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Abstract

We prove that a pointwise recurrent, orientation preserving homeomorphism of the 2-sphere,
which is different from the identity and whose fixed points are stable in the sense of Lyapunov
must have exactly two fixed points. If moreover there are no periodic points, other than fixed, then
every stable minimal set is connected and its complement has exactly two connected components.
Finally, we study liftings of the restriction to the complement of the fixed point set to the universal
covering space.
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1. Introduction

A homeomorphismf : X — X of a compact metrizable spacé is calledpointwise
recurrentif x € L*(x) N L™ (x) for everyx € X, where

LT (x)={yeX: f™(x)— y for someny — +oo}
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is the positive limit set ofc with respect tof and L~ (x) is the positive limit set ofc

with respect tof ~1. A pointwise recurrent, orientation preserving homeomorphissitof

is topologically conjugate to a rotation. This is not true for pointwise recurrent, orientation
preserving homeomorphisms of the 2-sph&feand it is an interesting problem to seek
for additional conditions which ensure topological conjugacy to a rotation. A first step
towards a characterization of rotations modulo topological conjugacy in the class of point-
wise recurrent, orientation preserving homeomorphisms$?afiould be a theorem which
guarantees the existence of only two fixed points.

A weakly almost periodic homeomorphism of a compact metrizable space is pointwise
recurrent. It is proved in [6] that a weakly almost periodic, orientation preserving homeo-
morphism ofs?, different from the identity, has exactly two fixed points. In this note we
generalize this result to the class of pointwise recurrent homeomorphisms with stable fixed
points. More precisely, we prove that if: $2 — $2 is a pointwise recurrent, orientation
preserving homeomorphism, different from the identity, and if every fixed point
stable, thenf must have exactly two fixed points. A compact invariant sef a stable,
if it has a neighbourhood basis consistingfefnvariant, open sets. If is weakly almost
periodic, then every orbit closure gfis stable.

The idea of proof was inspired by the proof for weakly almost periodic homeomor-
phisms in [6], but is considerably simpler and shorter. This is due to the fact we prove first,
that a stable fixed point of a pointwise recurrent, orientation preserving homeomorphism
f of §2 has a neighbourhood basis consistingfeinvariant topological open discs (see
Corollary 3.2). This permits us to use the Brouwer Translation Theorem instead of the
theory of prime ends, as it is done in [6].

Although pointwise recurrence is a property which is inherited by the iterates of a home-
omorphism of a metric space, the stability of fixed points is not. It is clear however that
if £:5%— $2is a pointwise recurrent, orientation preserving homeomorphism, different
from the identity, which has stable fixed points and has no periodic point, other than fixed,
then f has the same properties far£ 0. As an application of the main theorem, we
show that every stable minimal set of a homeomorphism in this class is connected and its
complement ins? has exactly two connected components, which generalizes Theorem 6
in [6].

In the final section we are concerned with the problem of whether a lifting to the uni-
versal covering spade? of the restriction of a pointwise recurrent, orientation preserving
homeomorphisny of $2, which is different from the identity and has stable fixed points,
to the complement of the fixed point set, is topologically conjugate to translation. This is
closely related to a conjecture made by Winkelnkemper in [9]. We give a partial affirmative
answer in cas¢ is aC? diffeomorphism near the fixed points, under the assumption that
the infinitesimal rotation numbers at the fixed points are non-zero (see Theorem 4.2).

2. Thefixed point set
Let f:S% — S? be an orientation preserving homeomorphism. Tliehas degree 1

and is homotopic to the identity. Therefore, the Lefschetz numbef obincides with
the Euler characteristic &2, which is 2. From the Lefschetz Fixed Point Theorem we
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have thatf has at least one fixed point, say. If f is pointwise recurrent, it must have
a second fixed point, from the Brouwer Translation Theorem (see [3]), beSauskeo}

is f-invariant and homeomorphic ®2. We shall study the fixed point set of orientation
preserving, pointwise recurrent homeomorphisms?of

Lemma 2.1. If f:5% — $?is an orientation preserving, pointwise recurrent homeomor-
phism, different from the identity, then the fixed point/Sg{ ) of f is not connected and
no connected component$? \ Fix( f) is topologically an open disc.

Proof. Suppose that Fixf) is connected. ThenH1(S? \ Fix(f); Z) = 0, by Alexander
Duality (see [7] or [8]), and therefore each connected compones$it dfFix(f) is topo-
logically an open disc. By a theorem of Brown and Kister (see [R{}/) = U for every
connected component of $2\ Fix(f). Sincef is not the identity, there exists such &n
and becausg has no fixed point i/, every point ofU must be wandering undef, by
the Brouwer Translation Theorem. This cannot happefi i pointwise recurrent. The
same argument proves the second assertion atso.

Let K c R? be a continuum. Thacyclic hull A(K) of K is the union ofK and
the bounded connected component&®3f\ K. Obviously,A(K) is compact, connected,
dA(K) c K andR2\ A(K) is the unbounded connected componenRéf\ K. Hence
A(K) is acyclic, meaning that it has the integral Alexander—Spanier cohomology of a
point. If F is any other acyclic continuum containirig, thenR? \ F is an unbounded,
connected subset @2 \ K. Therefore, A(K) C F. In other wordsA(K) is the smallest
acyclic continuum containing’, andK is acyclic if and only ifA(K) = K. If K, L are
two disjoint continua irR?, then it is easy to see that eith&(K ), A(L) are disjoint or one
contains the other.

Let D be a topological open disc arid C D be a continuum. Thacyclic hull Ap(K)
of K in D is the union ofK and the connected componentgof K with compact closure
in D. If h: D — R? is a homeomorphism, thernAp(K)) = A(h(K)).

The following theorem was essentially proved in [5].

Theorem 2.2 (M.W. Hirsch). If f:5% — $2 is an orientation preserving, pointwise re-
current homeomorphism, different from the identity, th@a(f) has at least two acyclic
connected components.

Proof. Since Fix f) is not connected, by Lemma 2.1, it has at least two connected compo-
nents, sayk1, K2. There exists a simple closed cur@eseparating them (see [7]). L&t

be the connected component$3f\ C containingK;. LetC be the set of connected compo-
nents of FiX f) contained inD. OnC we consider the partial orderingdefined byL < K

ifand onlyif L ¢ Ap(K).NotethatL < K andL # K ifand onlyif Ap(L) CintAp(K).

Let A be a maximal totally ordered subset@fThe setZ = (. 4 Ap(K) is nonempty

and compact. It € 3Z, there is a uniqué. € A such that € 9Ap(L). If L’ corresponds

to another point’ € 9Z andL < L', L # L/, thenz’ € Ap(L) C intAp(L’), contradic-

tion. This shows that there is a unigiies A such tha®Z c L andL is a minimal element

of A. We shall prove thaL is acyclic. If it is not,S2 \ L has a connected componeiit
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whose closure is contained i, andU is a topological open disc. From the theorem of
Brown and Kister, the pointwise recurrencefoind the Brouwer Translation Theorelf,
must have a fixed point ity. It follows that there is a connected compondmf Fix(f)
which is contained irU, sinceJ NdU ¢ J N L =@. This means tha¥f e C andJ < L,

J # L, which contradicts the fact thdt is a minimal element of4. Similarly, the con-
nected component & \ C which containsk, contains an acyclic connected component
of Fix(f). O

We remark that each sdtp (K) in the proof of Theorem 2.2 ig-invariant. To see this,
it suffices to prove that every connected compor¥érdf D \ K with compact closure i
is f-invariant. If V is a connected component &f \ Fix(f), thendV c aW UFix(f) C
K UFix(f) = Fix(f), which implies thatV is a connected component §% \ Fix(f). By
the theorem of Brown and KisteV, is f-invariant. Thus, every connected component of
W\ Fix(f) is f-invariant, and hence alg¥.

3. Stability of fixed points

In this section we shall prove the main result of the paper, namely Theorem 3.4 below.
We shall need the following.

Proposition 3.1. Let f : % — $2 be an orientation preserving, pointwise recurrent home-
omorphism. Lefd C $2 be an f-invariant continuum and be a topological closed disc
containing A in its interior. There exists arf-invariant continuumk with the following
properties

() AcKcD.
(iiy Every simple closed curve ik bounds a topological disc i& .
(i) KNaD #4.

Proof. Let Bo=int D and inductively letB, 1 be the connected componentf(fB,,) N By
which containsA. Then,{B,: n € N} is a decreasing sequence of topological open discs.
Let

o0
K =) B
n=0

Assertion (i) is obvious, while (ii) follows from the Jordan—Schoénflies Theorem. To see
thatK is f-invariant, note first thay ~1(K) c K. Sincef is pointwise recurrent, for each
x € K there are integerns;, — +oo such thatf ~"*(x) — x. It follows that

xe (K =) F7EK).

k=1 n=0
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This shows thatf ~1(K) = K. To prove (iii), suppose by contradiction th&itn 9 D = .
Then,B,,+1 N dD = ¥ for some integeng > 0 and for any integey > 0 we have

aBno+j - af(Bno+jfl) UdBg = 8f(Bno+jfl) uab,

and therefore® B,,,4; C 9f (Bny+j—1)- Since both are simple closed curves, necessarily
3Bng+j = 0f (Bno+j-1) @nd Bugtj = f (Bngtj—1), becauseBugj C f(Bno+j-1). Hence
Bugyj = f7(By,) for everyj > 0. If now f/(B,,) N 3By, = ¥ for somej > 0, then

fj+n(Eno) = Eno+j+n C §n0+j = fj (§n0) C Bno-

If x € 3B,,, this means thatf"*/(x) € f/(B,,) for every integern > 0 and hence
Lt (x) C f/(By,), thatisL*(x) N 8B,, = ¥, which contradicts the fact thate L*(x).
Thus, f/(Bp,) N 3By, # 9 for every integerj > 0 and soK N 3By, # ¥. But 8B,, C
aD U f(@D)U---U f"(@D) and consequenthk N f"(aD) # ¥ for some integer
0<n<ng. ItfollowsthatKk NoD = f~(K)NaD #@¥. O

If f:X — X is a homeomorphism of a topological spakea compactf-invariant
setA C X is called f-stableif for every open setV ¢ X with A C U there exists an
f-invariant open se¥ C X suchthad C V C U.

Recall that ifA c §2 is an acyclic continuum, thesi® \ A is a topological open disc,
by Alexander Duality. It follows that for every open neighbourh@oaf A there exists a
topological closed dis® such thatA cintD c D C U.

Corollary 3.2. Let f: 52 — $2 be an orientation preserving, pointwise recurrent home-
omorphism. IfA ¢ 52 is an f-stable, f-invariant, acyclic continuum, then every neigh-
bourhood ofA contains anf-invariant open neighbourhood of which is topologically
an open disc.

Proof. Let D be a closed disc containing in its interior and letk be the f-invariant
continuum provided by Proposition 3.1. We shall use the notation of the proof of Proposi-
tion 3.1. SinceA is f-stable, there is an open di#¢ with A ¢ W and /(W) c int D for
everyn € Z. The setV =, ., f"(W) is f-invariant, open, connected addc V C Bo.
Thus,V = f(V) C f(Bo) N Bg, and thereforeV c B;. Inductively now we see that

V C B, for every integen > 0, which means that C K. In particular,K is a neighbour-
hood of A, and by property (ii) ofK the connected component of Ktwhich containsA

is an f-invariant topological open disc containedliin O

In general the boundary of the invariant topological open disc of Corollary 3.2 will not
be a simple closed curve. We shall now study pointwise recurrent, orientation preserving
homeomorphisms af? with stable fixed points.

Lemma3.3. Let f: 52 — $2 be a pointwise recurrent, orientation preserving homeomor-
phism, different from the identity. If every fixed point fofis f-stable, there exists an
f-invariant continuum, which contains no fixed pointfof
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Proof. Let A be an acyclic connected component of iix. Then A is f-stable, by our
assumption, and there exists a simple closed carvevhich is the boundary of a topo-
logical closed disd such thatA C int D andC N Fix(f) = @. Let K be the f-invariant
continuum given by Proposition 3.1. Recall that

00
K= ﬂ Ena
n=0

whereBg = int D and inductivelyB,+1 is the connected component 6{B,,) N Bg which
containsA. We shall prove thab K contains no fixed point of. Suppose the contrary,
and lets € Fix(f) N 9K . SinceC contains no fixed point, we see by induction taa,
contains no fixed point of , for everyn > 0. Nows is the limit of a sequence;)ren such
that y; € By, , for somen; — +o00. SincedB,, CCU f(C)U---U f*(C), for each
k € N there exists some € m; < n; and somex; € C such thaty, = f™(x;). By our
assumptions has a neighbourhood basis consisting of opeinvariant sets. IV is such
a neighbourhood, there exists € N such thate, = f ="k (y;) € V, for k > k. It follows
thatx; — s, and therefore € C. This contradiction shows that RiX) N 9K = (. As the
proof of Corollary 3.2 showsK is a neighbourhood of and the connected component
A of int K which containsA is an f-invariant topological open disc. ClearlyA is an
f-invariant continuum, which contains no fixed pointof O

Theorem 3.4. Let f : S2 — S2 be a pointwise recurrent, orientation preserving homeomor-
phism, different from the identity. If every fixed pointfofs f-stable, thenf has exactly
two fixed points.

Proof. Let A C §2\ Fix(f) be anf-invariant continuum, given by Lemma 3.3. There is
a finite numbeis, . .., U, of connected components §f \ A such that Fixf) N Ui #9
for j =1,...,n. Each one of them ig-invariant and

n

2=x(S5)=L(NH=i(f,5%) =D i(£. U,

j=1

wherei denotes the local fixed point indek,the Lefschetz number andthe Euler char-
acteristic. Sincé(f,U;) =1, by [6, Lemma 2], we get = 2. It suffices to prove that
Fix(f)NU; is a singleton, folj = 1, 2. LetU be the connected componentldf \ Fix(f)
with 9U1 C 9U. Then,oU \ dU1 is a nonempty, closed subset of £%.

First we shall prove thatU \ dU; is connected. Suppose that this is not the case. Then
there exists a simple closed cur@ec U which separate8U \ dU1. There exists also
an arcJ c U with one endpoint inC and the other endpoint iaU;. The continuum
Y = C U J UaU; contains no fixed point of . Since every point of Fikf) is f-stable,
there exists arf-invariant open seW C Uz such that Fixf) NUy c W andY N W = (.
If now

N = k),

keZ
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then N is an f-invariant continuum irl/1, which contains no fixed point of. There is a
finite numberVy, ..., V,, of connected components §f \ N such that Fixf) N Vi#0
andV; C Uy, for j =1,...,m. Sincei(f, V;) =1, by [6, Lemma 2], we have

m

1=i(fUD =) i(f.V)=m.

j=t

This however contradicts the fact th@tseparate®U \ 9U1. HencedaU \ dU1 must be
connected.

It suffices to prove now thatU \ dU1 is a singleton. Let € U \ dU; and suppose that
oU \ daU; is not a singleton. Since it is connected, as we previously showed; esng-
stable, by assumption, there existsfaimvariant topological open disc D such thatc Uy
andoD N (AU \ aU1) # ¥, by Corollary 3.2. ThusgD U (aU \ aUj) is an f-invariant
continuum. LetS be a connected component$#\ (9D U (3U \ dU1)) which is contained
in D and contains at least one point@f ThenS ¢ DN U C D \ Fix(f). Actually, S is a
connected component @f \ Fix(f), becaus®S c dD U Fix(f). SinceD is f-invariant,
it follows from the theorem of Brown and Kister th&tis an f-invariant topological open
disc, andf|S is an orientation preserving, pointwise recurrent homeomorphism without
fixed points. This contradicts the Brouwer Translation Theorem.

Although pointwise recurrence is a property which is inherited by the iterates of a home-
omorphism of a metric space (see [4, Theorem 7.04]), the property of the stability of fixed
points is not. A simple example can be constructed as follows.A:ef? x [0, 1] —

S1 x [0,1] be the homeomorphism defined Bz, r) = (z¢%*,t). Then F is point-

wise recurrent, orientation preserving and fixes the two boundary components pointwise.
Identifying the boundary components to points, we get a pointwise recurrent, orientation
preserving homeomorphisi: 2 — 2 with stable fixed points, the north and the south
pole, but for every integer > 1 the iteratef” does not have stable fixed points. It is
however clear that iff : $2 — $2 is a pointwise recurrent, orientation preserving homeo-
morphism, different from the identity, which has no periodic point, other than fixed, and
every fixed point off is f-stable, thenf” has the same properties for every 0. The-

orem 3.4 can be applied to this class of homeomorphisms in order to prove the following
proposition, which gives information about the topology of their minimal sets and gener-
alizes [6, Theorem 6].

Proposition 3.5. Let f : $2 — $2 be a pointwise recurrent, orientation preserving homeo-
morphism, different from the identity, such thfahas no periodic point, other than fixed,
and every fixed point of is stable. IfK c $2\ Fix(f) is a stable, minimal set of, then

K is connected and? \ K has exactly two connected components.

Proof. First we shall show that the two fixed points ¢fbelong to different connected
components 052\ K. Suppose that they belong to the same. There exists then a topologi-
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cal closed dis® c $2\ K such that Fixf) C int D. Sincef is orientation preserving and
has no wandering point, we must hay@® D) N d D # (. The set

M= @D
nez

is an f-invariant continuum and contains no fixed pointfgfbecause the fixed points are
assumed to be stable. MoreovErN M = (J, because is assumed to bg-stable. Let/
be a connected component$#\ M such thatk NU # @. Then FiX f) N U = ¢ and there
exists some: > 0 such thatf”(U) = U, since f is pointwise recurrent. Now™” is also
pointwise recurrent, orientation preserving affiU has no fixed point, by assumption,
which contradicts the Brouwer Translation Theorem{/ais homeomorphic t&®?2. This
shows that the two fixed points gf belong to different connected componentsséf, K .
Let now V be a connected component$4\ K such thatV N Fix(f) # @. Let W be the
connected component 6 \ V, which contains the second fixed point 6f ThenW is
an f-invariant, topological open disc, and 8% is an f-invariant, continuum irK . Since
K is f-minimal, we must hav&k = dW. This proves thaK is connected. 12\ K had
more than two connected components, then some connected compoaestt \ Fix(f)
of it would be invariant under some iterate pfwhich contradicts the Brouwer Translation
Theorem. O

4. Liftings of pointwise recurrent homeomorphismswith stable fixed points

Let f:52 — $2 be a pointwise recurrent, orientation preserving homeomorphism, dif-
ferent from the identity, which has stable fixed points. Let 0 andienote the two fixed
points of f, by Theorem 3.4. By Corollary 3.2, there afeinvariant, topological open
discsDg and D, containing 0 ando, respectively, whose closures are disjointf Ihas
no other periodic point than the two fixed points, ttidby separates? into two topologi-
cal open discs, each one containing a fixed point, because othewsEDo would have
a connected component containing no fixed point, which would be invariant under some
iterate of f, and this contradicts the Brouwer Translation Theorem. SimilarlyXgr. Let
A be the intersection of the connected componesfafd Do, which containso, with the
connected component 6f\ d D, which contains 0. TheA is an f-invariant, open annu-
lus. The prime end compactificatiohof A is homeomorphic t6 x [0, 1]. Let f: A — A
be the extension of |A. By a fixed point theorem of M. Barge and R.M. Gillette (see [1]),
f has no fixed point oA A, and therefore or. Obviously, f is orientation and boundary
component preserving.

Let A denote the universal covering spaceAfwhich is homeomorphic to the strip
R x [0, 1]. The group of covering transformations is generated by the transiBtiony) =
(x+1,y).

Proposition 4.1. If f: A — A is a lifting of £, then f is topologically conjugate t@.

Proof. If f is not topologically conjugate td@, then there exists im a simple closed
essential curve® such thatf(C) N C = @, by a result of H.E. Winkelnkemper, which
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generalizes the Poincaré-Birkhoff Theorem (see [9]). Nownd f(C) bound an open
annulusB C A. Sincef is an orientation preserving homeomorphism, @bas a com-
mon boundary component with(B), we havef (B) N B = . Inductively, f*(B)NB =§
for everyn # 0. This implies that every point aB is wandering, which contradicts our
assumption thaf is pointwise recurrent. O

The question now arises whether a lifting pfS? \ Fix(f) to the universal covering
spaceR? is topologically conjugate to translation. This is closely related to a conjecture
made by Winkelnkemper in [9]. In this case the compactification by prime ends does not
work, since the prime end compactification$# \ {0, oo} is agains? andf is f. Thus
we need another method of compactification and extension to get a homeomorphism of
a closed annulus. In cageis aC? diffeomorphism near the fixed points, we can obtain
a homeomorphism of a closed annulus, if we blow up the fixed points. We shall briefly
describe this procedure.

Let g:R? — R? be aC? diffeomorphism such that 0 is the only fixed pointgfLet
h:S1x (0, +00) — R?2\ {0} be the homeomorphisi(z, 1) = rz. Let g : S1 x [0, +00) —

ST x [0, +00) be the map defined b§(z, 1) = (h Lo g o h)(z, 1), if t £ 0, and

Dg(0)z 0)
IDgOz|” )"

Since Dg(0) is a linear isomorphisnyg is a homeomorphism. I§ is orientation preserv-
ing, then so ig. The procedure of blowing up an isolated fixed point can be carried out
for any homeomorphism of a smooth surface, which &!adiffeomorphism of an open
neighbourhood of the fixed point.

Recall now that ifg is orientation preserving, then tliefinitesimal rotation number
of g at its fixed point 0 is the Poincaré rotation number of the circle homeomorphism
g: 81— s1 defined by

7(2) = Dg(0)z
8= pe Ozl

A partial affirmative answer to the above question is given by the following.

§(Z,O)=(

Theorem 4.2. Let f:5%2 — S? be a pointwise recurrent, orientation preserving homeo-
morphism, different from the identity, with stable fixed points. We assume tisaa C*
diffeomorphism in some open neighbourhoods of the fixed points. If the infinitesimal rota-
tion numbers off at the fixed points are both non-zero, then a liftingfg§2 \ Fix(f) to

RR? is topologically conjugate to the translatidh.

Proof. Since f is aC? diffeomorphism in open neighbourhoods of the fixed points, we
can blow up the two fixed points to get an orientation and boundary preserving homeomor-
phism F : §1 x [0, 1] — St x [0, 1] such thatF|S* x (0, 1) is topologically conjugate to
£152\ Fix(f). Since the infinitesimal rotation numbers at the fixed pointg @incide

with the Poincaré rotation numbers BfS* x {0} and F|ST x {1}, if they are both non-
zero, thenF has no fixed point ir§* x [0, 1]. Thus, the method of proof of Proposition 4.1
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works to show that a IiftingPN’ of F on the universal covering spagex [0, 1] is topo-
logically conjugate td” onR x [0, 1]. Hence the liftingF|R x (0, 1) of £]S2\ Fix(f) is
topologically conjugate t& onR x (0,1). O
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