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Abstract

For a Lie groupoid G with a twisting σ (a PU(H)-principal bundle over G ), we use the (geometric)
deformation quantization techniques supplied by Connes tangent groupoids to define an analytic index
morphism

K∗(
A∗G ,π∗σ

) Indexa,(G ,σ )

K∗(G , σ )

in twisted K-theory. In the case the twisting is trivial we recover the analytic index morphism of the
groupoid.

For a smooth foliated manifold with twistings on the holonomy groupoid we prove the twisted analog of
the Connes–Skandalis longitudinal index theorem. When the foliation is given by fibers of a fibration, our
index coincides with the one recently introduced by Mathai, Melrose, and Singer.

We construct the pushforward map in twisted K-theory associated to any smooth (generalized) map
f :W → M/F and a twisting σ on the holonomy groupoid M/F , next we use the longitudinal index
theorem to prove the functoriality of this construction. We generalize in this way the wrong way functoriality
results of Connes and Skandalis when the twisting is trivial and of Carey and Wang for manifolds.
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0. Introduction

This paper is part of a longstanding project where we aim to study and develop an index theory
(á l’Atiyah–Singer and Connes–Skandalis) for foliations under the presence of twistings.

The Atiyah–Singer index theorem in [2], which states that for an elliptic pseudo-differential
operator on a compact manifold, the analytical index is equal to the topological index, has been
generalized in many other situations. In particular, Connes and Skandalis established an index
theorem for longitudinal elliptic operators on foliated manifolds [15].

For a smooth foliated manifold (M,F), there is a canonically defined C∗-algebra C∗(M,F) =
C∗(GM) which is the C∗-algebra of the underlying holonomy groupoid GM = M/F . An elliptic
pseudo-differential operator D along the leaves of the foliation defines an element

Indexa,M/F (D) ∈ K0
(
C∗(M,F)

)
,

in the K-theory of the C∗-algebra. This is done by using pseudo-differential calculus for the
holonomy groupoid GM . The element Indexa(D) is called the analytical index of D, which
depends only on the longitudinal symbol of D. Hence, one has the analytical index as a group
homomorphism associated to the foliated manifold (M,F),

Indexa,M/F : K0(F ∗) −→ K0
(
C∗(M,F)

)
.

The topological index for (M,F) is obtained by applying the Thom isomorphism and Bott peri-
odicity in topological K-theory to an auxiliary embedding

ι : M −→ R2n.

Let N be the total space of the normal bundle to the leaves. The Thom isomorphism implies that

K0(F ∗) ∼= K0(N).
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There is an open neighborhood of the 0-section in N which is homeomorphic to an open transver-
sal T of the induced foliation F̃ on M̃ = M × R2n. For a suitable open neighborhood Ω of T in
M × R2n, the C∗-algebra C∗(Ω, F̃ |Ω) is Morita equivalent to C0(T ) (the C∗-algebra of contin-
uous functions on T vanishing at infinity). So one has

K0(N) ∼= K0(T ) ∼= K0
(
C∗(Ω, F̃ |Ω)

) −→ K0
(
C∗(M̃, F̃ )

)
where the last map is induced by the inclusion C∗(Ω, F̃ |Ω) ⊂ C∗(M̃, F̃ ). The Bott periodicity
gives rise to

K0
(
C∗(M̃, F̃ )

) = K0
(
C∗(M,F) ⊗ C0

(
R2n

)) ∼= K0
(
C∗(M,F)

)
.

This leads to the topological index for a foliated manifold (M,F),

Indext,M/F : K0(F ∗) −→ K0
(
C∗(M,F)

)
.

In [15], Connes and Skandalis showed that

Indexa,M/F = Indext,M/F .

There is an equivalent definition (see [22,14,27]) of the analytical index for a foliated manifold
(M,F) using the Connes tangent groupoid

G T
M := F × {0} � GM × (0,1] ⇒ M × [0,1]

of the holonomy groupoid GM . The definition works for any Lie groupoid G . Let AG be the
associated Lie algebroid which can be viewed as a Lie groupoid given by the vector bundle
structure, then one has the following exact sequence (see [22])

0 −→ C∗(G × (0,1]) −→ C∗(G T
) ev0−→ C∗(AG ) −→ 0.

Monthubert and Pierrot in [27] show that

Indexa,M/F = (ev1)∗ ◦ (ev0)
−1∗ ◦ F := Indexa,GM

: K0(F ∗) −→ K0
(
C∗(M,F)

)
where F : K0(F ∗) = K0(A∗G ) ∼= K0(C

∗(AG )) is the isomorphism induced by the fiberwise
Fourier isomorphism C∗(AG ) ∼= C0(A

∗G ) and the morphisms evt are the respective evaluations.
The analytic index morphism associated to a Lie groupoid arises naturally from a geometric

construction, that of the Connes tangent groupoid [22,14,27,29]. This groupoid encodes the de-
formation of the Lie groupoid to its Lie algebroid. The use of deformation groupoids in index
theory has proven to be very useful to prove index theorems, as well as to establish index theo-
ries in many different settings [22,14,16,1,8,21,9,10,34]. For example, even in the classic case of
Atiyah–Singer theorem, Connes gives a very simple conceptual proof using the tangent groupoid
(see [14], II.5).
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There is also an equivalent definition of the topological index for a foliated manifold (M,F)

(see [8]) by realizing the Thom inverse morphism of a complex vector bundle as the deformation
index of some groupoid (the Thom groupoid, [16], Theorem 6.2). The resulting topological index
is denoted by

Indext,GM
: K0(F ∗) −→ K0

(
C∗(M,F)

)
.

One has the following equivalences between these four index morphisms:

Indexa,GM
= Indexa,M/F = Indext,M/F = Indext,GM

.

In this paper, we use these strict deformation quantization techniques to work out an index
theory for foliation groupoids in the presence of a twisting which generalizes the index theory
[35] for a smooth manifold with a twisting σ : M → K(Z,3), and Connes–Skandalis index the-
ory when the twisting is trivial. The approach taken in this paper is of geometrical nature, we are
going to define our indices and propose the corresponding index theorem by using deformation
groupoid techniques. We will leave the discussion of the pseudodifferential calculus behind these
for later works.

Following the construction of KK-elements developed in [22] (in particular Section 3) by
Hilsum and Skandalis, we construct an analytic index morphism of any Lie groupoid G ⇒ M

with a twisting given by a Hilsum–Skandalis’ generalized morphism σ : G PU(H),

K∗(AG ,π∗σ
) Indexa,(G ,σ )

K∗(G , σ ).

This index Indexa,(G ,σ ) takes values in the twisted K-theory of (G , σ ) (see [33] for twisted K-
theory for groupoids or Definition 2.8 below). When the twisting is trivial we recover the analytic
index morphism of the groupoid defined by Monthubert and Pierrot in [27].

Equivalently a twisting is given by a PU(H)-principal bundle over the units of the groupoid G
together with a compatible G -action. When the Lie groupoid represents a manifold, the twisted
K-theory we are considering is the twisted K-theory for manifolds [3,23]. In general, our setting
also includes, as particular cases, equivariant twisted K-theory and twisted K-theory for orbifolds
[33].

For general Lie groupoids, we prove that our twisted index morphism satisfies the following
three properties (Propositions 2.14, 2.15 and 2.17):

(i) It is compatible with the Bott morphism, i.e., the following diagram is commutative

K∗(A∗G ,π∗σ0)
Indexa,(G ,σ )

Bott

K∗(G , σ )

Bott

K∗(A∗G × R2,π∗(σ ◦ p)0) Index
a,(G ×R2,σ◦p)

K∗(G × R2, σ ◦ p)

where p : G × R2 → G is the projection, σ0 and (σ ◦ p)0 are the induced twistings on the
unit spaces of G and G × R2 respectively.
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(ii) Let H
j

↪→ G be an inclusion as an open subgroupoid. The following diagram is commuta-
tive:

K∗(A∗H ,π∗(σ ◦ j)0)
Indexa,(H ,σ◦j)

j!

K∗(H , σ ◦ j)

j!

K∗(A∗G ,π∗σ0)
Indexa,(G ,σ )

K∗(G , σ )

where the vertical maps are induced from the inclusions by open subgroupoids.
(iii) Let N → T be a real vector bundle. Consider the product groupoid N ×T N ⇒ N This

groupoid has a Lie algebroid N ⊕ N
πN−→ N . The groupoid N ×T N ⇒ N is Morita

equivalent to the identity groupoid T ⇒ T . That is, there is an isomorphism in the Hilsum–
Skandalis category

N ×T N
M−→ T .

In the presence of a twisting β on the space T the twisted index morphism

K∗(N ⊕ N,π∗β
) Indexa,(N×T N,β◦M)

K∗(N ×T N,β ◦ M ) ∼= K∗(T ,β)

is the inverse (modulo a Morita equivalence and a Fourier isomorphism) of the Thom iso-

morphism (see [7,23]) in twisted K-theory K∗(T ,β)
Tβ−→ K∗(N ⊕ N,π∗

T β).

These properties are the analogs to the axioms stated in [2] and will allow us to prove a twisted
index theorem for foliations and in general we can then study twisted index theory for these
objects. Indeed, for the case of regular foliations, we extend the topological index of Connes–
Skandalis (Definition 3.2 below) to the twisted case and prove the following twisted longitudinal
index theorem.

Theorem 0.1. For a regular foliation (M,F) with a twisting σ : M/F PU(H) on the
space of leaves, we have the following equality of morphisms:

Indexa,(M/F,σ ) = Indext,(M/F,σ ) : K∗(F,π∗σ
) −→ K∗(M/F,σ ).

In fact, any index morphism for foliations with twistings satisfying the three properties (i)–(iii)
is equal to the twisted topological index by exactly the same proof. There is a second definition of
the twisted analytic index using projective pseudo-differential operators along the leaves which
also satisfies the three properties. We will return to this issue in a separate paper.

When the foliation is given by a fibration π : M → B and the twisting is a torsion class in
H 3(B,Z), our index coincides with the one recently introduced in [25] by Mathai, Melrose, and
Singer since the topological indices of both papers are the same. We remark that they also give
the corresponding cohomological formula which was also recently proved by supperconnection
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methods by Benameur and Gorokhovsky [4]. We will leave the study of Chern–Connes type
formulas in the twisted foliation context for further works.

In this paper, we also construct, for every smooth (generalized) map f : W → M/F and a
twisting σ on M/F , a pushforward morphism in twisted K-theory

f! : K∗+i
(
W,f ∗σ0 + oT W⊕f ∗νF

) −→ Ki(M/F,σ),

for an induced twisting on W . Here oT W⊕f ∗νF
is the K-theoretical orientation twisting of the

real vector bundle T W ⊕ f ∗νF with νF being the normal bundle to the foliation F . We then use
the twisted longitudinal index theorem to prove the functoriality of this construction.

Theorem 0.2. The pushforward morphism is functorial, that is, if we have a composition of
smooth maps

Z
g−→ W

f−→ M/F, (0.1)

and a twisting σ : M/F → PU(H) then (f ◦ g)! = f! ◦ g!

When σ is trivial and f : W → M/F is K-oriented (that is T W ⊕νF is K-oriented), our push-
forward map in Definition 4.9 agrees with the one constructed in [15]. Also, when the foliation
consists on a single leaf (hence a manifold) but the twisting is not necessarily trivial, we obtain
otherwise the push-forward map defined in [7] by Carey and Wang.

We remark an important difference with respect to Connes–Skandalis approach in [15]. In-
deed, we prove first, in a geometric way, the longitudinal index theorem and then we use it to
prove the pushward functoriality. Recall that in [15] it is done conversely with analytic methods.
Indeed, their fundamental technical result (as remarked by Connes and Skandalis), Lemma 4.7
in [15], is proved by means of the longitudinal pseudodifferential calculus and the KK-elements
associated to it. With this result they prove the functoriality of the pushforward and then the
longitudinal index theorem. In this paper, the twisted analog of the lemma mentioned above
(Proposition 4.6) is proved using the longitudinal index theorem. The strict deformation quanti-
zation approach to index theory for foliations (without twistings) have already used in this sense
in previous works by the first author in [8,9].

Some of the results presented in this paper were announced in [11]. There is however an
important difference in the way of proving the pushforward functoriality. The arguments stated
in that note for proving such a result were independent of the longitudinal index theorem. It is
indeed possible to prove it directly by deforming some KK-elements, in the spirit of Theorem 6.2
in [16] or Theorem 2.17 below.

1. Twistings on Lie groupoids

In this section, we review the notion of twistings on Lie groupoids and discuss some examples
which appear in this paper. Let us recall what a groupoid is:

Definition 1.1. A groupoid consists of the following data: two sets G and G (0), and maps

(1) s, r : G → G (0) called the source map and target map respectively,
(2) m : G (2) → G called the product map (where G (2) = {(γ, η) ∈ G × G : s(γ ) = r(η)}),
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together with two additional maps, u : G (0) → G (the unit map) and i : G → G (the inverse map),
such that, if we denote m(γ,η) = γ · η, u(x) = x and i(γ ) = γ −1, we have

(i) r(γ · η) = r(γ ) and s(γ · η) = s(η).
(ii) γ · (η · δ) = (γ · η) · δ, ∀γ,η, δ ∈ G whenever this makes sense.

(iii) γ · x = γ and x · η = η, ∀γ,η ∈ G with s(γ ) = x and r(η) = x.
(iv) γ · γ −1 = u(r(γ )) and γ −1 · γ = u(s(γ )), ∀γ ∈ G .

For simplicity, we denote a groupoid by G ⇒ G (0). A strict morphism f from a groupoid H ⇒
H (0) to a groupoid G ⇒ G (0) is given by maps in

H
f

G

H (0)
f

G (0)

which preserve the groupoid structure, i.e., f commutes with the source, target, unit, inverse
maps, and respects the groupoid product in the sense that f (h1 · h2) = f (h1) · f (h2) for any
(h1, h2) ∈ H (2).

In this paper we will only deal with Lie groupoids, that is, a groupoid in which G and G (0)

are smooth manifolds, and s, r,m,u are smooth maps (with s and r submersions, see [24,30]).
For two subsets U and V of G (0), we use the notation G V

U for the subset{
γ ∈ G : s(γ ) ∈ U, r(γ ) ∈ V

}
.

Lie groupoids generalize the notion of Lie groups. For Lie groupoids there is also a notion of
Lie algebroid playing the role of the Lie algebra in Lie theory.

Definition 1.2 (The Lie algebroid of a Lie groupoid). Let G ⇒ G (0) be a Lie groupoid. Denote
by AG the normal bundle associated to the inclusion G (0) ⊂ G . We refer to this vector bundle
π : AG → G (0) as the Lie algebroid of G .

Remark 1.3. The Lie algebroid AG of G has a Lie algebroid structure. For see this it is usually
more convenient to identify AG with the restriction to the unit space of the vertical tangent bundle
along the fiber of the source map s : G → G (0). This identification is not canonical, it corresponds
indeed to a particular choice of splitting of the short exact sequence of vector bundles over G (0).

0 −→ T G (0) −→ TG (0)G −→ AG −→ 0.

The Lie algebroid structure consists of(
π : AG −→ G (0), dr : AG −→ T G (0), [ , ]AG

)
where the anchor map dr is the restriction of the differential of r to AG , and the Lie bracket
[ , ]AG on the space of section of AG is given the usual Lie bracket of the right invariant vector
fields, restricted to G (0). We will not make use on this paper of this additional structure.
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1.1. Generalized morphisms: the Hilsum–Skandalis category

Lie groupoids form a category with strict morphisms of groupoids. It is now classical in Lie
groupoid’s theory that the right category to consider is the one in which Morita equivalences
correspond precisely to isomorphisms. We review some basic definitions and properties of gen-
eralized morphisms between Lie groupoids, see [33], Section 2.1, or [22,28,26] for more detailed
discussions.

We first recall the notions of groupoid actions and principal bundles over groupoids. Given
a Lie groupoid G ⇒ G (0), a right G -bundle over a manifold M is a manifold P equipped with
maps as in

P

π
ε

G

r s

M G (0),

together with a smooth right G -action μ : P ×(ε,r) G → P , μ(p,γ ) = pγ , such that π(pγ ) =
π(p) and p(γ1 ·γ2) = (pγ1)γ2 for any (γ1, γ2) ∈ G (2). Here P ×(ε,r) G denotes the fiber product
of ε : P → G (0) and r : G → G (0). A left G -bundle can be defined similarly. A G -bundle P is
called principal if

(i) π is a surjective submersion, and
(ii) the map P ×(ε,r) G → P ×M P , (p, γ ) �→ (p,pγ ) is a diffeomorphism.

A principal G -bundle P over M is called locally trivial if P is isomorphic to a principal G -bundle

⊔
i Ωi × G

{(x, j, γ ) ∼ (x, i, gij (x) · γ )}

defined by a G -valued 1-cocycle on M ,

{
gij : Ωi ∩ Ωj −→ G |gij (x) · gjk(x) = gij (x)

}
with respect to a cover {Ωi} of M .

Let G ⇒ G (0) and H ⇒ H (0) be two Lie groupoids. A principal G -bundle over H is a
right principal G -bundle over H (0) which is also a left H -bundle over G (0) such that the right
G -action and the left H -action commute, formally denoted by

H Pf G

H (0) G (0).
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A G -valued 1-cocycle on H with respect to an indexed open covering {Ωi}i∈I of H (0) is a
collection of smooth maps

fij : H Ωi

Ωj
−→ G ,

satisfying the following cocycle condition: ∀γ ∈ Hij and ∀γ ′ ∈ Hjk with s(γ ) = r(γ ′), we have

fij (γ )−1 = fji

(
γ −1) and fij (γ ) · fjk

(
γ ′) = fik

(
γ · γ ′).

We will denote this data by f = {(Ωi, fij )}i∈I . It is equivalent to a strict morphism of groupoids

HΩ = ⊔
i,j H Ωi

Ωj

f

G

⊔
i Ωi G (0).

Associated to a G -valued 1-cocycle on H , there is a canonical defined principal G -bundle
over H . In fact, any principal G -bundle over H is locally trivial (cf. [26]).

We can now define generalized morphisms between two Lie groupoids.

Definition 1.4 (Generalized morphism). Let G ⇒ G (0) and H ⇒ H (0) be two Lie groupoids.
A right G -principal bundle over H , also called a generalized morphism (or Hilsum–Skandalis
morphism), f : H G , is given by one of the three equivalent data:

(1) A locally trivial right principal G -bundle Pf over H ,

H Pf G

H (0) G (0).

(2) A 1-cocycle f = {(Ωi, fij )}i∈I on H with values in G .
(3) A strict morphism of groupoids

HΩ = ⊔
i,j H Ωi

Ωj

f

G

⊔
i Ωi G (0),

for an open cover Ω = {Ωi} of H (0).

Two generalized morphisms f and g are called equivalent if the corresponding right G -principal
bundles Pf and Pg over H are isomorphic.



4942 P. Carrillo Rouse, B.-L. Wang / Advances in Mathematics 226 (2011) 4933–4986
As the name suggests, generalized morphism generalizes the notion of strict morphisms and
can be composed. Indeed, if P and P ′ are generalized morphisms from H to G and from G to
L respectively, then

P ×G P ′ := P ×G (0) P ′/
(
p,p′) ∼ (

p · γ, γ −1 · p′)
is a generalized morphism from H to L . Consider the category GrpdHS with objects Lie
groupoids and morphisms given by equivalent classes of generalized morphisms. There is a func-
tor

Grpd −→ GrpdHS (1.1)

where Grpd is the strict category of groupoids. Then the composition is associative in GrpdHS.
Two groupoids are Morita equivalent if they are isomorphic in GrpdHS. For example, given a Lie
groupoid H ⇒ H (0) and an open covering {Ωi}i of H (0), the canonical strict morphism of
groupoids HΩ → H is a Morita equivalence.

1.2. Twistings on Lie groupoids

In this paper, we are only going to consider PU(H)-twistings on Lie groupoids where H is an
infinite dimensional, complex and separable Hilbert space, and PU(H) is the projective unitary
group PU(H) with the topology induced by the norm topology on U(H).

Definition 1.5. A twisting σ on a Lie groupoid G ⇒ G (0) is given by a generalized morphism

σ : G PU(H).

Here PU(H) is viewed as a Lie groupoid with the unit space {e}. Two twistings σ and σ ′ are
called equivalent if they are equivalent as generalized morphisms.

So a twisting on a Lie groupoid G is a locally trivial right principal PU(H)-bundle over G ,

G Pσ PU(H)

G (0) {e}.
(1.2)

Equivalently, a twisting on G is given by a PU(H)-valued 1-cocycle on G ,

gij : G Ωi

Ωj
−→ PU(H)

for an open cover Ω = {Ωi} of G (0). That is, a twisting σ on a Lie groupoid G is given by a strict
morphism of groupoids



P. Carrillo Rouse, B.-L. Wang / Advances in Mathematics 226 (2011) 4933–4986 4943
GΩ = ⊔
i,j G

j
i

PU(H)

⊔
i Ωi {e}

(1.3)

for an open cover Ω = {Ωi} of G (0).

Remark 1.6. The definition of generalized morphisms given in the last subsection was for two
Lie groupoids. The group PU(H) it is not precisely a Lie group but it makes perfectly sense to
speak of generalized morphisms from Lie groupoids to this infinite dimensional “Lie” groupoid
following exactly the same definition. Indeed, it is obvious once one looks at equivalent datas
(1.2) and (1.3) above (recall PU(H) is considered with the topology induced by the norm topol-
ogy on U(H)).

Remark 1.7. A twisting on a Lie groupoid G ⇒ M gives rise to a U(1)-central extension over
the Morita equivalent groupoid GΩ by pull-back the U(1)-central extension of PU(H)

1 −→ U(1) −→ U(H) −→ PU(H) −→ 1.

We will not call a U(1)-central extension of a Morita equivalent groupoid of G a twisting on G
as in [33]. This is due to the fact that the associated principal PU(H)-bundle might depend
on the choice of Morita equivalence bibundles, even though the isomorphism class of principal
PU(H)-bundle does not depend on the choice of Morita equivalence bibundles. It is important
in applications to remember the PU(H)-bundle arising from a twisting, not just its isomorphism
class.

Example 1.8. We give a list of various twistings on standard groupoids appearing in this paper.

(1) (Twisting on Lie groups.) Let G be a Lie group. Then

G ⇒ {e}

is a Lie groupoid. A twisting on G is given by a projective unitary representation

G −→ PU(H).

(2) (Twisting on manifolds.) Let X be a C∞-manifold. We can consider the groupoid

X ⇒ X

where every morphism is the identity over X. A twisting on X is given by a locally triv-
ial principal PU(H)-bundle over X, or equivalently, a twisting on X is defined by a strict
homomorphism
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XΩ = ⊔
i,j Ωij PU(H)

⊔
i Ωi {e}

with respect to an open cover {Ωi} of X, where Ωij = Ωi ∩ Ωj . Therefore, the restriction
of a twisting σ on a Lie groupoid G ⇒ G (0) to its unit G (0) defines a twisting σ0 on the
manifold G (0).

(3) (Orientation twisting.) Let X be a smooth oriented manifold of dimension n. The tangent
bundle T X → X defines a natural generalized morphism

X SO(n).

Note that the fundamental representation of the Spinc group Spinc(n) gives rise to a com-
mutative diagram of Lie group homomorphisms

Spinc(n) U(C2n
)

SO(n) PU(C2n
).

With a choice of inclusion C2n
into a Hilbert space H , we have a canonical twisting, called

the orientation twisting of X associated to its tangent bundle, denoted by

oT X : X PU(H).

(4) (Pull-back twisting.) Given a twisting σ on G and for any generalized homomorphism
φ :H → G , there is a pull-back twisting

φ∗σ : H PU(H)

defined by the composition of φ and σ . In particular, for a continuous map φ : X → Y ,
a twisting σ on Y gives a pull-back twisting φ∗σ on X. The principal PU(H)-bundle over
X defines by φ∗σ is the pull-back of the principal PU(H)-bundle on Y associated to σ .

(5) (Twisting on G-spaces.) Let G be a Lie group acting by diffeomorphisms in a manifold M .
The transformation groupoid associated to this action is

M � G ⇒ M.

As a set M � G = M × G, and the maps are given by s(x, g) = x · g, r(x, g) = x, the
product given by (x, g) ◦ (x · g,h) = (x, gh), the unit is u(x) = (x, e) and with inverse
(x, g)−1 = (x · g,g−1). The projection from M � G to G defines a strict homomorphism
between groupoids M � G and G, then any projective representation G → PU(H) defines
a twisting on M � G, which is the pull-back twisting from a twisting on G.
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(6) (Twisting on pair groupoid.) Let M be a C∞-manifold. We can consider the groupoid

M × M ⇒ M

with s(x, y) = y, r(x, y) = x and the product given by (x, y) ◦ (y, z) = (x, z). Any locally
trivial principal PU(H)-bundle P is trivial as the left action of M × M ⇒ M on P gives a
canonical trivialization

P ∼= M × PU(H).

Hence, any twisting on the pair groupoid M × M ⇒ M is always trivial.

(7) (Twisting on fiber product groupoid.) Let N
p−→ M be a submersion. We consider the fiber

product N ×M N := {(n,n′) ∈ N × N : p(n) = p(n′)}, which is a manifold because p is a
submersion. We can then take the groupoid

N ×M N ⇒ N

which is a subgroupoid of the pair groupoid N × N ⇒ N . Note that this groupoid is in
fact Morita equivalent to the groupoid M ⇒ M . A twisting on N ×M N ⇒ N is given by a
pull-back twisting from a twisting on M .

(8) (Twisting on vector bundles.) Let π : E → X be a vector bundle over a manifold X. We con-
sider the groupoid

E ⇒ X

with the source map s(ξ) = π(ξ), the target map r(ξ) = π(ξ), the product given by ξ ◦ η =
ξ + η. The unit is zero section and the inverse is the additive inverse at each fiber. With
respect to a trivialization cover {E|Ωi

∼= Ωi × V } of E, a twisting on the groupoid E ⇒ X is
given by a PU(H)-valued cocycle

gij : Ωij × V −→ PU(H)

satisfying gij (x, ξ) · gjk(x, η) = gik(x, ξ + η). A twisting on the groupoid E ⇒ X is a pull-
back twisting π∗σ from a twisting σ on X if gij : Ωij × V −→ PU(H) is constant in V .
Note that the pull-back twisting agrees with the pull-back twisting on E by π as a topological
space.

In this paper, we will mainly deal with the holonomy groupoids associated to regular fo-
liations. Let M be a manifold of dimension n. Let F be a subvector bundle of the tangent
bundle TM. We say that F is integrable if C∞(F ) := {X ∈ C∞(M,TM): ∀x ∈ M, Xx ∈ Fx}
is a Lie subalgebra of C∞(M,TM). This induces a partition of M in embedded submanifolds
(the leaves of the foliation), given by the solution of integrating F .

The holonomy groupoid of (M,F) is a Lie groupoid

GM ⇒ M

with Lie algebroid AG = F and minimal in the following sense: any Lie groupoid integrating
the foliation, that is having F as Lie algebroid, contains an open subgroupoid which maps onto
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the holonomy groupoid by a smooth morphism of Lie groupoids. The holonomy groupoid was
constructed by Ehresmann [17] and Winkelnkemper [36] (see also [6,19,30]).

Definition 1.9 (Twisting on the space of leaves of a foliation). Let (M,F) be a regular foliation
with holonomy groupoid GM . A twisting on the space of leaves is by definition a twisting on the
holonomy groupoid GM . We will often use the notation

M/F PU(H)

for the correspondent generalized morphism.

Notice that by definition a twisting on the spaces of leaves is a twisting on the base M which
admits a compatible action of the holonomy groupoid. It is however not enough to have a twisting
on base which is leafwise constant, see for instance Remark 1.4(c) in [22].

1.3. Twistings on tangent groupoids

In this subsection, we review the notion of Connes’ tangent groupoids from deformation to
the normal cone point of view, and discuss the induced twistings on tangent groupoids.

1.3.1. Deformation to the normal cone
The tangent groupoid is a particular case of a geometric construction that we describe here.
Let M be a C∞ manifold and X ⊂ M be a C∞ submanifold. We denote by N M

X the normal
bundle to X in M . We define the following set

DM
X := N M

X × 0 � M × R∗. (1.4)

The purpose of this section is to recall how to define a C∞-structure in DM
X . This is more or less

classical, for example it was extensively used in [22].
Let us first consider the case where M = Rp × Rq and X = Rp × {0} (here we identify X

canonically with Rp). We denote by q = n − p and by Dn
p for DRn

Rp as above. In this case we
have that Dn

p = Rp × Rq × R (as a set). Consider the bijection ψ : Rp × Rq × R → Dn
p given by

ψ(x, ξ, t) =
{

(x, ξ,0) if t = 0,

(x, tξ, t) if t �= 0,
(1.5)

whose inverse is given explicitly by

ψ−1(x, ξ, t) =
{

(x, ξ,0) if t = 0,

(x, 1
t
ξ, t) if t �= 0.

We can consider the C∞-structure on Dn
p induced by this bijection.

We pass now to the general case. A local chart (U , φ) in M is said to be an X-slice if:

(1) φ : U → U ⊂ Rp × Rq is a diffeomorphism.
(2) If V = U ∩ (Rp × {0}), then φ−1(V ) = U ∩ X, denoted by V .
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With this notation, DU
V ⊂ Dn

p as an open subset. We may define a function

φ̃ : DU
V −→ DU

V (1.6)

in the following way: For x ∈ V we have φ(x) ∈ Rp × {0}. If we write φ(x) = (φ1(x),0), then

φ1 : V −→ V ⊂ Rp

is a diffeomorphism. We set φ̃(v, ξ,0) = (φ1(v), dNφv(ξ),0) and φ̃(u, t) = (φ(u), t) for t �= 0.
Here dNφv : Nv → Rq is the normal component of the derivative dφv for v ∈ V . It is clear that φ̃

is also a bijection (in particular it induces a C∞ structure on DU
V ). Now, let us consider an atlas

{(Uσ ,φσ )}σ∈� of M consisting of X-slices. Then the collection {(DUσ

Vσ
, φ̃σ )}σ∈� is a C∞-atlas

of DM
X (Proposition 3.1 in [8]).

Definition 1.10 (Deformation to the normal cone). Let X ⊂ M be as above. The set DM
X equipped

with the C∞ structure induced by the atlas of X-slices is called the deformation to the normal
cone associated to the embedding X ⊂ M .

One important feature about the deformation to the normal cone is the functoriality. More
explicitly, let f : (M,X) → (M ′,X′) be a C∞ map f : M → M ′ with f (X) ⊂ X′. Define D(f ) :
DM

X → DM ′
X′ by the following formulas:

(1) D(f )(m, t) = (f (m), t) for t �= 0,
(2) D(f )(x, ξ,0) = (f (x), dNfx(ξ),0), where dNfx is by definition the map

(
N M

X

)
x

dNfx−−−→ (
N M ′

X′
)
f (x)

induced by TxM
dfx−→ Tf (x)M

′.

Then D(f ) : DM
X → DM ′

X′ is a C∞-map (Proposition 3.4 in [8]). In the language of categories,
the deformation to the normal cone construction defines a functor

D : C ∞
2 −→ C ∞, (1.7)

where C ∞ is the category of C∞-manifolds and C ∞
2 is the category of pairs of C∞-manifolds.

Proposition 1.11. Given a twisting σ : M → PU(H) as a principal PU(H)-bundle over M ,
there is a canonical twisting on DM

X which restricts to the pull-back twisting π∗(σ |X) on N M
X

by the map π : N M
X → X.

Proof. Under the identification of the normal bundle N M
X with a tubular neighborhood of X

in M , we have the following diagram of maps
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N M
X

ι
π

X
i

0X

M

where 0X is the zero section of the normal bundle. Note that π ◦0X = IdX , i = ι◦0X , and 0X ◦π

is homotopic to the identity map on N M
X , which imply that

π∗ ◦ i∗σ = π∗ ◦ 0∗
X ◦ ι∗σ = (0X ◦ π)∗ ◦ ι∗σ

is homotopic to ι∗σ . Hence, the principal PU(H)-bundle over N M
X associated to ι∗σ is isomor-

phic to the pull-back principal PU(H)-bundle on N M
X associated to π∗(σ |X). �

1.3.2. The tangent groupoid of a groupoid
Definition 1.12 (Tangent groupoid). Let G ⇒ G (0) be a Lie groupoid. The tangent groupoid
associated to G is the groupoid that has

DG
G (0) = N G

G (0) × {0} � G × R∗

as the set of arrows and G (0) × R as the units, with:

(1) sT (x, η,0) = (x,0) and rT (x, η,0) = (x,0) at t = 0.
(2) sT (γ, t) = (s(γ ), t) and rT (γ, t) = (r(γ ), t) at t �= 0.
(3) The product is given by mT ((x, η,0), (x, ξ,0)) = (x, η + ξ,0) and mT ((γ, t), (β, t)) =

(m(γ,β), t) if t �= 0 and if r(β) = s(γ ).
(4) The unit map uT : G (0) → G T is given by uT (x,0) = (x,0) and uT (x, t) = (u(x), t) for

t �= 0.

We denote G T = DG
G (0) and AG = N G

G (0) as a vector bundle over G (0). Then we have a family of
Lie groupoids parametrized by R, which itself is a Lie groupoid

G T = AG × {0} � G × R∗ ⇒ G (0) × R.

As a consequence of the functoriality of the deformation to the normal cone, one can show
that the tangent groupoid is in fact a Lie groupoid compatible with the Lie groupoid structures of
G and AG (considered as a Lie groupoid with its vector bundle structure). Indeed, it is immediate
that if we identify in a canonical way DG (2)

G (0) with (G T )(2), then

mT = D(m), sT = D(s), rT = D(r), uT = D(u)

where we are considering the following pair morphisms:

m : (G (2),G (0)
) −→ (

G ,G (0)
)
,

s, r : (G ,G (0)
) −→ (

G (0),G (0)
)
,

u : (G (0),G (0)
) −→ (

G ,G (0)
)
.
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Example 1.13.

(1) The tangent groupoid of a group: Let G be a Lie group. We consider it as a groupoid with
one element, G ⇒ {e}, as above. By definition AG = TeG, i.e., the Lie algebroid coincides
with the Lie algebra g of the group G. Hence, the tangent groupoid is

GT := g × {0} � G × R∗ ⇒ G × R.

(2) The tangent groupoid of a C∞-manifold: Let M be a C∞-manifold. We consider the asso-
ciated pair groupoid M × M ⇒ M . In this case, the Lie algebroid can be identified with TM
and the tangent groupoid take the following form

G T
M = TM × {0} � M × M × (0,1] ⇒ M × R.

(3) The Thom groupoid: Let N
p−→ T be a vector bundle over a smooth manifold T . Consider

the fiberwise pair groupoid over T ,

N ×T N ⇒ N. (1.8)

The Lie algebroid is N ⊕ N as a vector bundle over N , then the tangent groupoid, denoted
by GThom, takes the following form

GThom = N ⊕ N × {0} � N ×T N × R∗ ⇒ N × R.

See [16] for a motivation for the name of this groupoid.
(4) Tangent groupoid of a holonomy groupoid: Let GM/F be the holonomy groupoid of a foliated

manifold M/F . Then the tangent groupoid is given by

G T
M/F = F × {0} � GM/F ⇒ M × R.

The following proposition could be used alternatively to construct the twisted index morphism
and to develop the twisted index theory. However in the sequel we will rather use the central
extension approach because the proofs are simpler, and because we obtain naturally the twisted
index theory as a factor of an S1-equivariant index theory. It gives though a nice geometric idea
of the strict deformation quantization methods.

Proposition 1.14. Given a twisting σ on a Lie groupoid G , there is a canonical twisting σT on
its tangent groupoid G T such that

σT
∣∣
AG = π∗(σ |G (0) )

where π : AG → G (0) is the projection.

Proof. The twisting σ on G is given by a PU(H)-principal bundle Pσ with a compatible left
action of G . By definition of the groupoid action, the units of the groupoid act as identities,
hence we can consider the action as a C∞-morphism in the category of C∞-pairs:

(G ×M Pσ ,M ×M Pσ ) −→ (Pσ ,Pσ ).
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We can then apply the deformation to the normal cone functor to obtain the desire PU(H)-
principal bundle with a compatible G T -action, which gives the desired twisting. �
1.3.3. The tangent groupoid of a groupoid immersion

We briefly discuss here the tangent groupoid of an immersion of groupoids which is called
the normal groupoid in [22].

Consider an immersion of Lie groupoids G1
ϕ

↪→ G2. Let G N
1 = N G2

G1
be the total space of the

normal bundle to ϕ, and (G (0)
1 )N be the total space of the normal bundle to ϕ0 : G (0)

1 → G (0)
2 .

The deformation to the normal bundle construction allows us to consider a C∞ structure on

Gϕ := G N
1 × {0} � G2 × R∗,

such that G N
1 × {0} is a closed saturated submanifold and so G2 × R∗ is an open submanifold.

Remark 1.15. Consider G N
1 ⇒ (G (0)

1 )N with the following structure maps: The source map is

the derivation in the normal direction dNs : G N
1 → (G (0)

1 )N of the source map (seen as a pair of

maps) s : (G2,G1) → (G (0)
2 ,G (0)

1 ) and similarly for the target map.
As remarked by Hilsum and Skandalis (Remarks 3.1, 3.19 in [22]), G N

1 may fail to inherit a
Lie groupoid structure (see counterexample just before Section 4 in [22]). A sufficient condition
is when (G (0)

1 )N is a G N
1 -vector bundle over G (0)

1 . This is the case when G x
1 → G ϕ(x)

2 is étale

for every x ∈ G (0)
1 (in particular if the groupoids are étale) or when one considers a manifold

with two foliations F1 ⊂ F2 and the induced immersion (again Remarks 3.1, 3.19 in [22]), but
also for the case of the inclusion of extensions treated in (2.18) below. We will anyway describe
explicitly the groupoid structure when needed.

The following results are an immediate consequence of the functoriality of the deformation to
the normal cone construction.

Proposition 1.16. (See Hilsum and Skandalis, Remarks 3.1, 3.19 in [22].) Consider an immer-

sion G1
ϕ

↪→ G2 as above for which (G1)
N inherits a Lie groupoid structure (precedent remark). Let

Gϕ0 := (G (0)
1 )N ×{0}�G (0)

2 ×R∗ be the deformation to the normal cone of the pair (G (0)
2 ,G (0)

1 ).
The groupoid

Gϕ ⇒ Gϕ0 (1.9)

with structure maps compatible with the ones of the groupoids G2 ⇒ G (0)
2 and G N

1 ⇒ (G (0)
1 )N ,

is a Lie groupoid with C∞-structures coming from the deformation to the normal cone.

Proposition 1.17. Given an immersion of Lie groupoids G1
ϕ

↪→ G2 as above and a twisting σ

on G2. There is a canonical twisting σϕ on the Lie groupoid Gϕ ⇒ Gϕ0 , extending the pull-back
twisting on G2 × R∗ from σ .
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2. Analytic index morphism for a twisted Lie groupoid

In this section, we first review the analytic index morphism for any Lie groupoid, and then
develop an analytic index morphism for a Lie groupoid with a twisting.

2.1. The case of Lie groupoids

2.1.1. The convolution C∗-algebra of a Lie groupoid
We recall how to define the reduced and maximal C∗-algebras of a Lie groupoid G ⇒ M ,

C∗
r (G ) and C∗(G ).

We start with the reduced C∗-algebra. The basic elements of C∗
r (G ) are smooth half densities

with compact support on G in C∞
c (G ,Ω

1
2 ) where Ω

1
2 is the real line bundle over G given

by s∗(Ω
1
2

0 ) ⊗ t∗(Ω
1
2

0 ) and Ω
1
2 denote the half density bundle associated to AG . In particular,

Ω
1
2
γ = (Ω0)

1
2
s(γ ) ⊗ (Ω0)

1
2
t (γ ). The convolution product on C∞

c (G ,Ω
1
2 ) is given by

(f ∗ g)(γ ) =
∫

γ1·γ2=γ

f (γ1)g(γ2),

where the integration is performed over the resulting 1-density. The ∗-operation is simply given
by f ∗(γ ) = f (γ −1).

For every x ∈ M , there is a representation πx of C∞
c (G ,Ω

1
2 ) on L2(Gx,Ω

1
2 ) given by

πx(f )(ξ)(γ ) =
∫

γ1·γ2=γ

f (γ1)ξ(γ2).

The norm ‖f ‖ := supx∈M πx(f ) is well defined (see [14], Proposition 5.3, Chapter 2 or [31]
for more details) and the reduced C∗-algebra C∗

r (G ) is the C∗-completion with respect to this
norm. For obtain the maximal, one has to take the completion with respect to the norm ‖f ‖ :=
supπ π(f ) over all involutive Hilbert representations of C∞

c (G ,Ω
1
2 ).

The line bundle Ω
1
2 is trivial, even if there is not a canonical trivialization. We have therefore

a non-canonical isomorphism between the sections C∞
c (G ,Ω

1
2 ) and the compactly supported

functions C∞
c (G ). In the sequel we will often use the notation C∞

c (G ) even if we are thinking
on half densities.

2.1.2. Analytic index morphism for Lie groupoids
A G -pseudodifferential operator is a family of pseudodifferential operators {Px}x∈G (0) acting

in C∞
c (Gx) such that if γ ∈ G and

Uγ : C∞
c (Gs(γ )) −→ C∞

c (Gr(γ ))

the induced operator, then we have the following compatibility condition

Pr(γ ) ◦ Uγ = Uγ ◦ Ps(γ ).
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We also admit, as usual, operators acting in sections of a complex vector bundle E → G (0). There
is also a differentiability condition with respect to x that can be found in [29].

In this work we are going to work exclusively with uniformly supported operators, let us recall
this notion. Let P = {Px, x ∈ G (0)} be a G -operator, we denote by kx the Schwartz kernel of Px .
Let

suppP :=
⋃
x

suppkx

and

suppμ P := μ1(suppP),

where μ1(g
′, g) = g′g−1. We say that P is uniformly supported if suppμ P is compact.

We denote by Ψ m(G ,E) the space of uniformly supported G -operators of order m, acting on
sections of a complex vector bundle E. We denote also

Ψ ∞(G ,E) =
⋃
m

Ψ m(G ,E) and Ψ −∞(G ,E) =
⋂
m

Ψ m(G ,E).

The composition of two such operators is again of this kind (Lemma 3, [29]). In fact,
Ψ ∞(G ,E) is a filtered algebra (Theorem 1, [29]), i.e.,

Ψ m(G ,E)Ψ m′
(G ,E) ⊂ Ψ m+m′

(G ,E).

In particular, Ψ −∞(G ,E) is a bilateral ideal.

Remark 2.1. The choice on the support can be justified by the fact that Ψ −∞(G ,E) is identified
with C∞

c (G ,End(E)), thanks the Schwartz kernel theorem.

The notion of principal symbol extends also to this setting. Let us denote by π : A∗G → G (0)

the projection. For P = {Px, x ∈ G (0)} ∈ Ψ m(G ,E,E), the principal symbol of Px , σm(Px),
is a C∞ section of the vector bundle Hom(π∗

x r∗E,π∗
x r∗E) over T ∗Gx (where πx : T ∗Gx → Gx ),

such that at each fiber the morphism is homogeneous of degree m (see [2] for more details).
There is a section σm(P ) of Hom(π∗E,π∗E) over A∗G such that

σm(P )(ξ) = σm(Px)(ξ) ∈ Hom(Ex,Ex) if ξ ∈ A∗
xG . (2.1)

This induces a unique surjective linear map

σm : Ψ m(G ,E) −→ S m
(
A∗G ,Hom(E,E)

)
, (2.2)

with kernel Ψ m−1(G ,E) (see for instance Proposition 2 in [29]) and where S m(A∗G ,

Hom(E,E)) denotes the sections of the vector bundle Hom(π∗E,π∗E) over A∗G , homoge-
neous of degree m along each fiber.

Definition 2.2. Let P = {Px, x ∈ G (0)} be a G -pseudodifferential operator. P is elliptic if Px is
elliptic for each x. We denote by Ell(G ) the set of elliptic G -pseudodifferential operators.
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The linear map (2.2) for elliptic G -pseudodifferential operators defines a principal symbol
map:

Ell(G )
[σ ]−→ K0(A∗G

)
. (2.3)

Connes in [12] proved that if P = {Px, x ∈ G (0)} ∈ Ell(G ), then it exists Q ∈ Ψ −m(G ,E)

such that

IdE − PQ ∈ Ψ −∞(G ,E) and IdE − QP ∈ Ψ −∞(G ,E),

where IdE denotes the identity operator over E. In other words, P defines an element in
K0(C

∞
c (G )), when E is trivial, given by[

T

(
1 0
0 0

)
T −1

]
−

[(
1 0
0 0

)]
∈ K0

(
C̃∞

c (G )
)
, (2.4)

where 1 is the unit in C̃∞
c (G ) (the unitarization of C∞

c (G )), and where T is given by

T =
(

(1 − PQ)P + P PQ − 1

1 − QP Q

)

with inverse

T −1 =
(

Q 1 − QP

PQ − 1 (1 − PQ)P + P

)
.

If E is not trivial we obtain in the same way an element of K0(C
∞
c (G ,Hom(E,F ))) ∼=

K0(C
∞
c (G )) since C∞

c (G ,Hom(E,F )) is Morita equivalent to C∞
c (G ).

Definition 2.3 (G -index). Let P be an elliptic G -pseudodifferential operator. We denote by

IndexG (P ) ∈ K0
(
C∞

c (G )
)

the element defined by P as above, called the G -index of P . The G -index defines a correspon-
dence

Ell(G )
IndexG

K0
(
C∞

c (G )
)
. (2.5)

Consider the morphism

K0
(
C∞

c (G )
) j−→ K0

(
C∗

r (G )
)

(2.6)

induced by the inclusion C∞
c (G ) ⊂ C∗

r (G ), then the composition

Ell(G )
IndexG−−−−→ K0

(
C∞

c (G )
) j−→ K0

(
C∗

r (G )
)
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factors through the principal symbol class. In other words, we have the following commutative
diagram:

Ell(G )
IndexG

[σ ]

K0(C
∞
c (G ))

j

K0(A∗G )
Indexa

K0(C
∗
r (G )).

The resulting morphism

K0(A∗G )
Indexa,G

K0(C
∗
r (G )) (2.7)

is called the analytic index morphism of G . In fact, Indexa,G is the index morphism associated
to the exact sequence of C∗-algebras (see [12,15,27,29])

0 −→ C∗
r (G ) −→ Ψ 0(G )

σ−→ C0
(
S
(
A∗G

)) −→ 0 (2.8)

where Ψ 0(G ) is a certain C∗-completion of Ψ 0(G ), S(A∗G ) is the sphere bundle of A∗G and σ

is the extension of the principal symbol.
We remark that this index morphism Indexa,G can also be constructed using the tangent

groupoid and its C∗-algebra. We briefly recall this construction from [27].
Notice that the evaluation morphisms extend to the C∗-algebras as in [31]:

C∗(G T
) ev0−→ C∗(AG ) for t = 0,

and

C∗(G T
) evt−→ C∗(G ) for t �= 0.

Moreover, since G × (0,1] is an open saturated subset of G T and AG a saturated closed subset,
we have the following exact sequence (see [31,22])

0 −→ C∗(G × (0,1]) −→ C∗(G T
) ev0−→ C∗(AG ) −→ 0. (2.9)

Now, the C∗-algebra C∗(G × (0,1]) ∼= C0((0,1],C∗(G )) is contractible. This implies that the
groups Ki(C

∗(G × (0,1])) vanish, for i = 0,1. Then, applying the K-theory functor to the exact
sequence above, we obtain that

Ki

(
C∗(G T

)) (ev0)∗−→ Ki

(
C∗(AG )

)
is an isomorphism, for i = 0,1. In [27], Monthubert and Pierrot show that

Indexa,G = (ev1)∗ ◦ (ev0)
−1∗ , (2.10)
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modulo the Fourier isomorphism C∗(AG ) ∼= C0(A
∗G ), when we consider the K0 evaluations

(see also [22] and [29]). As usual we consider the index with values in the reduced C∗-algebra
by taking the canonical morphism K0(C

∗(G )) → K0(C
∗
r (G )). Putting this in a commutative

diagram, we have

K0(C
∗(G T ))

(ev0)∗
∼=

(ev1)∗

K0(A∗G )
Indexa,G

K0(C
∗
r (G )).

(2.11)

In summary, the algebra C∗(G T ) is a strict deformation quantization of C0(A
∗G ), and the ana-

lytic index morphism of G can be constructed by means of this deformation.

2.1.3. Analytic indices morphisms for Lie groupoid immersions
For Lie groupoid immersions, Hilsum and Skandalis in [22] shown that the same methods

as above can be applied to define an index morphism (or even a KK-element) associated to an
immersion of Lie groupoids ϕ : G1 ↪→ G2 for which (G1)

N inherits a Lie groupoid structure, and
where we assume as in Section 3 of [22] that G1 is amenable (so C∗(G1) is nuclear). Indeed, if
we consider

Gϕ := G N
1 × {0} � G2 × (0,1]

and the short exact sequence

0 −→ C∗(G2 × (0,1]) −→ C∗(Gϕ)
ev0−→ C∗(G N

1

) −→ 0, (2.12)

we can define the index morphism

Indexϕ : K∗
(
C∗

r

(
G N

1

)) −→ K∗
(
C∗

r (G2)
)
, (2.13)

as the induced deformation morphism Indexϕ := p∗ ◦ (ev1)∗ ◦ (ev0)
−1∗ , where p : C∗(G2) →

C∗
r (G2) is the canonical morphism. Here we use the fact that G N

1 is also amenable and so
C∗

r (G N
1 ) = C∗(G N

1 ).

Remark 2.4. (See Hilsum and Skandalis, Remark 3.17(2) in [22].) Even without the hypothesis
on the amenability of G1, we still obtain in the same way an index morphism

Indexmax
ϕ : K∗

(
C∗(G N

1

)) −→ K∗
(
C∗(G2)

)
between the K-theories of the maximal C∗-algebras.
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2.2. The case of twisted groupoids

2.2.1. Twisted K-theory of a Lie groupoid with a twisting
Let (G , σ ) be a twisted groupoid. With respect to a covering Ω = {Ωi} of G (0), the twisting

σ is given by a strict morphism of groupoids

σ : GΩ −→ PU(H),

where GΩ is the covering groupoid associated to Ω . Consider the central extension of groups

S1 −→ U(H) −→ PU(H),

we can pull it back to get an S1-central extension of Lie groupoid Rσ over GΩ ,

S1 S1

Rσ U(H)

GΩ σ
PU(H).

(2.14)

In particular, Rσ ⇒
⊔

i Ωi is a Lie groupoid and Rσ → GΩ is an S1-principal bundle.
We recall the definition of the convolution algebra and the C∗-algebra of a twisted Lie

groupoid (G , σ ) [32,33]:

Definition 2.5. Let Rσ be the S1-central extension of groupoids associated to a twisting σ . The
convolution algebra of (G , σ ) is by definition the following sub-algebra of C∞

c (Rσ ):

C∞
c (G , σ ) = {

f ∈ C∞
c (Rσ ): f (γ̃ · λ) = λ−1 · f (γ̃ ), ∀γ̃ ∈ Rσ , ∀λ ∈ S1}. (2.15)

The reduced (maximal resp.) C∗-algebra of (G , σ ), denoted by C∗
r (G , σ ) (C∗(G , σ ) resp.), is

the completion of C∞
c (G , σ ) in C∗

r (Rσ ) (C∗(Rσ ) resp.).

Let Lσ := Rσ ×S1 C be the complex line bundle over GΩ which can be considered as a Fell
bundle (using the groupoid structure of Rσ ) over GΩ . In fact, the algebra of sections of this
Fell bundle C∞

c (GΩ,Lσ ) is isomorphic to C∞
c (G , σ ), and the same is true for the C∗-algebras,

C∗(GΩ,Lσ ) ∼= C∗(G , σ ) (see (23) in [33] for an explicit isomorphism).

Remark 2.6. (See [33].) Given the extension Rσ as above, the S1-action on Rσ induces a Z-
grading in C∗

r (Rσ ) (Proposition 3.2, [33]). More precisely, we have

C∗
r (Rσ ) ∼=

⊕
C∗

r

(
G , σ n

)
(2.16)
n∈Z
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where C∗
r (G , σ n) is the reduced C∗-algebra of the twisted groupoid (G , σ n) corresponding to

the Fell bundle

Ln
σ = L⊗n

σ −→ GΩ,

for all n �= 0, and C∗
r (G , σ 0) = C∗

r (GΩ) by convention. Similar results hold for the maximal
C∗-algebra.

Remark 2.7. If we take the twisting σ as the PU(H)-principal bundle over G (as in Defini-
tion 1.4(1)), then the C∗-algebra C∗(Rσ ) (maximal or reduced) is well defined up to a canonical

strong Morita equivalence. Indeed, given GΩ
σ−→ PU(H), GΩ ′

σ ′−→ PU(H) two strict mor-
phisms defining the same PU(H)-principal bundle over G , they define two canonically Morita
equivalent extensions Rσ and Rσ ′ . The induced strong Morita equivalence between C∗(Rσ ) and
C∗(Rσ ′) respects the grading of the precedent remark and hence it induces a strong Morita equiv-
alence between C∗(G , σ n) and C∗(G , (σ ′)n) (see Proposition 3.3 in [33] or [32] for further
details).

Definition 2.8. Following [33], we define the twisted K-theory of the twisted groupoid (G , σ ) by

Ki(G , σ ) := K−i

(
C∗

r (G , σ )
)
. (2.17)

In particular if σ is trivial we will be using the notation (unless specified otherwise) Ki(G ) for
the respective K-theory group of the reduced groupoid C∗-algebra.

Remark 2.9. By the Remark 2.7, the group Ki(G , σ ) is well defined, up to a canonical isomor-
phism coming from the respective Morita equivalences.

Remark 2.10. For the groupoid given by a manifold M ⇒ M . A twisting on M can be given
by a Dixmier–Douday class on H 3(M,Z). In this event, the twisted K-theory, as we defined it,
coincides with twisted K-theory defined in [3,23]. Indeed the C∗-algebra C∗(M,σ) is Morita
equivalent to the continuous trace C∗-algebra defined by the correspondent Dixmier–Douady
class (see for instance Theorem 1 in [18]).

2.2.2. The Analytic index morphism of a twisted groupoid
Let (G , σ ) be a twisted Lie groupoid with the induced central extension

Rσ −→ GΩ

associated to an open cover {Ωi} of G (0) = M . Let (M,σ0) be the twisted groupoid induced by
restriction of σ to the unit space and let its central extension be

Rσ0 −→ MΩ.

Here MΩ denotes the covering groupoid⊔
Ωij :=

⊔
Ωi ∩ Ωj ⇒

⊔
Ωi.
i,j i,j i
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We can consider the inclusion of central extensions:

Rσ0 Rσ

MΩ GΩ

(2.18)

as an immersion of Lie groupoids ισ : Rσ0 → Rσ , which is S1-equivariant and with Rσ0

amenable. We apply then to this immersion the tangent groupoid construction in Subsection 1.3.3

Rισ := RN
σ0

× {0} � Rσ × (0,1] (2.19)

in order to define its index morphism as in (2.13):

Indexισ : K∗
(
C∗

r

(
RN

σ0

)) −→ K∗
(
C∗

r (Rσ )
)
. (2.20)

Indeed, RN
σ0

⇒
⊔

i Ωi inherits a Lie groupoid structure (see Remark 1.15). In fact, RN
σ is

also the S1-central extension of some Lie groupoid. Let us look at this with more detail. Write
σ = {(Ωi, σij )} as a PU(H)-valued cocycle, consider the inclusions Ωij ⊂ G Ωi

Ωj
and their normal

bundles Nij . We have a Lie groupoid

Aσ :=
⊔
i,j

Nij ⇒
⊔
i

Ωi,

where the source and target maps are the evident ones and where the product is induced from the
derivation in the normal direction of the product

G Ωi

Ωj
×Ωj

G
Ωj

Ωk
−→ G Ωi

Ωk
.

We have also a strict morphism of groupoids

Aσ
σ̃0−→ PU(H)

defined to be equal to σ0 in the base direction and constant in the normal vector fibers. The
corresponding central extension can be described as follows. Consider the Lie algebroid AG

π−→
M as a Lie groupoid AG ⇒ M using its vector bundle structure. Then the central extension
associated to (Aσ , σ̃0) is given by the following pullback diagram

RN
σ0

U(H)

(AG )Ω
σ̃0

PU(H)

⊔
i Ωi {e},

(2.21)
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via the identification Nij
∼= AG |Ωij

. In other words the subgroupoid RN
σ0

is the S1-central exten-
sion associated to the twisted groupoid (AG ⇒ M,σ0 ◦ πA), where πA : AG → M is considered
as a morphism of groupoids. This discussion is of course in agreement with Proposition 1.14.

Hence we can denote

RN
σ0

= Rσ0◦πA
, (2.22)

that is, RN
σ0

is the central extension groupoid associated to the twisted groupoid (AG ⇒ M,

σ0 ◦ πA).
As in Remark 2.6, we have a decomposition

C∗
r (Rσ0◦πA

) =
⊕
n∈Z

C∗
r

(
AG , (σ0 ◦ πA)n

)
.

Since, the inclusion of extensions (2.18) is S1-equivariant, we have that the index morphism
(2.20) respects the Z-grading

Indexισ :
⊕
n∈Z

K∗(AG , (σ0 ◦ πA)n
) −→

⊕
n∈Z

K∗(G , σ n
)
. (2.23)

Consider the projection A∗G πA∗−→ M and the pullback of σ0 to get the twisted groupoid

(
A∗G ⇒ A∗G , σ0 ◦ πA∗

)
.

Associated to this twisted groupoid we have a central extension given by the pull-back diagram

Rσ0◦πA∗ Rσ0 U(H)

⊔
A∗G |Ωij πA∗

⊔
Ωij

σ0
PU(H)

⊔
A∗G |Ωi

⊔
Ωi {e}.

(2.24)

As in the untwisted case, we have the following proposition.

Proposition 2.11. The fiberwise Fourier transform gives an isomorphism of C∗-algebras

C∗
r (Rσ0◦πA

) ∼= C∗
r (Rσ0◦πA∗ ) (2.25)
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which preserves the grading under the S1-action. In particular we have an isomorphism between
the correspondent twisted K-theory groups

K∗(AG , σ0 ◦ πA) ∼= K∗(A∗G , σ0 ◦ πA∗
)
.

The right side is the twisted K-theory of the topological space A∗G with the pull-ball twisting
(πA∗)∗σ0.

We will prove the proposition above in the more general case of vector bundles. Indeed, given

a vector bundle E
πE−→ X and a twisting β on X, we can consider two twisted groupoids: the first

is (E,β ◦πE) where E ⇒ X is considered as a groupoid and π as a groupoid morphism, and the
second is (E∗, β ◦πE∗) where E∗ ⇒ E∗ is the unit groupoid with the twisting on the topological
space E∗.

Proposition 2.12. The Fourier transform gives an isomorphism

C∗
r (Rβ◦πE

) ∼= C∗
r (Rβ◦πE∗ )

which preserves the grading under the S1-action. In particular we have an isomorphism of C∗-
algebras

C∗
r (E,β ◦ πE) ∼= C∗

r (E,β ◦ πE∗).

Proof. We will give the explicit isomorphism C∗
r (Rβ◦πE

)
F−→ C∗

r (Rβ◦πE∗ ). It is defined
at the level of C∞

c (Rβ◦πE
) as follows: Let f ∈ C∞

c (Rβ◦πE
), and [(ηij , u)] ∈ Rβ◦πE∗ =⊔

i,j (E
∗|Ωij

×PU(H) U(H)) (see diagram (2.24) above). We let

F (f )
([

(ηij , u)
]) =

∫
Eπ(ηij )

e−iηij (X)f
([

(X,u)
])

dX. (2.26)

For [(ηij , u)] ∈ Rβ◦πE
= ⊔

i,j (E
∗|Ωij

×PU(H) U(H)) and X ∈ Eπ(ηij ), we have

[
(X,u)

] ∈ Rβ◦πE
=

⊔
i,j

(
E|Ωij

×PU(H) U(H)
)

by the definition of the morphisms β ◦ πE (2.21) and β ◦ πE∗ (2.24). It is also immediate that
this function is S1-equivariant.

Now, as in the untwisted case, the function F (f ) is not compactly supported. But it can be
shown that it satisfies a Schwartz (rapid decaying) condition in the direction of the vector fibers
of E (see for instance Proposition 4.5 in [8]).

Let us first assume E = X ×Rq . We remark that we are not assuming triviality of the twisting
β on X. In this case we have a very clear description of the extension groupoids: First for E ⇒ X,

Rβ◦πE
= Rβ × Rq ⇒

⊔
Ωi,
i
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where Rq is considered as an additive group and Rβ is the extension groupoid associated to
(X,β). Then for E∗ ⇒ E∗,

Rβ◦πE∗ = Rβ × Rq ⇒
⊔
i

Ωi × Rq,

where Rq ⇒ Rq is considered as an unit groupoid (Rq as a total space). Then, under this situa-
tion, it is immediate that

C∗
r (Rβ◦πE

) = C∗
r

(
Rβ,

(
C0

(
Rq

)
,∗))

and C∗
r (Rβ◦πE∗ ) = C∗

r

(
Rβ,

(
C0

(
Rq

)
, ·)),

where in the first C0(R
q) we have the convolution product and in the second the point-wise

product. Since the product on C∗
r (Rβ, (C0(R

q),∗)) is given by (at the C∞
c (Rβ, (C0(R

q),∗))

level)

(f ∗ g)(r) = f (r) ∗ g(r),

we obtain, thanks to the continuity of the Fourier transform, that F gives an isomorphism
C∗

r (Rβ◦πE
) ∼= C∗

r (Rβ◦πE∗ ).
For a non-trivial vector bundle E, in order to see that F gives the desired isomorphism from

C∗
r (Rβ◦πE

) to C∗
r (Rβ◦πE∗ ) we may use trivializating charts of the vector bundle E and consider

the correspondent decomposition of C∗
r (Rβ◦πE

) as in Eq. (15) in [8] (see Proposition 4.5 in [8]
for more details). �

Now we define the index analytic morphism for the twisted groupoid (G , σ ) which agrees
with the usual analytic index morphism for the groupoid G when the twisting σ is trivial.

Definition 2.13. Let (G , σ ) be a twisted Lie groupoid. The analytic index morphism for (G , σ ),

Indexa,(G ,σ ) : Ki
(
A∗G ,π∗σ0

) −→ Ki(G , σ ) (2.27)

is defined to be the composition of the Fourier isomorphism from Proposition 2.11 and the degree
one term of the index morphism Indexισ (2.23).

2.3. Properties of the twisted analytic index morphism

In this section we will establish three properties of twisted analytic index morphisms. These
are the analogs to the axioms stated in [2] and will allow us to prove a twisted index theorem for
foliations and in general we can then talk of a twisted index theory for these objects.

Notation. We recall for the benefit of the reader that K∗(G , σ ) denotes the K-theory group of the
reduced twisted groupoid C∗-algebra K−∗(C∗

r (G , σ )) unless specified otherwise (Definition 2.8
above, see also [33]). In particular if σ is trivial we will be often using the notation K∗(G ) for
the respective K-theory group of the reduced groupoid C∗-algebra. Also, when the groupoid is a
space, this notation is consistent with the notation for the twisted topological K-theory.
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In [33] (Proposition 3.7), the Bott periodicity for twisted groupoids was stated, we prove now
that the Bott morphism is compatible with the twisted analytic index morphism.

Proposition 2.14. The twisted analytic index morphism inda,(G ,σ ) is compatible with the Bott
morphism, i.e., the following diagram is commutative:

K∗(A∗G ,π∗σ0)
Indexa,(G ,σ )

Bott

K∗(G , σ )

Bott

K∗(A∗G ×,R2,π∗(σ ◦ p)0) Index
a,(G ×R2,σ◦p)

K∗(G × R2, σ ◦ p)

where p : G × R2 → G is the projection.

Proof. We use the same notations as above, in particular we note Rισ = RN
σ0

× {0} � Rσ × (0,1]
the deformation groupoid (as in (2.19)) which gives rise to the twisted index morphism (2.23) for
(G , σ ). It is immediate to see that the corresponding deformation groupoid for σ ◦ p is simply
Rισ × R2.

Now, the Bott isomorphism considered here is the usual Bott isomorphism for K-theory of
C∗-algebras, i.e., given by the product with the Bott element in K0(C0(R

2)). The product in
K-theory (for C∗-algebras) is natural, so in particular it commutes with morphisms ev0 and ev1.
Hence, the following diagram is commutative

K∗(RN
σ0

)

Indexισ

∼=Bott

K∗(Rισ )
ev1ev0

∼=
∼=Bott

K∗(Rσ )

∼=Bott

K∗(RN
σ0

× R2)

Index
ισ ×R2

K∗(Rισ × R2)
ev1ev0

∼=
K∗(Rσ × R2).

(2.28)

All the morphisms in the diagram above respect the Z-grading under S1-action, hence the propo-
sition is proved. �

The second property is related with the inclusions of open subgroupoids. Let G ⇒ G (0) be
a Lie groupoid and H ⇒ H (0) be an open subgroupoid. We have the following compatibility
result:

Proposition 2.15. Let H
j

↪→ G an inclusion as an open subgroupoid. The following diagram is
commutative:
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K∗(A∗H ,π∗(σ ◦ j)0)
Indexa,(H ,σ◦j)

j!

K∗(H , σ ◦ j)

j!

K∗(A∗G ,π∗σ0)
Indexa,(G ,σ )

K∗(G , σ )

where the vertical maps are induced from the inclusions by the open inclusion j .

Proof. We use again the notation of the proof of the proposition above. We observe this time
that the deformation groupoid Rισ◦j

which gives the twisted index (2.23) for (H , σ ◦ j), is an
open subgroupoid of Rισ . The following diagram is obviously commutative

K∗(RN
σ0◦j )

Indexισ◦j

j!

K∗(Rισ◦j
)

ev1ev0

∼=
j!

K∗(Rσ◦j )

j!

K∗(RN
σ0

)

Indexισ

K∗(Rισ )
ev1ev0

∼=
K∗(Rσ ).

(2.29)

The proposition easily follows from the diagram above and the fact that all the morphisms in
(2.29) respect the Z-grading under S1-action. �

The last property (Proposition 2.17 below) involves in some way the compatibility of the
twisted index morphism with the product in twisted K-theory. The idea is originated from Theo-
rem 6.2 in [16] and the work of Connes on tangent groupoids (see [14]).

2.3.1. Thom inverse morphism in twisted K-theory
Let N → X be a real vector bundle. Consider the fiber product groupoid N ×X N ⇒ N over X

whose Lie algebroid is N ⊕N
πN−→ N . Note that the groupoid N ×X N ⇒ N is Morita equivalent

to the unit groupoid X ⇒ X, that is, there is an isomorphism in the Hilsum–Skandalis category

N ×X N
M−→ X.

Debord, Lescure, and Nistor showed in [16] (Theorem 6.2) that, modulo Morita equivalence
isomorphism, the analytic index morphism for the groupoid N ×X N ⇒ N :

K∗(N ⊕ N∗) Indexa,N×XN

K∗(N ×X N),
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is the inverse of the Thom isomorphism for the vector bundle N ⊕ N
πX−→ X. In other words the

following diagram is commutative:

K∗(N ⊕ N∗)

Indexa,N×XN

=
K∗(N ⊕ N∗)

Thom−1

K∗(N ×X N)
M

K∗(X).

(2.30)

We will briefly recall the steps of the proof of the above assertion since we are going to follow
similar steps in the twisted case. We recall that analytic indices for groupoids are realized by
deformation groupoids. This point of view is essential for the proof of the above assertion in [16].
Indeed, they consider the tangent groupoid of N ×X N , which they called the Thom groupoid,
denoted by TN . Hence the above diagram takes the following form

K∗(N ⊕ N)

ev−1
0

Fourier

∼=
K∗(N ⊕ N∗)

Thom−1∼=K∗(TN)

ev1

K∗(N ×X N)
M

∼=
K∗(X).

(2.31)

They consider first the morphism T0 := Fourier ◦Thom : K∗(X) → K∗(N ⊕N), the first pointed
arrow below (in terms of KK-elements). Then, the main part of their proof is to construct the
morphism T : K∗(X) → K∗(TN) such that its corresponding evaluations make the following
diagram commute.

K∗(N ⊕ N)

ev−1
0

Fourier

∼=
K∗(N ⊕ N∗)

Thom−1∼=K∗(TN)

ev1

K∗(N ×X N)
M

∼=
K∗(X).

T0

T

(2.32)

Let us now discuss the twisted case. Given a twisting β = {(Ωi,βij )} on the space X with
an open cover Ω = {Ωi} of X. The bundle N ⊕ N∗ has a complex structure, hence we have the
Thom isomorphism (see [7,23]) in twisted K-theory

Thomβ : Ki(X,β)
∼=

Ki
(
N ⊕ N∗,π∗

Xβ
)
, (2.33)

where N ⊕ N∗ is seen as a total space and π∗ β is a twisting in the classic sense.
X
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We will give now a KK-theoretic description of this isomorphism (modulo Fourier isomor-
phism). Consider the associated groupoid N ⊕ N ⇒ X (using the vector bundle structure) and
the corresponding groupoid twisting β ◦ πX , where πX : N ⊕ N → X is seen as a groupoid mor-
phism. Consider the S1-central extension associated to the twisted groupoid (N ⊕ N,β ◦ πX):

S1 −→ RN⊕N,β −→ (N ⊕ N)β. (2.34)

Hence,

(N ⊕ N)β =
⊔
i,j

(N ⊕ N)ij ⇒
⊔
i

Ωi and

RN⊕N,β =
⊔
i,j

(N ⊕ N)ij ×PU(H) U(H) ⇒
⊔
i

Ωi,

where the pullback is taken by the groupoid morphism (N ⊕ N)β
β◦πX−→ PU(H). Similarly, we

have the S1-central extension associated to (X,β):

S1 −→ RX,β −→ Xβ, (2.35)

where Xβ = ⊔
i,j Ωij ⇒

⊔
i Ωi and RX,β = ⊔

i,j Ωij ×PU(H) U(H) ⇒
⊔

i Ωi .
We are going to describe an element of KK∗(RX,β,RN⊕N,β) which realizes the twisted Thom

isomorphism (2.33) modulo Fourier isomorphism. Let q : RN⊕N,β → X be the composition of
the obvious maps

RN⊕N,β −→ (N ⊕ N)β −→
⊔
i

Ωi −→ X.

Let us now construct the (C∗(RX,β) − C∗(RN⊕N,β))-Kasparov bimodule H0. It is the comple-

tion of C∞
c (RN⊕N,β, q∗Λ(N ⊕N)⊗Ω

1
2 ) with respect to its C∞

c (RN⊕N,β,Ω
1
2 ) ⊂ C∗(RN⊕N,β)

valued inner product:

〈ξ, η〉(γ ) =
∫

γ1·γ2=γ

〈
ξ(γ1), η(γ2)

〉
N⊕N

, for ξ, η ∈ C∞
c

(
RN⊕N,β, q∗Λ(N ⊕ N) ⊗ Ω

1
2
)
,

where 〈 , 〉 denotes the interior product on the (canonical) Hermitian bundle N ⊕ N , and the
integration is as usual over the resultant 1-density.

The right module structure is given by

(ξf )(γ ) =
∫

γ1·γ2=γ

ξ(γ1)f (γ2),

for ξ ∈ C∞(RN⊕N,β, q∗Λ(N ⊕ N) ⊗ Ω
1
2 ) and f ∈ C∞(RN⊕N,β,Ω

1
2 ).
c c
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The left C∞
c (RX,β) action on C∞

c (RN⊕N,β, q∗Λ(N ⊕ N) ⊗ Ω
1
2 ) is given by

(gξ)(γ ) = g
(
π(γ )

) · ξ(γ ),

for ξ ∈ C∞
c (RN⊕N,β, q∗Λ(N ⊕ N) ⊗ Ω

1
2 ) and g ∈ C∞

c (RX,β), where π : ⊔
ij (N ⊕ N)ij →⊔

ij Ωij is the canonical projection.
We let F0 to be the endomorphism of H0, densely defined on C∞

c (RN⊕N,β, q∗Λ(N ⊕ N) ⊗
Ω

1
2 ) by

F0s(v,w) =
∫

(w′,v′)∈Nx×N∗
x

ei(w−w′)·v′
C

(
v + iv′)s(v,w′)dw′ dv′, (2.36)

where C denotes the Clifford action of N ⊕ N on Λ(N ⊕ N).

Proposition 2.16. With the notations above, denote by

Tβ : Ki(X,β) Ki
(
N ⊕ N,π∗

Xβ
)
,

the degree one morphism (with respect to grading (2.23)) induced by the KK-element [H0,F0] ∈
KK∗(RX,β,RN⊕N,β). The following diagram commutes

Ki(X,β)

=

Tβ

Ki(N ⊕ N,π∗
Xβ)

Fourier ∼=

Ki(X,β)
Thomβ

∼=
Ki(N ⊕ N∗,π∗

Xβ).

In particular the morphism Tβ is invertible.

Proof. When the twisting β is trivial, the statement reduces precisely to the one on Proposi-
tion 6.1 in [16], together with comments and remarks below it. Then, in this case we already
have the result. For general case, the claim follows from the Mayer–Vietoris sequence in twisted
K-theory for groupoids in [33], Proposition 3.9. �

We can state the following proposition which is the twisted analog of Theorem 6.2 in [16].

Proposition 2.17. With the above notations we have the following commutative diagram:

Ki(N ⊕ N∗,π∗β)

Indexa,(N×XN,β◦M)

Fourier ∼=
Ki(N ⊕ N,π∗β)

T −1
β

Ki(N ×X N,β ◦ M )
Morita∼= Ki(X,β).

(2.37)



P. Carrillo Rouse, B.-L. Wang / Advances in Mathematics 226 (2011) 4933–4986 4967
Proof. Consider the deformation groupoid which realizes the twisted index morphism for
(N ×X N,β ◦ M ):

Rβ tan = RN⊕N,π∗β × {0} � RN×XN,β◦M × (0,1].

That is, its deformation index gives the element [ev0]−1 ⊗[ev1] ∈ KK(RN⊕N,π∗β,RN×XN,β◦M )

whose degree one induces the analytical index morphism Indexa,(N×XN,β◦M ), modulo the
Fourier isomorphism.

We will define a KK-element in KK(RX,β,Rβ tan) in the following way: let H be the
C∗(Rβ tan)-Hilbert module completion of C∞

c (Rβ tan , q∗Λ(N ⊕ N)) where q : Rβ tan → X is the
obvious projection (using the target map of Rβ tan for instance). The endomorphism of H is given
by

Fs(v,w, t) =
∫

(w′,v′)∈Nx×N∗
x

e
w−w′

t
·v′

C
(
v + iv′)s(v,w′)dw′ dv′

tn
, (2.38)

for t �= 0 (where n = dimvect N ) and by F0 for t = 0. We obtain an element [H ,F ] ∈
KK(RX,β,Rβ tan). Denote by Tβ tan : K(RX,β) → K(Rβ tan) the induced morphism in K-theory.
It fits by construction in the following commutative diagram:

K(RN⊕N,β)

K(RX,β)

Tβ

Tβtan

e1◦Tβtan

K(Rβ tan)

e0

e1

K(RN×XN,β).

(2.39)

To conclude the proof it is enough to show that M ◦ e1 ◦ Tβ tan gives the identity in K(RX,β).
Now, as a KK-element, Tβ tan ⊗ e1 ⊗ M ∈ KK(RX,β,RX,β) can be represented by (HΛE,F1)

where

HΛE =
(

L2
( ⊔

{i∈I,x∈Ωi }
Nx × S1,ΛE

))
x∈⊔

Ωj

,

and the vector bundle is the pullback of ΛE by the canonical projection
⊔

{i∈I,x∈Ωi } Nx × S1 →⊔
i Ωi → X. The operator F1 is as the operator F evaluated at t = 1 but identified with a contin-

uous family of Fredholm operators acting on L2(
⊔

{i∈I,x∈Ωi } Nx × S1,ΛE) by

F1s(x, v) =
∫

(w′,v′)∈Nx×N∗
x

ei(v−w′)·v′
C

(
v + iv′)s(x,w′)dw′ dv′.

The Lemma 2.4 in [15] applies here and we have then that (HΛE,F1) defines the unit element of
KK(RX,β,RX,β). �
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3. Longitudinal twisted index theorem for foliations

Consider the case of a regular foliation (M,F) with a twisting σ on its leaf space M/F in
the sense of Definition 1.9, by using the holonomy groupoid G of (M,F). The induced twisting
on M is denoted by σ0. Recall that the Lie algebroid AG is F → M . In this section, we define
the topological index for (M/F,σ ) and show that it agrees with the twisted analytical index
morphism for (M/F,σ ).

3.1. Twisted topological index for foliation

Let i : M ↪→ R2m be an embedding and T be the total space of the normal vector bundle
πT : T → M to the foliation in R2m with Tx = (i∗(Fx))

⊥ for x ∈ M . Consider the foliation
M × R2m given by the bundle F̃ = F × R2m → M × R2m. This foliation has G̃ = G × R2m ⇒
M ×R2m as its holonomy groupoid equipped with the pull-back twisting, still denoted by σ . The
map (x, ξ) �→ (x, i(x) + ξ) identifies an open neighborhood of the 0-section of T with an open
transversal of (M × R2m, F̃ ), that we still denote by T with the projection πT : T → M . Denote
by N the total space of the normal vector bundle to the inclusion T ⊂ M × R2m. We can identify
N with a small open neighborhood U of T in M × R2m.

We use the following diagram to streamline the above notations

N ⊕ N = N ×T N
π1

πN

N

pN

∼=
U F̃ ∼= F × R2m G̃

σ◦p
PU(H)

F

πF

T

πT

M × R2m

p

{e}

M
σ0

PU(H)

,

where π1 denotes the projection to the first component, and σ0 denotes the restriction of the
twisting σ on G to the unit space M . As T is an open transversal to the foliation F̃ on M × R2m,
its normal bundle N is the pull-back of F̃ = π∗

T F to T . We can see that N ∼= π∗
T F as vector

bundles over T . Under the identification N and U , N ×T N = N ⊕ N is the total space of F̃ |U .
Hence, there is a canonically defined projection πN making the above diagram commutative. The
same arguments imply that the total space N ⊕ N∗ (as a vector bundle over T ) is diffeomorphic
to the total space F ∗ × R2m (as a vector bundle over M).

Lemma 3.1.

(1) There exists an open neighborhood U of T in M × R2m such that the holonomy groupoid
of F̃ |U over U is strictly isomorphic to the groupoid N ×T N ⇒ N associated to the sub-
mersion N → T . The latter groupoid N ×T N ⇒ N is Morita equivalent to the groupoid
T ⇒ T .

(2) Let μ : (N ×T N ⇒ N) → (T ⇒ T ) be the Morita equivalence isomorphism of Lie
groupoids, j : N ×T N ∼= G̃ |U ↪→ G × R2m be the inclusion as an open subgroupoid, and
p : G̃ × R2m → G be the projection. Then the twisting σ0 ◦ πT ◦ μ agrees with the twisting
σ ◦ p ◦ j over the groupoid N ×T N ⇒ N .
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Proof. The proof follows from the above commutative diagram and the fact that T is an open
transversal to the foliation F̃ on M × R2m. �

This lemma enables us to define the twisted topological index of (M,F,σ ) which agrees with
the Connes–Skandalis’ longitudinal topological index of (M,F) when the twisting is trivial.

Definition 3.2. By the twisted topological index of (M,F,σ ) we mean the morphism

Indext,(M/F,σ ) : Ki
(
F ∗, σ0 ◦ πF

) −→ Ki(M/F,σ) := Ki(G , σ )

given by the composition of various isomorphisms in twisted K-theory of topological spaces,
functoriality of open embedding and Bott isomorphism in twisted K-theory of groupoids

Ki(F ∗, σ0 ◦ πF )
Bott

∼= Ki(F ∗ × R2m, (σ ◦ p)0 ◦ πF )
∼=

Ki(N ⊕ N∗, σ0 ◦ πF ◦ πN)

Thom−1∼=

Ki(N ×T N,σ ◦ p ◦ j)

∼=
Ki(N ×T N,σ0 ◦ πT ◦ μ)∼= Ki(T ,σ0 ◦ πT )

Morita

∼=

Ki(G̃ |U ,σ ◦ p ◦ j)
j!

Ki(G × R2m,σ ◦ p)
Bott−1

∼= Ki(G , σ ).

(3.1)

3.2. The twisted longitudinal index theorem

For a regular foliation (M,F) with a twisting σ the space of leaves, that is, a generalized
morphism from the holonomy groupoid M/F to PU(H), we have the twisted analytic index
morphism (Definition 2.13)

Indexa,(M/F,σ ) : Ki
(
F ∗, σ0 ◦ πF

) −→ Ki(M/F,σ).

The main theorem of the paper is to establish the equality between the twisted analytic index and
the twisted topological index for (M/F,σ ) which generalizes the longitudinal index theorem of
Connes and Skandalis (see [15]) for the trivial twisting.

Theorem 3.3. For a regular foliation (M,F) with a twisting σ : M/F PU(H) we have
the following equality of morphisms:

Indexa,(M/F,σ ) = Indext,(M/F,σ ) : Ki
(
F ∗, σ0 ◦ πF

) −→ Ki(M/F,σ). (3.2)

Proof. We use the same notation and terminology of the definition of the twisted topological
index for (M/F,σ ). Notice that the analytic twisted index morphism is compatible with the Bott
isomorphism (Proposition 2.14)
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Ki(F ∗, σ0 ◦ πF )
Bott

∼=
Indexa,(G ,σ )

Ki(F ∗ × R2m, (σ ◦ p)0 ◦ πF )

Index
a,(G̃ ,σ◦p)

Ki(M/F,σ )
Bott

∼=
Ki(G × R2m,σ ◦ p)

and open inclusions of subgroupoids (Proposition 2.15)

Ki(A∗G̃ |U , (σ ◦ p ◦ j)0 ◦ π)
∼=

Index
a,(G̃ |U ,σ◦p)

Ki(F ∗ × R2m, (σ ◦ p)0 ◦ πF )

Index
a,(G̃ ,σ◦p)

Ki(G̃ |U ,σ ◦ p ◦ j)
j!

Ki(G × R2m,σ ◦ p).

We only need to check that the analytic index morphism for (U, F̃ |U),

Index
a,(G̃ |U ,σ◦p◦j)

: Ki
(
A∗G̃ |U , (σ ◦ p ◦ j)0 ◦ π

) −→ Ki(G̃ |U ,σ ◦ p ◦ j)

agrees with the composition of the following part in the definition of the twisted topological
index for (M/F,σ ),

Ki
(
N ⊕ N∗, σ0 ◦ πF ◦ πN

) Thom−1

∼= Ki(T ,σ0 ◦ πT )
Morita

∼= Ki(G̃ |U ,σ ◦ p ◦ j).

Note that A∗G |U ∼= N ⊕ N∗ as vector bundles over U ∼= N . That is, the twisted analytic in-
dex morphism (modulo the Morita equivalence isomorphism) is the Thom inverse for twisted
K-theory of Lie groupoids as in Proposition 2.17. Hence, we finish the proof of the twisted lon-
gitudinal index theorem. �

What we just proved in the last theorem is that any index morphism for foliations with twist-
ings satisfying the three properties in Propositions 2.14, 2.15 and 2.17 is equal to the twisted
topological index.

Indeed, if IND(H ,β) is any such index morphism for twisted groupoids, the three mentioned
properties imply that the following three square diagrams are commutative precisely by the same
arguments as the proof above

K∗(F∗, σ0 ◦ πF )
Bott

≈

IND(M/F,σ)

K∗(F∗ × R2m,(σ ◦ p)0 ◦ πF )

IND
(M/F×R2m,σ◦p)

K∗(A∗G̃ |U ,A∗G̃ |U , (σ ◦ p ◦ j)0 ◦ π)

IND
(G̃ |U ,σ◦p◦j)

≈
K∗(N ⊕ N∗, σ0 ◦ πF ◦ πN )

Thom−1

≈

K∗(M/F,σ)
Bott

≈
K∗(M/F × R2m,σ ◦ p) K∗(G̃ |U ,σ ◦ p ◦ j)

j !
K∗(T ,σ0 ◦ πT ).

≈
Morita

Hence, the big diagram is also commutative, and we obtain the equality IND(M/F,σ ) =
Indext,(M/F,σ ).
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Remark 3.4.

(1) There is a second definition of the twisted analytic index using projective pseudo-differential
operators along the leaves which also satisfies the three properties in Propositions 2.14, 2.15
and 2.17. We will return to this issue in a separate paper.

(2) The proof of the longitudinal index theorem we propose is not exactly that of Connes and
Skandalis (see [15]) but more in the spirit of the index theorem proved in [8], Theorem 6.4,
which is based on the fact that the Thom (inverse) isomorphism can be realized as the index
of some deformation groupoid [16].

4. Wrong way functoriality

In this section we construct a push-forward map in twisted K-theory for any smooth ori-
ented map from a manifold to M/F , the space of leaves of a foliation (M,F). This construction
generalizes Connes–Skandalis’ push-forward map in K-theory for any K-oriented map from a
manifold to M/F . The main result will be the functoriality of these wrong way morphisms.

Throughout this section, we assume that with respect to an open cover {Uα} of M and the
foliation charts

kα : Uα
∼= Rp × Rq −→ Rq,

the twisting σ on M/F is given by a PU(H)-valued 1-cocycle

σαβ : G Uβ

Uα
−→ PU(H).

Recall that in [15] a smooth map f : W → M/F is given by a principal right GM -bundle
over W ,

Gf

rf sf

GM

r s

W M,

and f : W → M/F is called a submersion if the map sf is a submersion. Equivalently, a smooth
map f : W → M/F is given by a GM -valued 1-cocycle (Ωi, fij ),

fij : Ωi ∩ Ωj −→ GM, (4.1)

with respect to an open covering {Ωi} of W such that

fij (x) ◦ fjk(x) = fik(x)

for any x ∈ Ωi ∩ Ωj ∩ Ωk . Note that fii : Ωi → M due to the fact that fii(x) ◦ fii(x) = fii(x)

for any x ∈ Ωi . We always assume that for each Ωi ,

fii(Ωi) ⊂ Uα(i)
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for a chosen foliation chart Uα(i). In particular, the pull-back twisting of σ by f on W , denoted
by f ∗σ , is the composition

f ∗σ = σα(i)α(j) ◦ fij : Ωi ∩ Ωj −→ G
Uα(j)

Uα(i)
−→ PU(H).

Let νF be the transverse bundle to the foliation F , that is, (νF )x = TxM/Fx . One can check
that the local vector bundles f ∗

iiνF can be glued together using fij to form a real vector bundle
over W . We denote this vector bundle by f ∗νF . A map f : W → M/F is called oriented if
T W ⊕ f ∗νF is an oriented vector bundle over W . The orientation twisting of T W ⊕ f ∗νF ,

oT W⊕f ∗νF
: W PU(H)

is equivalent to a trivial twisting if and only if T W ⊕ f ∗νF is K-orientable.
We are now going to construct the push-forward map, with a possible degree shift given by

d(f ) = dim(W) + rank(νF ) mod 2,

f! : K∗(W,f ∗σ + oT W⊕f ∗νF

) −→ K∗+d(f )(M/F,σ ) (4.2)

associated to any smooth oriented map f : W → M/F and a twisting σ : M/F PU(H),

where f ∗σ is the pull-back twisting on W , and oT X⊕f ∗νF
is the orientation twisting of T W ⊕νF .

Let

W
f

j

M/F

Z

g

be a factorization of f such that j is oriented and proper, and g is a submersion. Such a factor-
ization can be found in [13,5] using the foliation microbundle associated to a Haefliger structure
on W . According to [7], there is a push-forward map in twisted K-theory for any proper map
j : W → Z,

j! : K∗(W,f ∗σ + oT W⊕f ∗νF

) −→ K∗(Z,g∗σ + oT Z⊕g∗νF

)
.

Therefore, we only need to establish a push-forward map for any submersion g : Z → M/F ,

g! : K∗(Z, f̂ ∗σ + oT Z⊕g∗νF

) −→ K∗(M/F,σ ),

and show that f! = g! ◦ j! doesn’t depend on the choice of the factorization f = g ◦ j .
Let f : W → M/F be a submersion, that is, with respect to an open cover {Ωi} of W , there

is a GM -valued 1-cocycle {Ωi,fij },

fij : Ωi ∩ Ωj −→ GM
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such that fii : Ωi → M are transverse to the foliation F . Denote by FW = f ∗(F ) the pull-back
foliation on W given by the kernel of the homomorphism (independent of i and integrable)

π ◦ dfii : T W |Ωi
−→ TM −→ TM/F,

with the induced foliation charts given by kα(i) ◦fii : Ωi → Uα(i) → Rq . Note that the transverse
bundle to the foliation FW , denoted by νFW

, is isomorphic to f ∗νF , the pull-back transverse
bundle.

Denote by GW ⇒ W the holonomy groupoid of (W,FW). In [15], Lemma 4.2, Connes and
Skandalis give an explicit (left) action of GW on Gf . In terms of Hilsum–Skandalis morphisms
(Definition 1.1(i) in [22]) this means precisely that there is a generalized morphism f̃ : GW →
GM given by the graph Gf seen as a GM -principal bundle over GW ,

GW Gf GM

W M,

or equivalently that we can factorize the submersion f : W → M/F as follows

W

pW

f
M/F

W/FW

f̃

(4.3)

where pW : W → W/FW is the natural submersion given by the inclusion of W into the unit
space W/FW . Denote by f̃ ∗σ be the pull-back twisting on W/FW , then f ∗σ is equivalent to
the restriction of f̃ ∗σ to the unit space of GW . Note that twisting oT W⊕f ∗νF

is equivalent to the
twisting oνFW

as

T W ⊕ f ∗νF
∼= FW ⊕ νFW

⊕ f ∗νF
∼= FW ⊕ f ∗(νF ⊕ νF ),

and νF ⊕ νF has a canonical Spinc structure. Hence, we have the following Thom isomorphism
(cf. [7])

K∗(W,f ∗σ + oT W⊕νFW

) ∼= K∗(W,f ∗σ + oFW

)
.

Definition 4.1. The push-forward map for the submersion pW : W → W/FW is defined to the
composition of the Thom isomorphism in twisted K-theory and the twisted analytic index of
(W/FW , f̃ ∗σ),

(pW )! : K∗(W,f ∗σ + oFW

) Thom

∼=
K∗(F ∗

W,π∗
FW

f̃ ∗σ
) Index

a,(W/FW ,f̃ ∗σ)

K∗(W/FW, f̃ ∗σ
)
,

with the degree shifted by the rank of FW . Here πF is the projection F ∗ → W .
W
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Now we are going to construct a push-forward map

f̃! : K∗(W/FW, f̃ ∗σ
) −→ K∗(M/F,σ ) (4.4)

associated to the morphism f̃ : W/FW → M/F .

Remark 4.2. Note that our index morphisms take values in the K-theory groups of reduced
C∗-algebras (see (2.13)). However, to be precise in the construction of the morphism (4.4), we
must in what follows, take everywhere the K-theory of the maximal C∗-algebras instead of the
reduced ones (see again (2.13) and Remark 2.4). This wont change anything for those groupoids
which are amenable (manifolds, vector bundles) for which we are going to use some results
from [7]. Also, it is immediate that if the main result, Theorem 4.10, hold for the K-theory of the
maximal C∗-algebras, then it holds for the K-theory of the reduced C∗-algebras by considering
the canonical projection from the maximal to the reduced algebras. We decided to work with the
maximal algebras to simplify the arguments of the proofs, but a direct proof at the reduced level
is indeed possible by considering the construction of (4.4) as indicated in [11].

Note that a generalized morphism f̃ : W/FW → M/F can be equivalently described
(Definition–Proposition 1.1 in [22]) by a strict morphism of groupoids

f̃T : (GW)T −→ (GM)T (4.5)

between the étale groupoids obtained from the restriction to some complete faithful transversals.
The way of relating the morphism f̃ with f̃T is by means of the Morita equivalence between an
holonomy groupoid and the étale groupoid obtained by restriction to a transversal. In our case
we have a commutative diagram

GW

f̃
GM

(GW )T
f̃T

MW ∼

(GM)T ,

MM∼ (4.6)

where M stands for the corresponding Morita equivalence. We briefly recall the construction of
f̃T : (GW)T → (GM)T (in detail can be found in [22], specially in Definition–Proposition 1.1 and
Subsection 3.13).

Recall that the foliation FW is constructed locally from the foliation chart

ki : Ωi
fii−→ Uα(i)

kα(i)−→ Rq (4.7)

where {kα(i) : Uα(i) → Rq} is the foliation chart defining the foliation F on M . Let Ti be a
transversal of the foliation FW on Ωi defined by choosing a right smooth inverse to ki . For each
foliation chart kα : Uα → Rq , we can choose a smooth connected transversal

k−1
α : Rq −→ Tα ⊂ Uα,
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in particular, kα ◦ k−1
α = Id. We can assume that {Tα} are pairwise disjoint and fii defines an

embedding

fi : Ti −→ Tα(i) (4.8)

where Tα(i) is a transversal of the foliation FM on Uα(i). Let TW = ⊔
i Ti and TM = ⊔

i Tα(i).
We have then the restricted groupoids

(GW)T :=
⊔
i,j

(GW )
Ti

Tj
⇒ TW and (GM)T :=

⊔
α,β

(GM)
Tβ

Tα
⇒ TM.

Recall that by definition f̃ is given by a cocycle {(Ωi, f̃ij )}i on GW with values on GM . The
strict morphism of groupoids

(GW)T
f̃T

(GM)T

TW
f̃

(0)
T

TM

is defined as the restrictions of the f̃ij to the (GW)
Ti

Tj
, i.e.,

(GW)TW
= ⊔

i,j (GW )
Ti

Tj

⊔
i,j f̃ij

(GM)TM
⊂ GM.

Notice that the above map has its image in (GM)T by construction, where we are canonically
identifying (GM)T as the sub-groupoid of GM given by{

γ ∈ GM : s(γ ) ∈ Tα(i), r(γ ) ∈ Tα(j)

}
.

Remark that TW is a complete transversal and that, by enlarging TM , we can also assume
TM is complete. Even more, in our case, the embedding f̃

(0)
T : TW ↪→ TM is étale (even we

can assume it is a proper open inclusion, see (4.7), (4.8) or Remark 1.4 in [22] for more de-
tails). In particular dimTW = dimTM . The groupoids (GW)T ⇒ TW and (GM)T ⇒ TM are
étale groupoids. Hence, the two arrow manifolds have the same dimension too: dim(GW)T =
dimTW = dimTM = dim(GM)T .

Lemma 4.3. (See [20, p. 378], [15, Section IV], [22].) The homomorphism f̃T : (GW)TW
→

(GM)TM
is an injective étale map.

Now, given a twisting σ : GM PU(H), by taking the refinement of the foliation charts
{Uα} if necessary, we can construct as above a strict morphism of groupoids

σT : (GM)T −→ PU(H),
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which defines a twisting on (GM)T . The C∗-algebras of two Morita equivalent extensions are
also Morita equivalent [32,33]. Hence, we have

K∗(M/F,σ ) ∼= K∗((GM)T ,σT

)
.

The twisting σT and f̃ ∗
T σT = σT ◦ f̃T induce the following injective immersions of groupoid

extensions

RW RM

(GW)T
f̃T

(GM)T .

(4.9)

Taking the degree one index morphism associated to the immersion RW ↪→ RM as in (2.20), we
obtain a homomorphism

(f̃T )! : K∗((GW)T , f̃ ∗σT

) −→ K∗((GM)T ,σT

)
. (4.10)

We have the following lemma.

Lemma 4.4. With the notations above, the push-forward map

f̃! : K∗(W/FW, f̃ ∗σ
) −→ K∗(M/F,σ ) (4.11)

associated to f̃ : W/FW → M/F given by the composition

K∗(W/FW, f̃ ∗σ
) MW−→ K∗((GW)T , f̃ ∗σT

) (f̃T )!−→ K∗((GM)T ,σT

) MM−→ K∗(M/F,σ ),

where MW and MM denote the induced isomorphisms from the Morita equivalences (4.6), does
not depend on the choices of complete transversals.

Proof. It is a direct adaptation of the proof of Lemma 3.14 in [22]. Just observe that we can also
apply Remark 3.12 in [22] in our context since the morphism f̃ : W/FW → M/F is étale. �

The following two propositions will allow us to use the factorization (4.3) and the precedent
discussion to define the twisted pushforward map for any submersion.

Proposition 4.5. Let f : W → M/F be a smooth submersion and σ : M/F PU(H) be

a twisting. Let X
g−→ W/FW be another submersion. Let f̃ : W/FW → M/F and g̃ : X/FX →

W/FW be the associated generalized morphisms. Then f̃! ◦ g̃! = (f̃ ◦ g̃)!.
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Proof. By functoriality of the pullback foliation construction (for submersions) we have that
FX = g∗FW = (f̃ ◦ g)∗FM . The commutative diagram of immersions of groupoids

(GX)T
f̃T ◦g̃T

g̃T

(GM)T

(GW)T

f̃T

induces the commutative diagram of immersions of central extensions

RX

f̃T ◦g̃T

g̃T

RM

RW .

f̃T

The functoriality of index morphism implies that the following commutative diagram:

K∗((GX)T , (f̃T ◦ g̃T )∗σT )
(f̃T ◦g̃T )!

(g̃T )!

K∗((GM)T ,σT )

K∗((GW )T , (f̃T )∗σT ).

(f̃T )!

Together with the functoriality of Morita equivalences, we complete the proof of f̃! ◦ g̃! =
(f̃ ◦ g̃)!. �
Proposition 4.6. Let (M/F,σ ) be a twisted foliation, g : W → M be a smooth submersion and
FW be the pull-back foliation on W . Denote f = pM ◦ g. Then

f! = (pM)! ◦ g! : K∗(W,f ∗σ + oFW

) −→ K∗(M/F,σ )

with the degree shifted by the rank of FW modulo 2.

Proof. Consider the commutative diagram

W

g

pW
W/FW

f̃

M
pM

M/FM.
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By definition, f! = f̃! ◦ (pW )!. We shall establish the following commutative diagram:

K∗(W,f ∗σ + oFW
)

g![dimW−dimM]

(pW )!
[rankFW ] K∗(GW, f̃ ∗σ)

f̃!

K∗(M,σ0 + oF )
(pM)!

[rankF ] K∗(GM,σ)

(4.12)

where [n] denotes the degree shifted by n mod 2, note that rankFW = dimW − dimM + rankF .
Recall that (pW )! and (pM)! are defined as the composition of the Thom isomorphism and the

analytic index morphism for (W/FW , f̃ ∗σ) and (M/F,σ ) respectively, see Definition 4.1. As
the push-forward map in twisted K-theory for topological spaces is compatible with the Thom
isomorphism (see [7]), we only need to show that the following diagram commutes:

K∗(F ∗
W,π∗

FW
f ∗σ)

(dF g)!

Index
a,(W/FW ,f̃ ∗σ)

K∗(GW, f̃ ∗σ)

f̃!

K∗(F ∗,π∗
F σ)

Indexa,(M/F,σ)

K∗(GM,σ).

(4.13)

By the twisted index theorem (Theorem 3.3), it suffices to show the following functorial prop-
erty for the twisted topological index morphisms:

K∗(F ∗
W,π∗

FW
f ∗σ)

(dF g)!

Index
t,(W/FW ,f̃ ∗σ)

K∗(GW, f̃ ∗σ)

f̃!

K∗(F ∗,π∗
F σ)

Indext,(M/F,σ)

K∗(GM,σ).

(4.14)

To unravel the definition of twisted topological index (Definition 3.2), we choose two simul-

taneous embeddings M
jM
↪→ R2m and W

jW
↪→ R2m. Denote by TM and TW be open neighborhood

of the zero section in the normal bundles to the foliations FM and FW in R2m respectively. Using
the notations in the definition of the twisted topological index and Theorem 3.3, we can identify
TM and TW with open transversals of the foliations (M × R2m, F̃ ) and (M × R2m, F̃ ) such that
the following diagram commutes:
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TW

⊂

πW

UW

⊂

W W × R2m

TM

⊂

πM

UW

⊂

M W × R2m .

Here UW and UM are small neighborhoods of TW and TM in M × R2m and M × R2m, and also
identified with the corresponding normal bundles NW and NM respectively.

Note that the twisted topological index is defined as the composition of the following five
homomorphisms, namely, Bott isomorphism and Thom isomorphism in twisted K-theory of
topological spaces, Morita isomorphism, functorial map for open embedding and Bott isomor-
phism in twisted K-theory of Lie groupoids. We now show that the twisted topological index is
functorial through the following five steps.

Step 1. Bott isomorphism in twisted K-theory of topological spaces is functorial.
Let iW : F ∗

W → F ∗
W ⊕R2m and iM : F ∗

M → F ∗
M ⊕R2m be the obvious zero sections. Then Bott

isomorphisms are given by (iW )! and (iM)! respectively (cf. [7,33]). The derivate dg : T W → TM
induces dg : FW → FM since in this case FW = Ker(qM ◦dg) where qM : TM → τM = TM/FM ,
and FM = KerqM . Letting dg ⊕ Id : F ∗

W ⊕ R2m → F ∗
M ⊕ R2m be the K-oriented vector bundle

morphism, then the diagram

K∗(FW ,π∗
FW

(f ∗σ)0)

(dg)!

Bott
K∗(FW ⊕ Rm,p∗

FW
π∗

W(f ∗σ)0)

(dg⊕Id)!

K∗(FM,π∗
FM

π∗
Mσ0)

Bott
K∗(FM ⊕ Rm,π∗

Mσ0)

(4.15)

is commutative due to the functoriality of the pushforward maps in twisted K-theory established
in [7].

Step 2. Thom isomorphism in twisted K-theory of topological spaces is functorial.

Denote by TW
dT g−→ TM the induced vector bundle morphism which comes from the short exact

sequences of vector bundles over W and M

0 FW

dg

W × R2m

g×id

TW

dT g

0

0 FM M × R2m TM 0

Choose a bundle morphism h = dg ⊕ dT g under suitable identifications W × Rm ∼= FW ⊕ TW

and M × Rm ∼= FM ⊕ TM . Note that F ∗ ⊕ R2m ∼= NW ⊕ N∗ and F ∗ ⊕ R2m ∼= NM ⊕ N∗ as
W W M M
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total spaces of vector bundles over TW and TM . We have the following commutative diagrams of
maps:

F ∗
W ⊕ R2m

∼=

dg⊕h

NW ⊕ N∗
W TWι

dT g

F ∗
M ⊕ R2m

∼=
NM ⊕ N∗

M TMι

where ιW and ιW are the zero sections of the vector bundles NW ⊕N∗
W → TW and NM ⊕N∗

M →
TM . Hence, by the functoriality of Thom isomorphism in [7] and the fact that ι! (in twisted K-
theory) coincides with the Thom isomorphism in twisted K-theory (see again [7]), we have the
following commutative diagram:

K∗(F ∗
W ⊕ R2m,π∗

FW
(f ∗σ)0)

∼=

(dg⊕h)!

K∗(NW ⊕ N∗
W,π∗

N(π∗
Wf ∗σ0))

Thom−1

K∗(TW ,π∗
Wf ∗σ0)

(dT g)!

K∗(F ∗
M ⊕ R2m,π∗

FM
σ0)

∼=
K∗(NM ⊕ N∗

M,π∗
N(π∗

Mσ0))
Thom−1

K∗(TM,π∗
Mσ0).

(4.16)

Step 3. Morita isomorphism is functorial. In the definition of the topological indices we can
choose the neighborhoods UW and UM small enough such that the étale (generalized) morphism

f̃ × id : G̃W → G̃M restricts to an étale (generalized) morphism (f̃ × id)|UW
: NW ×TW

NW →
NM ×TM

NM (remember UW and UM are chosen such that G̃ |U = N ×T N ). This last mor-
phism can be equivalently described (Definition–Proposition 1.1 in [22] or our discussion after
Definition 4.1) by a strict morphism of groupoids between the étale groupoids obtained from
the restriction to some complete transversals. In this case, using the complete transversals TW

and TM to the foliated manifolds (UW , F̃W |UW
) and (UM, F̃M |UM

) respectively, it is easily

seen that (f̃ × id)|UW
is given by dT g : TW → TM modulo the respective Morita equivalences

N ×T N
M−→ T .

By Lemma 4.4, the twisted K-theory morphism

(f̃ × id)|UW
! : K∗(G̃W |UW

, f̃ ∗σ ◦ pW ◦ jW

) −→ K∗(G̃M |UM
,σ ◦ pM ◦ jM)

can be defined as the morphism (dT g)! : K∗(TW ,π∗
W(f ∗σ)0) → K∗(TM,π∗

Mσ0) via the induced
morphisms by the Morita equivalences (independent of the choice of complete transversals).
In other words, the following diagram is commutative:

K∗(TW ,π∗
W

(f ∗σ)0)
Morita

∼=
(dT g)!

K∗(NW ×TW
NW ,π∗

N
π∗

W
(f ∗σ)0)

∼=
K∗(G̃W |UW

, f̃ ∗σ ◦ pW ◦ jW )

((f̃ ×id)|UW
)!

K∗(TM,π∗
M

σ0)
Morita

∼=
K∗(NM ×TM

NM,π∗
N

π∗
M

σ0)
∼=

K∗(G̃M |UM
,σ ◦ pM ◦ jM).

(4.17)
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Step 4. Push-forward map for open embeddings in Lie groupoids is functorial.

The morphism f̃ × id can be equivalently described by a strict morphism of groupoids be-
tween the étale groupoids obtained from the restriction to some complete transversals and it does
not depend on the choice of these. It is obvious that these complete transversals can be cho-
sen such that their restriction to the U ’s give complete transversals for the restricted foliations.
Hence, by Lemma 4.4 and Proposition 2.15, the following diagram is commutative

K∗(G̃W |UW
, f̃ ∗σ ◦ pW ◦ jW )

j!

((f̃ ×id)|UW
)!

K∗(G̃W f̃ ∗σ ◦ pW)

(f̃ ×id)!

K∗(G̃M |UM
σ ◦ pM ◦ jM)

j!
K∗(G̃M,σ ◦ pM).

(4.18)

Step 5. Bott isomorphism in twisted K-theory of Lie groupoids is functorial.
For the final diagram to be commutative it is enough to observe that if T is a complete transver-

sal of (W,F ) then T ×Rm is a complete transversal of (W ×Rm,F ×{0}). We apply Lemma 4.4
and Proposition 2.14 to obtain the commutative diagram

K∗(G̃W , f̃ ∗σ ◦ pW)
Bott−1

(f̃ ×id)!

K∗(GW , f̃ ∗σ)

f̃!

K∗(G̃M,σ ◦ pM)
Bott−1

K∗(GM,σ).

(4.19)

Putting together the commutative diagrams (4.15), (4.16), (4.17), (4.18) and (4.19), we estab-
lish the functoriality for the twisted topological index morphism. This completes the proof. �

We can now define the twisted pushforwards for smooth submersions.

Definition 4.7. The push-forward map f! : K∗(W,f ∗σ + oT W⊕f ∗νF
) → K∗(M/FM,σ) for the

submersion f : W → M/F is defined to be the composition of the following maps

K∗(W,f ∗σ + oT W⊕f ∗νF

) ∼=−→ K∗(W,f ∗σ + oFW

) (pW )!−−−→ K∗(W/FW, f̃ ∗σ
)

f̃!−→ K∗(M/FM,σ). (4.20)

We want now to give a definition for any smooth generalized morphism. We will need for that
purpose the following result.

Proposition 4.8. Let (M/F,σ ) be a twisted foliation and f : W → M/F be a smooth map.
Assume f factors in two different ways:
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Z1
g1

W

j2

j1

f
M/F

Z2

g2

(4.21)

where g1 and g2 are smooth submersions. Then (g1)! ◦ (j1)! = (g2)! ◦ (j2)!.

Proof. First, let us assume ji and j2 are submersions. Consider the factorization of g1 = g̃1 ◦pZ1 .
Putting h1 = pZ1 ◦ j1, we have a commutative diagram

W
j1

pW

h1

Z1

g1
pZ1

W/FW
h̃1

Z1/FZ1
g̃1

M/F.

By Propositions 4.6 and 4.5, we have (h1)! = (h̃1)! ◦ (pW )! = (pZ1)! ◦ (j1)! and (g̃1)! ◦ (h̃1)! =
(g̃1 ◦ h̃1)!. Hence,

(g1)! ◦ (j1)! = (g̃1)! ◦ (pZ1)! ◦ (j1)! = (g̃1)! ◦ (h̃1)! ◦ (pW )! = (g̃1 ◦ h̃1)! ◦ (pW )!.

Similarly, the commutative diagram

W
j1

pW

h2

Z2

g1
pZ2

W/FW
h̃2

Z2/FZ2
g̃1

M/F

implies that

(g2)! ◦ (j2)! = (g̃2 ◦ h̃2)! ◦ (pW )!.

Then (g1)! ◦ (j1)! = (g2)! ◦ (j2)! follows g̃1 ◦ h̃1 = g̃2 ◦ h̃2.
For the general case, recall that Connes and Skandalis construct in [15] the following com-

mutative diagram:
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Z1
g1

W

j2

j1

j

Z

π1

π2

g
M/F

Z2

g2

(4.22)

where Z is a smooth manifold, j is a smooth map and π1, π2 and g are smooth submersions.
The manifold Z corresponds to the fibered product of Z1 and Z2 over M/F (see also [5] for
further discussions). The desire equality follows immediately from the wrong way functoriality
in twisted K-theory for manifolds proved in [7] and the submersion case treated above. �

We can give the definition of the push-forward map for any smooth map f : W → M/F where
M/F is equipped with a twisting σ .

Definition 4.9. Let (M/F,σ ) be a twisted foliation and f : W → M/F be any smooth map.
We define

f! : K∗(W,f ∗σ0 + oT W⊕f ∗νF

) −→ K∗(M/F,σ )

to be the composition g! ◦ j! for any factorization f = g ◦ j through g : Z → M/F a smooth
submersion. Here the push-forward map

j! : K∗(W,f ∗σ0 + oT W⊕f ∗νF

) −→ K∗(Z,g∗σ + oT Z⊕g∗νF

)
is established in [7], and the push-forward map g! for the submersion g is defined in Defini-
tion 4.7, with the possible shift on degree (see also Definition 4.1).

The main result of this section can be now stated.

Theorem 4.10. The push-forward morphism is functorial, that means, if we have a composition
of smooth maps

X
g−→ W

f−→ M/F, (4.23)

and a twisting σ : M/F PU(H), then the following diagram commutes

K∗(X, (f ◦ g)∗σ + oT X⊕(f ◦g)∗νF
)

(f ◦g)!

g!

K∗(M/F,σ )

K∗(W,f ∗σ + oT W⊕f ∗νF
)

f!
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Proof. Choose a factorization of f : W → M/F as W
j−→ Z

q−→ M/F where q is a submer-
sion, then f ◦ g = (g ◦ j) ◦ q is a factorization of f ◦ g. Then the claim follows Proposition 4.8
and the functorial property of the push-forward map in [7]. �

We remark that when σ is trivial and f : W → M/F is K-oriented (that is T W ⊕ νF is K-
oriented), then our push-forward map in Definition 4.9 agrees with the one constructed in [15].
Also, when the foliation consists on a single leaf (hence a manifold) but the twisting is not
necessarily trivial, we obtain otherwise the push-forward map defined in [7] by Carey and Wang.

5. Further developments

It is very natural now to use the wrong way functoriality studied in the last section to construct
an assembly map adapted to our twisted situation. Indeed, it is possible to adapt to foliations the
twisted geometric K-homology introduced in [35] by the second author.

As indicated in [11], we will obtain a twisted assembly map

μσ : Kgeo∗ (M/F,σ + oνF
) −→ K∗(M/F,σ ). (5.1)

There are two very interesting particular cases: the first is when σ is trivial, in this case we
recover the assembly map considered by Connes and Skandalis:

μτ : Kgeo∗ (M/F,oνF
) −→ K∗(M/F),

and the second is when σ = oνF
, in this case we obtain the following assembly map:

μ : Kgeo∗ (M/F) −→ K∗(M/F,oνF
).

The situation here is more subtle than the untwisted case since we have not developed the
appropriate pseudodifferential calculus and/or we have not discussed the construction of analytic
elements from (twisted) correspondences. In particular the understanding of these subjects will
lead us to prove and understand the bordism invariant of our twisted indices, and then, to under-
stand how the assembly map fits into some kind of S1-equivariant assembly map (we already saw
that our indices are naturally factors of an S1-equivariant index). We will discuss these topics in
detail in a forthcoming paper.
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[28] Janez Mrčun, Functoriality of the bimodule associated to a Hilsum–Skandalis map, K-Theory 18 (3) (1999) 235–

253.
[29] Victor Nistor, Alan Weinstein, Ping Xu, Pseudodifferential operators on differential groupoids, Pacific J.

Math. 189 (1) (1999) 117–152.
[30] Alan L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Progr. Math., vol. 170,

Birkhäuser, Boston, MA, 1999.
[31] Jean Renault, A Groupoid Approach to C∗-Algebras, Lecture Notes in Math., vol. 793, Springer, Berlin, 1980.
[32] Jean Renault, Représentation des produits croisés d’algèbres de groupoïdes, J. Operator Theory 18 (1) (1987) 67–97.
[33] Jean-Louis Tu, Ping Xu, Camille Laurent-Gengoux, Twisted K-theory of differentiable stacks, Ann. Sci. École

Norm. Sup. (4) 37 (6) (2004) 841–910.



4986 P. Carrillo Rouse, B.-L. Wang / Advances in Mathematics 226 (2011) 4933–4986
[34] Erik van Erp, The Atiyah–Singer index formula for subelliptic operators on contact manifolds, Part I, Ann. of Math.
(2) 171 (3) (2010) 1647–1681.

[35] Bai-Ling Wang, Geometric cycles, index theory and twisted K-homology, J. Noncommut. Geom. 2 (4) (2008)
497–552.

[36] H.E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (3) (1983) 51–75.


	Twisted longitudinal index theorem for foliations and wrong way functoriality
	Introduction
	Twistings on Lie groupoids
	Generalized morphisms: the Hilsum-Skandalis category
	Twistings on Lie groupoids
	Twistings on tangent groupoids
	Deformation to the normal cone
	The tangent groupoid of a groupoid
	The tangent groupoid of a groupoid immersion


	Analytic index morphism for a twisted Lie groupoid
	The case of Lie groupoids
	The convolution C*-algebra of a Lie groupoid
	Analytic index morphism for Lie groupoids
	Analytic indices morphisms for Lie groupoid immersions

	The case of twisted groupoids
	Twisted K-theory of a Lie groupoid with a twisting
	The Analytic index morphism of a twisted groupoid

	Properties of the twisted analytic index morphism
	Thom inverse morphism in twisted K-theory


	Longitudinal twisted index theorem for foliations
	Twisted topological index for foliation
	The twisted longitudinal index theorem

	Wrong way functoriality
	Further developments
	Acknowledgments
	References


