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ABSTRACT Several mathematical descriptions of heat transport in perfused tissues
have been proposed but have not been thoroughly tested under conditions of time-
varying temperatures. Data was obtained by measuring the response of brain
temperature to step changes in temperature of chronically implanted thermodes
in conscious baboons. These responses were compared to numerical solutions of
an equation expressing heat transport in terms of conduction in the tissue and con-
vection due to capillary blood flow. Good agreement between experimental and
theoretical curves was obtained for values of k (thermal diffusivity) of 0.0017-0.0021
cm2/sec and 4 (blood flow per unit volume of tissue) of 0.3-0.7 cm3/cm3-min. The
predicted temperature response at a given tissue location was not greatly affected
either by changes in k and 4 over the physiological range, or by small errors in
describing experimental geometry. However, inaccuracies in describing boundary
locations or failing to account for the relatively avascular scar tissue around the
thermode changed the value of 4 needed to fit the data by as much as 50%. Thus,
we conclude that the model described in this paper can be used for a description of
thermal gradients surrounding a thermode but extreme caution should be exer-
cised if such a model is used to quantitatively evaluate blood flow.

INTRODUCTION

Heat transport from heated or cooled probes implanted in brain tissue results from
conduction through the tissue and convection due to blood flow. The parameters
associated with conduction have been measured using nonliving tissue (Ponder,
1962; Chato and Shitzer, 1970; Cooper and Trezek, 1970), while the effect of blood
flow has been studied mainly in conjunction with the evaluation of thermal methods
of measuring tissue perfusion (Gibbs, 1933; Grayson, 1952; Betz, 1965; among
others). Since the purpose of many studies performed in vivo was to determine
empirically a method of measuring local blood flow, little effort has been spent
evaluating the quantitative effect of convection and conduction on thermal gradi-
ents. The model proposed by Perl (1962) treated heat transport in terms of conduc-
tion through a homogeneous medium and an additive term resulting from convec-
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tive heat transport in blood. Similar models were reported by Rutkin and Barish
(1964), and Jewett and Trezek (1967). These models were tested using only steady-
state temperature fields. However, a system cannot be characterized completely by
the steady-state response.
The purpose of this study was fourfold: (a) to measure the dynamic changes in

brain temperature using an implanted thermode; (b) to determine if the dynamic
data is in agreement with previously reported models; (c) to evaluate the parameters
associated with conduction and convection which determine temporal and spatial
temperature distribution; and (d) to find the sensitivity of temperature to the above
parameters, and thus assess the possibility of quantitatively measuring regional
brain blood flow using thermal techniques.

EXPERIMENTAL METHODS

All experiments were performed on unanesthetized, chair-restrained baboons (Papio anubis).
The disturbing effects of the laboratory environment were miniized by conducting all
experiments while the animal was in a sound-deadened room (Industrial Acoustics Co.,
Inc., Bronx, N. Y.).
A water-perfused thermode, capable of producing various temperature wave forms, was

used to vary brain temperature. Details of the thermode and control circuit have been de-
scribed elsewhere (Kastella, 1970). Briefly, the thermode consists of two gold-plated stain-
less steel needles (1.066 mm O.D.) implanted stereotaxically, with the needle tips located
bilaterally (3 mm to either side of the midline) in the preoptic/anterior hypothalamic area.
Three thermocouple probes, consisting of 40-gauge, copper-constantan thermocouples in-
side a length of 26-gauge stainless steel hypodermic stock (0.47 mm O.D.) were used for tem-
perature measurements. One thermocouple probe was soldered to the side of each thermode
needle; the remaining thermocouple probe was located in hypothalamic tissue approxi-
mately 2 mm behind the right-hand thermode needle. The three thermocouple beads were
located in approximately the same horizontal plane, i.e., 1-2 mm above the tip of the ther-
mode needles. The thermode needle-thermocouple probe assembly was packaged as a single
unit.

Temperature at the thermode tip was controlled by means of a negative feedback control
circuit. The feedback signal was provided by the amplified voltage from one of the thermode
tip thermocouples. After filtering, the feedback signal was compared with the desired input
wave form and the difference voltage fed into a power amplifier, which in turn drove a small
heater. The heater, an integral part of the thermode-thermocouple assembly, was located in a
chamber chronically attached to the top of the animal's skull.

Temperature in the hypothalamic tissue and temperature at the tip of one of the two
thermode needles could be measured simultaneously. At a water flow rate of approximately
50 ml/min, sine or square wave temperature variations could be produced over the fre-
quency range 0.001-0.05 Hz with a maximum peak-to-peak amplitude of 8°C (measured
at the tip of the thermode).

The thermode was implanted under aseptic conditions with the aid of an X-ray stereo-
taxic frame (Mechanical Developments Co., South Gate, Calif.). X-rays taken during the
implant were used to insure placement of the thermode tips in the preoptic/anterior hypo-
thalamic area and for accurate measurement of the geometrical relationship between thermo-
couples and thermode.
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When sacrificed, the animals were anesthetized with Nembutal and the upper body and
head were perfused through the left ventricle of the heart with 10% formalin solution. The
brain was removed and frozen; 50-s&-thick sections were made and stained with cresyl violet.
Thermode position and tissue damage was determined by gross and microscopic examination
of the sections.

THEORETICAL CONSIDERATIONS

A mathematical description of heat transport in living tissue should account for
heat conduction through the tissue, heat convection due to blood flow, and heat
production due to metabolism. A partial differential equation describing these proc-
esses in terms of independent additive effects of conduction, convection, and meta-
bolic heat production was proposed by Brown (1965):

-i pcT = div K grad T- div pbCbTq + hmX (1)at

where

p = tissue density (g/cm3),
c = tissue specific heat (cal/g-0C),
K = tissue thermal conductivity (cal/°C-cm-sec),
q = blood velocity vector (cm/sec),
Pb = blood density (g/cm3),
Cb = blood specific heat (cal/g-°C),
hm = metabolic heat production (cal/cm3-sec),
T = temperature (OC).

Exact solution of equation 1 requires knowledge, over all time, of the specific heats,
densities, and thermal conductivities of blood and tissue, as well as blood velocity
for each point in the tissue.

Perl (1962) applied a special case of equation 1, expressed as a difference equa-
tion, to finite volume elements. With this approach, the average tissue and blood
properties for each volume element may be used in the equation provided that the
size of the volume element is properly chosen. The volume element must be small
enough for customary mathematical methods of calculus to hold, and for tempera-
ture throughout the element to be considered uniform; yet the volume element must
be large enough, relative to the formed components within it, that the thermal prop-
erties do not vary significantly from element to element, thus allowing character-
ization in terms of average properties (Perl, 1962).

In Perl's formulation, the arterial blood entered an element at some temperature
Ta, but, by the time the blood reached the capillaries, it was assumed to be in
thermal equilibrium with the surrounding tissue. Thus, the convection term of equa-
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tion 1 can be separated into two terms:

divpbcbTq = divpbcbTqc- pbCb4)(Ta- T), (2)

where 5 = arterial-to-capillary blood flow per unit volume of tissue (cm3/cm3-sec),
and qc = capillary blood velocity vector (cm/sec). In equation 2, the first term on
the right represents heat flow through those capillaries which intersect the surface
of the element (capillary heat convection), while the second term on the right rep-
resents equilibration of arterial blood temperature with the temperature of the ele-
ment (forced convection).

Using the following two assumptions-(a) the density and specific heat of the
tissue and blood are time- and space-invariant, and (b) capillary heat convection is
insignificant (see Discussion)-and expressing the temperature at each point as the
difference between the actual temperature and the initial temperature, equation 1
can be written as:

at= div k grad Tt- 1T', (3)

where 4' = 4(pbcb/pc) = adjusted blood flow (sec-1), k = tissue thermal diffusivity =
K/pc (cm2/sec), and T' = change in tissue temperature (°C).

In most previous studies, only the steady-state solution to equation 3 has been
obtained. Since such a solution depends only on the ratio of parameters 4':k, no
unique value for either parameter can be obtained unless the other parameter is de-
termined by independent measurements. By contrast, two parameters, k and 4', are
needed to uniquely specify the solution to equation 3 for time-varying temperatures.
Comparison of these solutions with experimental responses to dynamic temperature
forcings will provide a more rigorous test of equation 3 and yield estimates for both
k and 4'. If the equation is a good representation of heat transport, variations in
blood flow will change computed values for 4' while having no effect on k. Thus,
an important aspect of the model can be tested without an independent measure
of 4)'.

In addition to the parameters noted above, solution of equation 3 requires knowl-
edge of the boundary and initial conditions (see Appendix I). The validity of the
assumptions about the parameters and the initial and boundary conditions will be
discussed later. As will be seen, the values computed for 4' and k from experimental
data are very sensitive to these assumptions.

EXPERIMENTAL RESULTS

The temperature-forcing, defined as the thermode temperature as a function of time,
consisted of step and sinusoidal changes in temperature. Examples of the tempera-
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FIGURE 1 The response of tissue temperature (lower solid line and scale on the right)
to a step increase in thermode temperature (upper solid line and scale on the left). The
computer-simulated response is shown as open circles. Coordinates (with respect to the
thermode tip) of tissue thermocouple and values for k and c' used for solution of equation
3 are shown on the figure.

ture response at a remote point in brain tissue to a "step" increase in thermode
temperature is shown as solid lines in Figs. 1, 5, and 6.
Examples of the experimental response to sinusoidal temperature-forcing are

shown in Figs. 2 and 4. The response is expressed in terms of gain and phase for
seven different forcing frequencies in the range of 0.001-0.05 Hz. Experimental gain
was independent of the amplitude of the forcing function over the temperature
range of 4-80C (peak-to-peak).

Histological sections through the area occupied by the thermodes were cut from
the brains of most experimental animals. A representative coronal section from the
region of maximum tissue damage is shown in Fig. 3.

THEORETICAL RESULTS

A numerical solution of equation 3 in cylindrical coordinates was obtained using a
difference equation approximation (refer to Appendix II). The experimental forcing
function, sampled at 0.25 sec intervals, was used for the thermode boundary condi-
tion f(t), (t > 0) in the theoretical calculations. Temperature responses to the
sampled step temperature-forcing were computed for coordinates corresponding to
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FIGURE 2 Response of tissue temperature to sinusoidal changes in thermode tempera-
ture (squares) and the simulated response (circles). Coordinates of tissu'e thermocouple
and values for k and .0' used for solution of equation 3 are shown on the figure.

the remote thermocouple location and are shown as circles in Figs. 1 and 4. These
curves represent the visually determined "best fit" between experimental and theo-
retical results (obtained by trying various values of k and 0') and were calculated
using values of k and O' shown in the figures.
To obtain theoretical data in the frequency domain the sampled step forcing func-

tion and computed response were Fourier-transformed using standard methods
(Hamming, 1962), and gain and phase were computed from the Fourier coefficients.
A plot of gain and phase vs. frequency for experimental and computed data is shown
in Figs. 2 and 4. In each case values for k and O' used for computation were those
of providing a visual best fit to experimental data.
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FiGURE 3 Coronal section through the region occupied by the thermode, illustrating the ex-
tent of tissue damage. (Cresyl violet stain.)
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Two parameters, k and O', were used to fit the experimental data. Values of k
ranged from 0.0017 to 0.0021 cm2/sec, which is in reasonable agreement with previ-
ously reported values of 0.0011-0.0024 cm2/sec obtained from various tissues. The
value of 0.0011 cm2/sec obtained by Trezek et al. (1968) was determined for living
white matter, and, because of the high lipid content, would be expected to have a
lower thermal diffusivity than gray matter. Ponder (1962) reported values of 0.0017-
0.0019 cal/cm-°C-sec for thermal conductivity (K) in freshly excised brain slices.
Using p = 1.05 g/cm3 and c = 0.88 cal/g-°C obtained from gray matter (Cooper
and Trezek, 1970) gives values for thermal diffusivity (K/pc) of 0.0018-0.0021 cm2/
sec. Thermal diffusivity of 0.0014 cm2/sec has been reported for gray matter from
cadaver brains (Cooper and Trezek, 1970) and 0.0015-0.0018 cm2/sec for cat brain
(Chato and Shitzer, 1970).
Values of 4' used to fit the experimental data ranged from 0.3 to 0.7 min-1. Using

Pb = 1.06 g/cm3, Cb = 0.86 cal/g-°C (Mendlowitz, 1948), and values of p and c
mentioned above, yields estimates of 4 from 0.3 to 0.7 ml/ml-min, which agrees
favorably with reported values of blood flow in the cerebral cortex of the anesthe-
tized baboon (James et al., 1969), hypothalamus of the conscious rabbit (Cranston
and Rosendorff, 1969), and cerebral cortex of anesthetized cats and dogs (Betz et al.,
1966).

Sensitivity to Parameters

The temperature response resulting from dynamic temperature-forcing at a probe
implanted in living brain tissue was described by a differential equation (equation 3),
expressing heat transport in terms of heat conduction in tissue and heat convection
due to blood flow. We feel that such a mathematical formulation has, primarily,
two physiological applications: (a) the prediction of thermal gradients surrounding
heated or cooled probes, and (b) the measurement of local tissue perfusion. In either
case, the sensitivity of the solution of equation 3 to the parameters (k and 4') and
the boundary conditions must be investigated. The effect of changes in k and 4' on
the numerical solution of equation 3 is shown in Fig. 4. An increase in k (at con-
stant 4') has the effect of increasing the initial slope and the steady-state value of
the step response (Fig. 4 A). In the frequency domain (Fig. 4 B) an increase in k
results in an increase in gain at all frequencies; the effect, however, is more pro-
nounced at the higher frequencies. A decrease in k has the inverse effect.
Although k affects both the high and low frequency gain, changes in 4' are ap-

FIGURE 4 Effect of changes in k and O' on the numerical solution of equation 3. Step re-
sponses for different values of k (0' constant) are shown in A and for different values of '

(k constant) in C. Experimental response is shown as a solid line. Sinusoidal responses
for different values of k are shown in B and for different values of O' in D. Experimental
response is shown as hexagons. The coordinates of the tissue thermocouple were r = 2.59
mm and z = 1.90 mm.
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parent only at the low frequencies. Thus an increase in 4' (at constant k) has little
effect on the initial slope of the step response but causes a decrease in the steady-
state values (Fig. 4 C). This can be seen in the frequency domain (Fig. 4 D) where
an increase in 4' results in a decrease in the low frequency gain but no change at the
higher frequencies. A decrease in 4' has the inverse effect.
These results indicate that for a given time-varying experimental response, inde-

pendent values for k and 4' can be determined. It is also evident that relatively large
changes in k and 4)' have little effect on the temperature response, suggesting that
equation 3 could be useful for determining temperature responses even when those
parameters are not exactly known. However, the relative insensitivity of the solution
to k, and especially 4', suggest that the utility of using equation 3 for the determi-
nation of local blood flow is limited.

Role of Capillary Convection

As noted earlier, convective heat transport can be considered as the result of two
additive effects: capillary heat convection and forced convection (see equation 2).
In the preceding discussion, the effect of capillary heat convection was assumed to
be negligible. Since capillary heat convection is dependent on vessel orientation as
well as blood flow, an accurate determination of the magnitude of the effect is dif-
ficult. However, the maximum contribution to heat transport from this source can
be evaluated, assuming all capillaries are radially oriented with respect to the ther-
mode. This situation is treated in Appendix I. A knowledge of average capillary
length lc, in addition to 4' and k, is required for solution of the resulting equation,

0.5 o Convection, Ic= 0.5 mm

A No convection

0.4 - Experimental, no. 92

0.3

H~~~~~~~~~~~~~~~~
0 k= 0.0021 cm /sec

0.2 ~~~~~ / 0'~~~(= 0.35 min-1
8~~~~~~~~r= 2.32 mm

) ~~~~~~~~z=1.31 mm
0.1

0
0 50 100 150

time (sec)

FIGURE 5 A comparison between the numerical solution of equation 3, assuming no capil-
lary heat convection (triangles) and equation A 3, assuming convection for radially oriented
capillaries (circles). Values of k and 0' shown were the same for both solutions. Coordinates
of the tissue thermocouple are shown on the figure.
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equation A 3. A comparison between the numerical solution of equation 3 and
equation A 3 is shown in Fig. 5. A value of 0.5 mm was used for lc (Reneau et al.,
1967; Wiedeman, 1963; Smaje et al., 1970; Davis and Lawler, 1958), and the choice
of k (0.0021 cm2/sec) and 4' (0.35 min-') provided a visual best fit between the ex-
perimental data and the numerical solution for equation A 3. Although not illus-
trated, the solution of equation 3 (with no capillary convection term) will also fit
the experimental data using the same value of k but with 4' = 0.28 min-'. Since
these solutions represent extreme cases, the calculated value of 4)' will fall some-
where between 0.28 and 0.35 min-' if the capillary convection is included, but cannot
be determined uniquely without additional information about capillary orientation
and blood flow. Although the addition of the capillary heat convection term has a
significant effect on the value of 4' required to fit the experimental data, Fig. 5
shows that addition of this term results in a relatively small change in the tempera-
ture response.

Evaluation of Tissue Damage

In previous sections both blood flow and thermal properties were assumed to be the
same throughout the tissue. However, as illustrated in Fig. 3, it is evident that in-
troduction of the thermode needles into the brain results in considerable tissue
damage. The region occupied by scar tissue approximates an annulus surrounding
the needles varying in thickness from almost zero to greater than 1 mm. Since this
scar tissue consists primarily of glial cells and contains few fibrous components, its
thermal diffusivity (k), density (p), and specific heat (c) were assumed equal to that

0.5
o 0.7mmscartissue

A No scar tissue
0.4

Experimental, no. 64

0.3

0.2 - ,k =0.0019 cm /sec

O'= 0.53 min-1

0.1 r = 2.59 mm

si ~~~~~~~z= 1.90 mm

0
0 50 100 150

time (sec)

FIGURE 6 A comparison between the numerical solution of equation 3 assuming 0.7 mm
of avascular scar tissue surrounds the thermode needle (circles), and assuming no scar
tissue (triangles). The experimental response is shown as a solid line. Values of k and O'
were the same for both solutions.
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of normal brain tissue. It has been reported, however, that vascularity of scar tissue
surrounding old brain lacerations is greatly reduced (Alexander and Putnam, 1937).
Thus, an attempt was made to investigate the effect of scar tissue on the numerical
solution of equation 3 using the following assumptions: (a) The scar tissue occupies
a 0.7 mm annulus surrounding the thermode needles. (b) Thermal properties (k, p, c)
are the same for both normal and scar tissue. (c) Blood flow in the scar tissue is
zero (representing the extreme case). A comparison between the numerical solution
of equation 3 with and without scar tissue is shown in Fig. 6. Values of k and 4'
were chosen to provide a visual best fit between experimental and theoretical data
assuming the presence of avascular scar tissue. As previously shown in Fig. 4, the
solution of equation 3 (assuming no scar tissue) will also fit this experimental data
using the same value of k but with 4' = 0.48 min-'. Although the difference in 4'
is relatively small, these results indicate that no unique value can be determined
without more information about the vascularity of scar tissue.

In addition to scar tissue, nonuniformities in blood flow distribution occur due to
differences in vascularity of gray and white matter (James et al., 1969; Craigie,
1920). Since little quantitative information about blood flow distribution in the
hypothalamus is available, and since the geometry is difficult to handle mathemati-
cally, no attempt was made to evaluate the effect due to regional blood flow dif-
ferences.

Sensitivity to Bounzdary Conditions

It was noted earlier that solution of a differential equation, such as equations 3 or
A 3, requires knowledge of certain boundary conditions. When these equations are
expressed in cylindrical coordinates, the temperature for all time at specific radial
and axial coordinates must be defined. For the equations under study, no choice is
available for the inner radial (thermode) boundary condition (equation A 5 a).
However, the choice of the outer radial boundary and both axial boundaries (equa-
tions A 5 b, d, and e) is determined by the geometry of the brain surface. It was
found, though, that these boundaries could be much closer to the thermode than
the brain surface without significantly affecting the solution in the vicinity of the
thermode tip; the outer boundaries were chosen accordingly (Appendix II). Thus
the complex geometry of the surface of the brain appears to have little effect near
the thermode because of the steepness of the temperature gradients in this region.

Predicted Temperature Distribution

The previous results indicate that good agreement between computed and experi-
mental results was obtained in both the time and frequency domain, and these re-
sults were not greatly affected by variations in the parameters and outer boundary
conditions. Although temperature was not measured simultaneously at different
tissue locations, the data from the three animals represent measurements at three
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FIGURE 7 Isothermal map showing the predicted steady-state solution of equation 3 in
response to a 1 °C step increase in temperature of a 1 mm O.D. thermode. The inserts (letters
A-K) illustrate the predicted temperature changes as a function of time for various tissue
locations. Values of k and 4' were 0.0019 and 0.48 min-' respectively.
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different tissue coordinates. Thus, it seemed reasonable to use the numerical solution
of equation 3 to predict the thermal response at other tissue locations. A solution
was computed for a 1°C step increase in temperature at a 1 mm O.D. thermode
assuming k = 0.0019 cm2/sec and 4' = 0.48 min-'. Fig. 7 illustrates both the steady-
state values (in the form of an isothermal map) and the time responses at several
points in the tissue. This figure emphasizes the steep thermal gradients resulting
from localized heating and shows the slow time course of the temperature response.

CONCLUSIONS

A partial differential equation describing heat transport in terms of heat conduction
in a homogeneous medium, and convection due to blood flow, has been used to
describe dynamic temperature responses around cylindrical thermodes chronically
implanted in brain tissue. Proper selection of the parameters k (thermal diffusivity)
and 4' (adjusted blood flow) resulted in good agreement between theoretical and
experimental data in either the time or frequency domain. However, no unique set
of parameters describes the experimental data since simply adjusting the value of
4' allows a fit between experimental and theoretical results when the assumption of
avascular scar tissue or the assumption of capillary heat convection was included in
the equation.
The effect of including scar tissue or capillary heat convection on the temperature

response was relatively small, despite the fact that extreme cases were assumed. For-
tunately, for a particular formulation, moderate changes in k and 4' over the physi-
ological range also had little effect on the predicted temperature response. Thus, it
can be concluded that any of these formulations are adequate to predict time-vary-
ing, as well as steady-state, temperature fields in living brain tissue surrounding
cylindrical thermodes.
We may conclude the following regarding the potential utility of thermal measure-

ments in evaluating regional brain blood flow. First, the calculated value of 4' re-
quired to fit the experimental data is sensitive to assumptions regarding capillary
heat convection and conduction through scar tissue. Thus, the contribution of capil-
lary convection and scar tissue conduction must be measured experimentally before
the calculated value of 4' can be associated with actual blood flow. Second, the
actual temperature pattern is relatively insensitive to changes in 4'. Therefore, tissue
temperature must be precisely measured in order to accurately estimate tissue per-
fusion. Furthermore, 4' affects primarily the steady-state temperature response,
which requires that the blood flow remain constant for a period of at least 2-3 min
for a determination of tissue perfusion. Thus, the utility of this method is probably
limited to qualitative measurements of steady-state blood flow and cannot be used
for quantitative or instantaneous determination of tissue perfusion.

This study was supported in part by National Institutes of Health grants GM 00739-13, FR 00166
5-FOI-GM-30, 983, and by United States Air Force contract F 33615696-1306.
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APPENDIX I

Heat Transport Due to Conduction

The accumulation of heat per unit volume of tissue due to conduction can be expressed as
(Carlslaw and Jaeger, 1959):

a pcT = div K grad T (cal/cm3-sec).
at

If p and c are assumed to be time-invariant and K is assumed to be space-invariant, this
expression becomes

aT = k div grad T (°C/sec),

where k = K/pc.
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Heat Transport Due to Convection

Heat convection due to capillary blood flow depends on the geometry of the capillary bed.
on blood flow in each capillary, and on the density and specific heat of the blood in each
capillary. A quantitative description of these factors is nearly impossible. However, the heat
convection for the case where all capillaries are parallel and with blood flow in the same
direction can be computed to give an estimate of the maximum effect on heat transport (Perl,
1962). If a small cubic volume of tissue containing parallel but randomly located capillaries
is considered, where

I = length of a side of the volume element (cm),
n = total number of capillaries in the volume,
np = average number of capillaries crossing a plane (area P) placed perpendicular to

the axis of the capillaries,
F, = flow in the ith capillary, 1 < i < n (cm3/sec),
F = total arterial-to-capillary blood flow in the volume element (cm3/sec),
I = length of the ith capillary (cm),

1, = average capillary length (cm);

thus, the total capillary blood flow within the element is assumed to be:

n

ZFi = F= 4P (cm3/sec),
i=l

and the total blood flow through a plane perpendicular to the axis of the capillaries will be:

n

Z Fj (cm3/sec),
j=l

where the subscript j refers to only those capillaries that cross the plane. If it is assumed
that the average flow for all capillaries in the volume is equal to the average flow in capil-
laries crossing the plane, i.e.:

n np

=EFi -E Fj (cm3/sec),n ii np j=1

then the total blood flow through the plane is:

iF, = np F. = np F (cm3/sec),
j=1 n

and flow per unit area across the plane is:

n,F (cm3/cm2-sec).
n 12

If it is also assumed that the probability of the ith capillary crossing the plane is ICi/ll then
the average number of capillaries crossing the plane will be:

c11 In n -

np =E ICl= nnE i =ICl.
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If Tb is the temperature of the capillary blood as it crosses the plane, the heat flux across the
plane due to convection will be:

pbCbTb npF PbCbTblc (cal/cm-sec).

Assuming that Pb , Cb , and ?c are spatially invariant, that the capillary blood is the same
temperature as the surrounding tissue, and that div O = 0, the accumulation of heat per
unit volume of tissue due to convection will be:

pc at = -div pbcC4)oT = -pbCbh4) grad T (cal/cm3-sec).

The accumulation of heat per unit volume of tissue due to equilibration of arterial blood
(entering the tissue element at temperature Ta) with the tissue (temperature T) can be ex-
pressed as:

pC at = pbCb4)(Ta- T) (cal/cm3-sec).at

Arterial blood density and specific heat are assumed to be the same as for capillary blood.

The Combined Equation

Combining the effects of conduction, convection and metabolism yields the equation:

9T = k div grad T- 71cgrad T + '(Ta- T) + hm (A )at ~~~~~~~~~~~~PC
An initial unforced temperature distribution ( °= 0, To, can be defined such that:

O = k div grad To- 01c grad To + 0'(Ta - T) + hm. (A 2 )
PC

If metabolism hm and blood flow 4 are assumed constant in time, and if the substitution T' =
T - To is made in equation A 1, the resulting equation can be subtracted from equation
A 2, yielding:

aT'-= k div grad T'-1XI' grad T'-q'T', (A 3)

where T' represents the change in temperature at any point in the tissue.
Equation A 3 can be expressed in cylindrical coordinates; assuming radial symmetry,

the response to thermode heating becomes:

acl=T a2T' k aT' clTI a2T
at ar2 r clc4r ar 4)T'k4 (4
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The boundary conditions for a cylindrical thermode with axis at r = 0 and tip located at z =
0 are:

T'(ri,z,t) =f(t), t > 0,zz>O (A5a)

7'(r2, z, t) = 0, (A 5 b)

= O,r = O,z < 0, (A5c)

T'(r, z1, t) = 0, (A 5 d)

T'(r, z2,t) = 0, (A5e)

and the initial condition is:

T'(r, z, 0) = 0, (A5f)
where

ri = thermode radius,
r2 = outer radial boundary coordinate,
Z, = lower axial boundary coordinate,
Z2 = upper axial boundary coordinate, and

f(t) = temperature at thermode surface.

APPENDIX II

The finite difference equation used to approximate equation A 4 was:

T j, j,m+1 - Tfi,j,m k ,2'T
2 (Tj+l, j,m- 2Tj, j, i + Ti-1,j,m)h p2

+ k (Ti+i,j,m T'i_1,j,m)2pri

- 2 (T'i+1 j,m- Ti-r,j,m)

'T'i,j,n+ (Ti,j+ ,m- 2T'ij,m + Ti,j_l,m) (A6)

where T'i,j,m = T'(ri, zi, ti),

ri = r1 + ip, 0 < i < 30;

zj = jb, -22 <. < 30;

tm = mh, 0 < m < 1000;

and i, j, m are integers. Spacing in the time direction (h) was 0.25 sec. Spacing in the r- and
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z-directions (p and b) was chosen so that a value of ri and zi would coincide with the coor-
dinates of the remote thermocouple. Values for p and b were always between 0.04 and 0.06
cm. The unequal grid spacing between r = 0 and r = r1 was accounted for by using a quad-
ratic interpolation formula. The difference equation used for solution of equation 3 was
identical to A 6 but with 7, = 0.
The boundary conditions (equations A 5 a-I) expressed as difference equations were:

T'(ri, zj, tm) = f(tk), j 0; T'(ri, Z3o tm) = 0

aT' = o, j < 0; T'(ri,Z22tm) = 0,
at O, j,m T'(ri, zj, 0) = 0.

T'(r3o z,z tm) = 0,

The difference equation, equation A 6, was solved for T'i,j,m+ and used to compute suc-
cessive values of T'i,j,,m+l from values of T'i,j,m, T'i+i,j,m, T'ii,j,m, T'i,j+i,m, and
T'i,j_i, . This "marching" technique (Kunz, 1957) computes new points in time from pre-
vious points and from boundary conditions. Values of T' were computed for 30 points in
the radial direction, 53 points in the axial direction, and 1000 points (250 sec) in the time
direction. Values for p, b, and h were sufficient to assure stability of the solution (Kunz,
1957).
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