.

Proof. Let D be a closed disc containingA in its interior and letK be thef -invariant
continuum provided by Proposition 3.1. We shall use the notation of the proof of Pro
tion 3.1. SinceA is f -stable, there is an open discW with A ⊂ W andf n(W) ⊂ intD for
everyn ∈ Z. The setV = ⋃

n∈Z
f n(W) is f -invariant, open, connected andA ⊂ V ⊂ B0.

Thus, V = f (V ) ⊂ f (B0) ∩ B0, and thereforeV ⊂ B1. Inductively now we see tha
V ⊂ Bn for every integern � 0, which means thatV ⊂ K . In particular,K is a neighbour-
hood ofA, and by property (ii) ofK the connected component of intK which containsA
is anf -invariant topological open disc contained inD. �

In general the boundary of the invariant topological open disc of Corollary 3.2 wil
be a simple closed curve. We shall now study pointwise recurrent, orientation pres
homeomorphisms ofS2 with stable fixed points.

Lemma 3.3. Let f :S2 → S2 be a pointwise recurrent, orientation preserving homeom
phism, different from the identity. If every fixed point off is f -stable, there exists a
f -invariant continuum, which contains no fixed point off .
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Proof. Let A be an acyclic connected component of Fix(f ). ThenA is f -stable, by our
assumption, and there exists a simple closed curveC, which is the boundary of a topo
logical closed discD such thatA ⊂ intD andC ∩ Fix(f ) = ∅. Let K be thef -invariant
continuum given by Proposition 3.1. Recall that

K =
∞⋂

n=0

�Bn,

whereB0 = intD and inductivelyBn+1 is the connected component off (Bn) ∩ B0 which
containsA. We shall prove that∂K contains no fixed point off . Suppose the contrar
and lets ∈ Fix(f ) ∩ ∂K . SinceC contains no fixed point, we see by induction that∂Bn

contains no fixed point off , for everyn � 0. Nows is the limit of a sequence(yk)k∈N such
that yk ∈ ∂Bnk

, for somenk → +∞. Since∂Bnk
⊂ C ∪ f (C) ∪ · · · ∪ f nk (C), for each

k ∈ N there exists some 0� mk � nk and somexk ∈ C such thatyk = f mk (xk). By our
assumption,s has a neighbourhood basis consisting of openf -invariant sets. IfV is such
a neighbourhood, there existsk0 ∈ N such thatxk = f −mk (yk) ∈ V , for k � k0. It follows
thatxk → s, and therefores ∈ C. This contradiction shows that Fix(f ) ∩ ∂K = ∅. As the
proof of Corollary 3.2 shows,K is a neighbourhood ofA and the connected compone
∆ of intK which containsA is anf -invariant topological open disc. Clearly,∂∆ is an
f -invariant continuum, which contains no fixed point off . �
Theorem 3.4. Letf :S2 → S2 be a pointwise recurrent, orientation preserving homeom
phism, different from the identity. If every fixed point off is f -stable, thenf has exactly
two fixed points.

Proof. Let A ⊂ S2 \ Fix(f ) be anf -invariant continuum, given by Lemma 3.3. There
a finite numberU1, . . . ,Un of connected components ofS2 \ A such that Fix(f ) ∩ Uj �= ∅
for j = 1, . . . , n. Each one of them isf -invariant and

2= χ
(
S2) = L(f ) = i

(
f,S2) =

n∑
j=1

i(f,Uj ),

wherei denotes the local fixed point index,L the Lefschetz number andχ the Euler char-
acteristic. Sincei(f,Uj ) = 1, by [6, Lemma 2], we getn = 2. It suffices to prove tha
Fix(f )∩Uj is a singleton, forj = 1,2. LetU be the connected component ofU1 \ Fix(f )

with ∂U1 ⊂ ∂U . Then,∂U \ ∂U1 is a nonempty, closed subset of Fix(f ).
First we shall prove that∂U \ ∂U1 is connected. Suppose that this is not the case. T

there exists a simple closed curveC ⊂ U which separates∂U \ ∂U1. There exists also
an arcJ ⊂ U with one endpoint inC and the other endpoint in∂U1. The continuum
Y = C ∪ J ∪ ∂U1 contains no fixed point off . Since every point of Fix(f ) is f -stable,
there exists anf -invariant open setW ⊂ U1 such that Fix(f ) ∩ U1 ⊂ W andY ∩ W = ∅.
If now

N =
⋃

f k(Y ),
k∈Z
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thenN is anf -invariant continuum in�U1, which contains no fixed point off . There is a
finite numberV1, . . . , Vm of connected components ofS2 \ N such that Fix(f ) ∩ Vj �= ∅
andVj ⊂ U1, for j = 1, . . . ,m. Sincei(f,Vj ) = 1, by [6, Lemma 2], we have

1= i(f,U1) =
m∑

j=1

i(f,Vj ) = m.

This however contradicts the fact thatC separates∂U \ ∂U1. Hence∂U \ ∂U1 must be
connected.

It suffices to prove now that∂U \ ∂U1 is a singleton. Lets ∈ ∂U \ ∂U1 and suppose tha
∂U \ ∂U1 is not a singleton. Since it is connected, as we previously showed, ands is f -
stable, by assumption, there exists anf -invariant topological open disc D such that�D ⊂ U1

and∂D ∩ (∂U \ ∂U1) �= ∅, by Corollary 3.2. Thus,∂D ∪ (∂U \ ∂U1) is anf -invariant
continuum. LetS be a connected component ofS2 \ (∂D ∪ (∂U \∂U1)) which is contained
in D and contains at least one point ofU . ThenS ⊂ D ∩ U ⊂ D \ Fix(f ). Actually,S is a
connected component ofD \ Fix(f ), because∂S ⊂ ∂D ∪ Fix(f ). SinceD is f -invariant,
it follows from the theorem of Brown and Kister thatS is anf -invariant topological open
disc, andf |S is an orientation preserving, pointwise recurrent homeomorphism wit
fixed points. This contradicts the Brouwer Translation Theorem.�

Although pointwise recurrence is a property which is inherited by the iterates of a h
omorphism of a metric space (see [4, Theorem 7.04]), the property of the stability of
points is not. A simple example can be constructed as follows. LetF :S1 × [0,1] →
S1 × [0,1] be the homeomorphism defined byF(z, t) = (ze2πit , t). Then F is point-
wise recurrent, orientation preserving and fixes the two boundary components poin
Identifying the boundary components to points, we get a pointwise recurrent, orien
preserving homeomorphismf :S2 → S2 with stable fixed points, the north and the so
pole, but for every integern > 1 the iteratef n does not have stable fixed points. It
however clear that iff :S2 → S2 is a pointwise recurrent, orientation preserving hom
morphism, different from the identity, which has no periodic point, other than fixed
every fixed point off is f -stable, thenf n has the same properties for everyn �= 0. The-
orem 3.4 can be applied to this class of homeomorphisms in order to prove the foll
proposition, which gives information about the topology of their minimal sets and g
alizes [6, Theorem 6].

Proposition 3.5. Letf :S2 → S2 be a pointwise recurrent, orientation preserving hom
morphism, different from the identity, such thatf has no periodic point, other than fixe
and every fixed point off is stable. IfK ⊂ S2 \ Fix(f ) is a stable, minimal set off , then
K is connected andS2 \ K has exactly two connected components.

Proof. First we shall show that the two fixed points off belong to different connecte
components ofS2 \ K . Suppose that they belong to the same. There exists then a top
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cal closed discD ⊂ S2 \K such that Fix(f ) ⊂ intD. Sincef is orientation preserving an
has no wandering point, we must havef (∂D) ∩ ∂D �= ∅. The set

M =
⋃
n∈Z

f n(∂D)

is anf -invariant continuum and contains no fixed point off , because the fixed points a
assumed to be stable. Moreover,K ∩ M = ∅, becauseK is assumed to bef -stable. LetU
be a connected component ofS2 \M such thatK ∩U �= ∅. Then Fix(f )∩U = ∅ and there
exists somen > 0 such thatf n(U) = U , sincef is pointwise recurrent. Nowf n is also
pointwise recurrent, orientation preserving andf n|U has no fixed point, by assumptio
which contradicts the Brouwer Translation Theorem, asU is homeomorphic toR2. This
shows that the two fixed points off belong to different connected components ofS2 \ K .
Let nowV be a connected component ofS2 \ K such thatV ∩ Fix(f ) �= ∅. Let W be the
connected component ofS2 \ �V , which contains the second fixed point off . ThenW is
anf -invariant, topological open disc, and so∂W is anf -invariant, continuum inK . Since
K is f -minimal, we must haveK = ∂W . This proves thatK is connected. IfS2 \ K had
more than two connected components, then some connected componentY ⊂ S2 \ Fix(f )

of it would be invariant under some iterate off , which contradicts the Brouwer Translatio
Theorem. �

4. Liftings of pointwise recurrent homeomorphisms with stable fixed points

Let f :S2 → S2 be a pointwise recurrent, orientation preserving homeomorphism
ferent from the identity, which has stable fixed points. Let 0 and∞ denote the two fixed
points off , by Theorem 3.4. By Corollary 3.2, there aref -invariant, topological open
discsD0 andD∞, containing 0 and∞, respectively, whose closures are disjoint. Iff has
no other periodic point than the two fixed points, then∂D0 separatesS2 into two topologi-
cal open discs, each one containing a fixed point, because otherwiseS2 \ ∂D0 would have
a connected component containing no fixed point, which would be invariant under
iterate off , and this contradicts the Brouwer Translation Theorem. Similarly forD∞. Let
A be the intersection of the connected component ofS2 \ ∂D0, which contains∞, with the
connected component ofS2\∂D∞, which contains 0. ThenA is anf -invariant, open annu
lus. The prime end compactification̂A of A is homeomorphic toS1×[0,1]. Let f̂ : Â → Â

be the extension off |A. By a fixed point theorem of M. Barge and R.M. Gillette (see [1
f̂ has no fixed point on∂Â, and therefore on̂A. Obviously,f̂ is orientation and boundar
component preserving.

Let Ã denote the universal covering space ofÂ, which is homeomorphic to the stri
R×[0,1]. The group of covering transformations is generated by the translationT (x, y) =
(x + 1, y).

Proposition 4.1. If f̃ : Ã → Ã is a lifting of f̂ , thenf̃ is topologically conjugate toT .

Proof. If f̃ is not topologically conjugate toT , then there exists inA a simple closed
essential curveC such thatf (C) ∩ C = ∅, by a result of H.E. Winkelnkemper, whic
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generalizes the Poincaré–Birkhoff Theorem (see [9]). NowC andf (C) bound an open
annulusB ⊂ A. Sincef is an orientation preserving homeomorphism, andB has a com-
mon boundary component withf (B), we havef (B)∩B = ∅. Inductively,f n(B)∩B = ∅
for everyn �= 0. This implies that every point ofB is wandering, which contradicts ou
assumption thatf is pointwise recurrent. �

The question now arises whether a lifting off |S2 \ Fix(f ) to the universal coverin
spaceR2 is topologically conjugate to translation. This is closely related to a conje
made by Winkelnkemper in [9]. In this case the compactification by prime ends doe
work, since the prime end compactification ofS2 \ {0,∞} is againS2 and f̂ is f . Thus
we need another method of compactification and extension to get a homeomorph
a closed annulus. In casef is aC1 diffeomorphism near the fixed points, we can obt
a homeomorphism of a closed annulus, if we blow up the fixed points. We shall b
describe this procedure.

Let g :R2 → R
2 be aC1 diffeomorphism such that 0 is the only fixed point ofg. Let

h :S1 × (0,+∞) → R
2 \ {0} be the homeomorphismh(z, t) = tz. Let ĝ :S1 ×[0,+∞) →

S1 × [0,+∞) be the map defined bŷg(z, t) = (h−1 ◦ g ◦ h)(z, t), if t �= 0, and

ĝ(z,0) =
(

Dg(0)z

‖Dg(0)z‖ ,0

)
.

SinceDg(0) is a linear isomorphism,̂g is a homeomorphism. Ifg is orientation preserv
ing, then so isĝ. The procedure of blowing up an isolated fixed point can be carried
for any homeomorphism of a smooth surface, which is aC1 diffeomorphism of an ope
neighbourhood of the fixed point.

Recall now that ifg is orientation preserving, then theinfinitesimal rotation numbe
of g at its fixed point 0 is the Poincaré rotation number of the circle homeomorp
ḡ :S1 → S1 defined by

ḡ(z) = Dg(0)z

‖Dg(0)z‖ .

A partial affirmative answer to the above question is given by the following.

Theorem 4.2. Let f :S2 → S2 be a pointwise recurrent, orientation preserving hom
morphism, different from the identity, with stable fixed points. We assume thatf is a C1

diffeomorphism in some open neighbourhoods of the fixed points. If the infinitesima
tion numbers off at the fixed points are both non-zero, then a lifting off |S2 \ Fix(f ) to
R

2 is topologically conjugate to the translationT .

Proof. Sincef is a C1 diffeomorphism in open neighbourhoods of the fixed points,
can blow up the two fixed points to get an orientation and boundary preserving home
phismF :S1 × [0,1] → S1 × [0,1] such thatF |S1 × (0,1) is topologically conjugate to
f |S2 \ Fix(f ). Since the infinitesimal rotation numbers at the fixed points off coincide
with the Poincaré rotation numbers ofF |S1 × {0} andF |S1 × {1}, if they are both non
zero, thenF has no fixed point inS1 ×[0,1]. Thus, the method of proof of Proposition 4
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works to show that a lifting̃F of F on the universal covering spaceR × [0,1] is topo-
logically conjugate toT on R × [0,1]. Hence the liftingF̃ |R × (0,1) of f |S2 \ Fix(f ) is
topologically conjugate toT on R × (0,1). �
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