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In this paper we describe an obstruction theory for the problem of taking a commutative 

diagram in the homotopy category of topological spaces and lifting it to an actual commutative 

diagram of spaces. This directly generalizes the work of G. Cooke on extending a homotopy 

action of a group G to a topological action of G. 

1. Introduction 

1.1. Summary. In [2], Cooke asked when a homotopy action of a group G on 

a CW-complex X is equivalent, in an appropriate sense, to a topological action of 

G on some homotopically equivalent space. He converted this problem into a lifting 

problem, which then gave rise to a sequence of obstructions, whose vanishing 

insured the existence of the desired topological action. These obstructions were ele- 

ments of the cohomology of G with local coefficients in the homotopy groups of 

the function space Xx. 

As a group is just a category with one object in which all maps are invertible, one 

can consider the corresponding problem for homotopy actions of an arbitrary small 

topological category D on a set {X,} of CW-complexes, indexed by the objects 

DE D. The purpose of this paper is to generalize Cooke’s results to this situation, 

i.e. to convert this problem into an equivalent lifting problem, which gives rise to 

obstructions, in the cohomology of the category D with local coefficients in the 
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homotopy groups of the function complexes between the X,‘s. There is also a rela- 

tive version, in which one starts with a topological action of a subcategory CCD. 
And, of course, there are corresponding simplicial results. 

1.2. Further details. We now give some more details for the case that D is an 

ordinary small discrete (as opposed to topological) category. First we formulate 

(i) The realization problem. Given a homotopy commutative D-diagram Y (i.e. 

a functor from D to the category of CW-complexes and homotopy classes of maps 

between them), the problem is whether Y has a realization. By this we mean a D-dia- 

gram Y (i.e. a functor from D to the category of CW-complexes and continuous 

maps between them), together with a function z which assigns to every object DE D 

a homotopy equivalence zD: YD + FD such that (yd)[zD,] = [zD,][Yd] for every 

map d: D1 + D,ED ([-I denotes ‘the homotopy class of -‘). To attack this prob- 

lem we define 

(ii) The space real Y of realizations of y. This will be the classifying space of a 

certain category which has the realizations of Y as objects. This space real P is non- 
empty iff P has a realization. In order to get a more down to earth description of 

its homotopy type we consider 

(iii) oo-homotopy commutative D-diagrams. An w-homotopy commutative 

D-diagram Y is a function which assigns to every object DE D a CW-complex YD, 
to every map d: DO-t D, ED a continuous map Yd: YO,-t YD,, to every com- 

posable sequence of maps dl : DO + D1, . . . , d,, : D, _ , + 0, E D a homotopy between 

Y(d, . . . d,) and (Yd,) . . . (Yd,) and, in a certain precise manner, higher and higher 

such homotopies. There is an obvious map from the resulting ‘space of a-homotopy 

commutative D-diagrams involving a given set of CW-complexes’ to the (discrete) 

‘space of homotopy commutative D-diagrams involving the same CW-complexes’. 

Our key result then is that, given a homotopy commutative D-diagram Y, the space 
hc, r of ‘the m-homotopy commutative D-diagrams which lie over Y’ has the 
same (weak) homotopy type as the space real P considered above. Thus Y has a 
realization iff Y can be lifted to an cw-homotopy commutative D-diagram. To con- 

struct such a lifting, one first tries to lift Y to 

(iv) n-homotopy commutative D-diagrams (n L 1). One can obtain a definition of 

n-homotopy commutative D-diagrams by ‘truncating’ the above-mentioned defini- 

tion of co-homotopy commutative D-diagrams. For instance, a 1-homotopy commu- 

tative D-diagram Y is a function which assigns to every object D E D a CW-complex 

YD and to every map dl : DO + D1 ED a continuous map Yd, : YD, + YD, such that 

Y(d2d,) is homotopic to (Yd,)(Yd,) for every map d2: D, -+ D2~D. The space 

hc, y then is an inverse, limit as well as homotopy inverse limit of the resulting 

tower {hc, U},,, of ‘spaces of n-homotopy commutative D-diagrams over F’ and 

it follows that P can be lifted to an c=homotopy commutative D-diagram iff P can 
be lifted to a ‘compatible’ sequence of n-homotopy commutative D-diagrams. It 

thus remains to find inductive algebraic conditions for the existence of such a ‘com- 

patible’ sequence of liftings, which are usually called 
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(v) Obstructions. As hc, P is clearly contractible, one can always lift P to a 
I-homotopy commutative D-diagram. Whether B can be lifted to a 2-homotopy 

commutative D-diagram turns out to be an (already algebraic) problem involving 

(fundamental) groupoids. Finally, given a lifting of Y to an n-homotopy commuta- 

tive D-diagram (nz2), the obstruction to the existence of a ‘compatible’ (n + I)- 

homotopy commutative D-diagram lies in the cohomology (in the sense of Ill]) of 

the category D with local coefficients in the nth homotopy groups of the function 

spaces between the CW-complexes YII (DE D). 

The cohomology theory studied in [ll] is defined in terms of maps from a free 

simplicial resolution of D into certain abelian Eilenberg-MacLane objects. How- 

ever, in line with [12; II, $51 there is a more classical description of the groups 

involved. To be specific, suppose that r has been lifted to an n-homotopy commuta- 

tive D-diagram with nr2. For any map d: DO -+Dr in D, let hom(FQ, FD,)F~ 

denote the component of the function space horn@& YD,) corresponding to the 

homotopy class Yd. The 2-homotopy lifting of P provides enough of a basepoint 

in hom(r&, PD1)yd to give an invariant determination of the nth homotopy group 

of this space; denote this nth homotopy group by B,(d). The construction B,,(-) 

actually gives a functor from the twisted arrow category A?(D) to abelian groups; 

here Art(D) is the category in which an object is a map d: Do + D, in D and a mor- 

phism from d to d’ is a pair of maps h, : 0; -+ Do, h, : D, + 0; such that h, d/z0 = d’. 

Then it follows from (4.8) and [12] that the obstruction to lifting Pane step further 

to an (n + 1)-homotopy commutative D-diagram lies in the group Ext”+2(Z, B,) 

where Ext*(-, -) is computed in the category of A?(D)-diagrams of abelian groups 

and Z stands for the constant such diagram. As indicated in [12], this Ext can be 

interpreted as a type of Hochschild-Mitchell cohomology of D. 

(vi) A variation. One might -wonder why we did not require in (i) that the maps 

zD : YD + YD be homotopy classes of homotopy equivalences, as this would clearly 

have given rise to an equivalent realization problem. That is precisely what we did 

in 191. It resulted, however, in a homotopically more complicated space of realiza- 

tions and gave rise to obstructions in different and, unfortunately, less easily acces- 

sible cohomology groups. In fact, the complexity of the approach of [9] already 

becomes clear when one takes for D a category with only identity maps. In that case 

the present space of realizations is contractible, which is exactly what one would like 

it to be, while the space of realizations of [9] has the homotopy type of the product 

of the universal coverings of the classifying spaces of the spaces of self homotopy 

equivalences of the CW-complexes FD (DED). 

(vii) Example. If D is a free category, that is, if the maps of D are freely gener- 

ated by a set of basic maps {di : D; + D,! 1 i E Z}, then any homotopy commutative 

D-diagram P is realizable. Moreover, real P is homotopic to the product (for i E I) 
of the function space components hom(yD;, ~D,!)F~,. 

(viii) Example. Let D be the category of the free abelian monoid on two gener- 

ators, so that D has one object D with endomorphism set freely generated by two 

maps d,, d2 : D + D subject only to the commutation relation d, d2 = d2 dl . It is pos- 
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sible to construct an explicit cofibrant resolution (1.4(iv)) of D with two zero-dimen- 

sional generators corresponding to di, d2 and a single one-dimensional generator 

corresponding to the commutation relation. It then follows easily from Section 3 

and [8] that any homotopy-commutative D-diagram Y can be realized. 

(ix) Example. Let D be the ‘retract category’, i.e. let D have one object D and 

one non-identity map d : D + D such that d2 = d. One can verify algebraically that 

the Hochschild-Mitchell cohomology of D ((1.2(v), [ 121) vanishes above dimension 

1. Consequently, a homotopy-commutative D-diagram Y can be realized if and only 

if a certain groupoid lifting problem can be solved. The relevant groupoid is the 

fundamental groupoid of the function space component horn@%, 5%)~~. 

1.3. Organization of the paper. After fixing some notation and terminology (in 

1.4), we state and prove our results first for simplicial diagrams of simplicial sets 
(the absolute case in Sections 2 and 3 and the relative case in Section 4) and then 

(in Section 5) use a singular functor argument to obtain the corresponding results 

for topological diagrams of topological spaces. 
The proofs of our key result (2.4) and its relativization (4.4) make use of a genera- 

lization of Quillen’s theorem B and of a connection between simplicial categories 
and diagrams of simplicial sets, which will be discussed in Sections 6 and 7 respec- 

tively. 

1.4. Notation, terminology, etc. (i) Simplicial sets. We denote (see [l, Chapter 

VIII]) by S the category of simplicial sets (with its usual simplicial structure), by ho S 

its homotopy category (i.e. the category obtained from S by formally inverting the 

weak (homotopy) equivalences), by SfCS and ho SfC ho S the full subcategories 

spanned by the fibrant objects (i.e. the simplicial sets which satisfy the extension 

condition) and by TC : Sf + ho Sf the projection. (The inclusion ho Sf -+ ho S is an 

equivalence of categories). We also sometimes call a simplicial set a space. 
(ii) Simplicial categories. A simplicial category is always assumed to have the 

same objects in each dimension; it thus is a category enriched over S [13, p. 1811. 

If B is a simplicial category, then we write B(B,,B,) or (if no confusion can arise) 

horn@,, B,) for the simplicial horn-set between any two objects B,,&EB. More- 

over, if T: S -+ S is a ‘product preserving’ functor, then TB will denote the simplicial 

category with the same objects as B and with simplicial horn-sets given by the for- 

mula (TB)(&, &) = T(B(&, B2)). 
(iii) Simplicial diagrams of simplicial sets. Given a small simplicial category D, 

we denote by SD the category of D-diagrams of simplicial sets, i.e. the category 

which has as objects the functors D +S and as maps the natural transformations 

between them. This category is [6] a closed simplicial model category in which the 

simplicial structure is the obvious one and in which a map X+ YE SD is a weak 

equivalence or a fibration whenever, for every object D E D, the map XD -+ YD E S 

is a weak (homotopy) equivalence or a fibration. 

(iv) A category of small simplicial categories. Given a small simplicial category 



Homotopy commutative diagrams 9 

D with object set 0, it is convenient to consider the category SO-Cat which has as 

objects the small simplicial categories with this same object set 0 and which has as 

maps the functors between them which are the identity on 0. This category SO-Cat 

admits [3] a closed simplicial model category structure in which (cf. 7.1) the sim- 

plicial structure is the obvious one and in which a map D’+ D” E SO-Cat is a weak 

equivalence or a fibration whenever, for every pair of elements D,, D, E 0, the map 

D’(D1, I&) -+ D”(D,, D,) E S is a weak (homotopy) equivalence or a fibration. There 

are many cofibrant resolutions of D, i.e. weak equivalences D’+ D E SO-Cat in 

which D’ is cofibrant. A functorial and particularly convenient one is the standard 
resolution p : F,D + DE SO-Cat given by (F,D), = F”+‘D, (n ?O), where [3] F is 

the functor which sends a small category C to the free category FC with the same 

objects as C and with as generators all the non-identity maps of C, and (F,D), and 

D, denote the ‘categories in dimension n’ of F,D and D respectively. 

Also useful are, given a functor 8: D --) ho S’“, the objects S* and ho S* in 

SO-Cat defined by the formulas S#(D,, D,) = S(I?I,, YD,) and ho S*(Dr,IQ = 

ho S(rD,, FDZ). They come together with obvious functors S# + S, ho S’ + ho S, 

rc : S# + ho S# and D + ho S# of which the last one will also be denoted by Y. 

(v) Nerves of categories. If C is a small category, we use the same symbol C for 
its nerve, i.e. the simplicial set which has as n-simplicies (nr0) the composable 

sequences C, --f ... + C, of maps in C. We do the same if C is not necessarily small, 

as long as its nerve ‘has homotopy meaning’, i.e. is a homotopically small simplicial 

set in the sense of [5,$2]. 

(vi) Topological spaces and categories. The category of topological spaces will be 

denoted by T. No separation axioms will be assumed, though our results remain 

valid if, for instance, all topological spaces are assumed to be compactly generated 

(but not necessarily Hausdorff) or singularly generated (i.e. the topology is the iden- 

tification topology obtained from the geometric realization of the singular com- 

plex) . 

By a small topological category we mean a topological category with a discrete 
set of objects, i.e. a small category enriched over T [13, p. 1811. If E is such a small 

topological category, then we denote by E(E,,_!$) the topological space of maps 

E, -E,EE. 

2. oo-homotopy commutative diagrams and realizations of homotopy commutative 

diagrams 

We start with stating and proving our main result (2.4), that the ‘space (i.e. sim- 
plicial set) of realizations’ of a given homotopy commutative diagram is naturally 
weakly (homotopy) equivalent to its ‘space of liftings to an ca-homotopy commuta- 
tive diagram’. This implies (2.5) that a homotopy commutative diagram has a 
realization iff it can be lifted to an c-=homotopy commutative diagram. 

First the relevant definitions: 
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2.1. Homotopy commutative diagrams. Given (1.4(ii)) a small simplicial category 

D, a homotopy commutative D-diagram will be just a functor P: D + ho Sf (1.4(i)). 

2.2. Realizations of homotopy commutative diagrams. Given a homotopy commu- 

tative D-diagram Y, the ‘space of realizations of F’ will be the nerve (1.4(v)) of a 

category of realizations of Y and maps between them. In order that this space has 

the ‘correct’ (2.6) homotopy type, a realization of Y will be defined slightly more 

generally than in 1.2(i), as a D-diagram Y: D + S’ (1.4(i) and (iii)), together with 

a function z which assigns to every object DE D a ‘zigzag’ of homotopy equiva- 

lences in Sr, 

z’D Z”D 
YD - X’D F FD, 

such that the function (nz”)(rrz’))’ : xY--+ Y (1.4(i)) is a natural equivalence. This 

clearly does not affect the realizability of Y. Similarly a map (Y,,z,) -+ (Y2,z2) 
between two of these realizations will be a function which assigns to every object 

DED a commutative diagram 

z;D z;D _ 
Y,D c-- X;D - YD 

such that the function y is a map (and in fact a weak equivalence) y : Y, --) Y, E SD 

(1.4(iii)). The space of realizations of Y thus is the (homotopically small (1.4(v)) 

simplicial set which has as vertices the realizations of Y and as n-simplices (n2 1) 

the composable sequences (Ye, za) + ... + (Y,,,z,) of maps between them. It will be 

denoted by real 7. Two realizations of Y will be called equivalent whenever they are 

in the same component of real Y. 

If D has only identity maps, one readily verifies that real Y is contractible. 

2.3. co-homotopy commutative diagrams. Given a homotopy commutative D-dia- 

gram Y: D + ho Sf, an a-homotopy commutative D-diagram over P will (in the 

notation of 1.4(iv)) be a map Y, : F,D -+ S# E SO-Cat such that the following 

diagram in SO-Cat is commutative: 

P 
F,D - D 
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These o3-homotopy commutative diagrams are just the vertices of a simplicial set 

homu(F,D,S#) which has as n-simplices the commutative diagrams 

proj 
F,D@d[n] - D 

! !y 
S* 5 hoS# 

(where F,D @A [n] is as indicated in 1.4(iv)), which we therefore call the space of 
a-homotopy commutative diagrams over r and denote also by hc, y. Two a-horn- 

otopy commutative diagrams over P are called equivalent whenever they are in the 

same component of hc, r. 

If D has only identity maps, then F,D = D and hence hc, 8=d [O]. 

Our main result, which converts the realization problem into a lifting problem, 

now is 

2.4. Theorem. Let D be a small simplicial category and let I’: D -+ ho Sf be a 
homotopy commutative D-diagram. Then the spaces real P and hc, Pare naturally 
weakly (homotopy) equivalent. 

2.5. Corollary. A homotopy commutative D-diagram has a realization iff there 
exists an cv-homotopy commutative D-diagram over y. A4oreover the equivalence 
classes of the realizations of Y are in a natural 1-1 correspondence with the equiva- 
lence classes of the oo-homotopy commutative D-diagrams over E 

The remainder of this section is devoted to a 

Proof of Theorem 2.4. To get a hold on the homotopy type of real y, one notes first 

that real Y is a union of components of the O-realization space real0 F, which is de- 

fined as real Y (2.2), except that the function (~z”)(nz’)~’ is not required to be a 

natural transformation TC Y ---f y. This space real0 P is in turn closely related to the 

O-classification space co r of [7], which is the nerve of the category with as objects 

the functors Y: D ---t Sf such that, for every object DE D, YD has the same homo- 

topy type as FD, and as maps the natural transformations between such functors. 

In fact, if D’CD denotes the subcategory consisting of the objects (and their iden- 

tity maps) only and PI no is the restriction of a to D”, then 6.8(ii) immediately 

implies 

2.6. Lemma. The obvious sequence 

real’ Y-co P+c”(PInO) 



12 W.G. Dwyer et al. 

is a homotopy fibration sequence, i.e. real’ P is a homotopy fibre of the map 
co P+ cO(PI,o). 0 

Similarly hc, P= hom,(F,D, S*) is, a union of components of the function com- 

plex hom(F,D,S#) and we will show (2.7) that there is a homotopy fibration 

sequence involving hom(F,D, S*) which is parallel to the above one (2.6) involving 

real’ F. Comparison of those two sequences then will lead to the conclusion that 

real’ p is weakly homotopy equivalent to hom(F,D, S*) in such a manner that the 

components involved in real P correspond to those involved in hc, Y. 

Let d* be the division [9,1.2(i)] of the terminal object *E SO-Cat, i.e. d* has as 

objects the finite sequences (Do, . . . , Dk) (ks0) of elements of 0 (the object set of 

D) and as maps the compositions of the ‘deletions’ and ‘repetitions’. Given an 

object A E SO-Cat, let VA, V’A and V”A E Sd’ be the diagrams which assign to a 

sequence (D,, . . . , &) the bar construction [7,§9] 

B(haut ADo,A(Do, D,), haut AD,, . . . , haut AD,) 

where each haut AD; (Osisk) is the maximum simplicial submonoid of A(Di, D,) 
which is grouplike (i.e. rro haut AD; is a group), the product of simplicial horn-sets 

and the product of classifying complexes [7,1.3(v)] 

respectively, let (see [7,5.4]) WA + V’A E Sd’ be a functorial cofibrant resolution 

(1.4(iii) and (iv)) and, for every diagram Z E Sd*, let Zf E Sd* denote the weakly 

equivalent fibrant (1.4(iii)) diagram obtained by taking the singular complex of the 

geometric realization [l, Chapter VIII] of the simplicial sets involved. Proposition 

7.6 and [5,4.7] imply (by identifying function complexes in SO-Cat and Sd* with 

suitable sets of components of function complexes in CatAop and SAap respectively) 

that the function complexes computed in SO-Cat are naturally weakly equivalent to 

the corresponding function complexes in Sd*, as long as suitable cofibrant or 

fibrant models are chosen for the objects involved. In particular the composition 

hom(F,D, S#) z hom(V’F,D, V’S#) - hom(UF,D, V’S*) 

is a weak equivalence. Moreover 

hom(UF,D,(V”S#)f) = hom(UF Do (VS#)‘) * 3 

and it now follows from [7,9.2(vii)] that 

2.7. Lemma. The obvious sequence 

hom(F,D, S#) - hom(UF,D, (VS#)f) - hom(UF,D’, (VS#)‘) 

is a homotopy fibration sequence. 0 
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The main classification result of [7, $51 essentially states that the right-hand maps 

in 2.6 and 2.7 are weakly equivalent and from this one now readily deduces that 

real0 Y and hom(F,D, S) are weakly equivalent in such a manner that the compo- 

nents involved in real Y correspond to those involved in hc, Y. 

3. n-homotopy commutative diagrams and obstructions to realizations 

In view of 2.5 it remains to investigate the space hc, Y of cx-homotopy commu- 

tative diagrams over a given homotopy commutative diagram Y. This space hc, Y 

is (3.2) an inverse limit as well as homotopy inverse limit of a tower {hc, ii},,e of 

spaces of n-homotopy commutative diagrams over F, and it follows (3.3) that P can 
be lifted to an co-homotopy commutative diagram (and hence (2.5) has a realization) 
iff it can be lifted to a sequence {Y,) of n-homotopy commutative diagrams which 
are compatible, in the sense that each Y, is in the same component of hc,, Y as the 

image of Y, +, . As usual there is an accompanying sequence of obstructions (3.5). 

We also (3.8) briefly compare our present treatment of the realization problem 

with that of [9]. 

3.1. n-homotopy commutative diagrams. A definition of n-homotopy commutative 
D-diagrams over P (n>O) can be obtained from Definition 2.3 by everywhere re- 

placing the category S* by the category cask, S# (1.4(ii)), where cask, : S + S 

denotes the n-coskeleton functor, i.e. the right adjoint of the n-skeleton functor 

sk, : S + S. The resulting space hom,(F,D, cask, S*) of n-homotopy commutative 
D-diagrams over y will be denoted by hc, Y and its vertices are the n-homotopy 

commutative D-diagrams over Y. 

This definition readily implies [ 11,4. l] 

3.2. Proposition. The canonical map [l, Chapter XI] 

is a homotopy equivalence. q 

3.3. Corollary. Let {Y,,} be a compatible sequence of n-homotopy commutative 
D-diagrams over Y (i.e. each Y, is in the same component of hc,, Yas the image of 

Y, + i). Then there exists an oo-homotopy commutative D-diagram Y, such that, 
for every integer n>O, its image in hc,, Y is in the same component as Y,,. 0 

3.4. Remark. As usual [II, 5.81, the component of such a Y, is not uniquely de- 

termined by the Y,. Given such a Y,, the possible components are in l-l corre- 
spondence with the elements of the pointed set li@i n,(hc, Y, Y,‘), where Yi (n >O) 

denotes the image of Y, in hc, E the component containing Y, corresponds to the 
base point. 
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There are, of course, inductive algebraic conditions for the existence of a com- 

patible sequence Y,, . . . , Y,, . . . of n-homotopy commutative diagrams, which one 

usually calls 

3.5. Obstructions. Clearly hc, Y is contractible and one can thus choose Y, to be 

any vertex of hci Y. It is also not difficult to see that finding an (automatically) 

compatible Y, E hcz Y is an (already algebraic) problem involving fundamental 
groupoids. Assuming therefore that one already has obtained an n-homotopy com- 

mutative D-diagram Y, over Y (n L 2), it remains to find an obstruction to the exis- 

tence of a compatible (n + 1)-homotopy commutative diagram. 

To do this one applies the obstruction theory of [ll, OS]. If (in the notation and 

terminology used there) one pulls the k-invariant k”+‘S* back along Y, to a cycle 

hY,, EZ”+‘(F,D; rr,S#) and denotes by [hY,] the image of hY, under the composi- 

tion of the canonical maps [ll, $21 

then one has [ll , $51 

3.6. Proposition. Let Y, be an n-homotopy commutative D-diagram over F (n12). 
Then there exists a compatible (n+ I)-homotopy commutative D-diagram iff 
[hY,,] E H”“(D;p,n,S) is the zero element. El 

3.7. Remark. The results of Sections 2 and 3 are readily seen (1.4(iv)) to remain 

valid if one replaces everywhere the standard resolution (1.4(iv)) p : F,D + D of D 

by any other cofibrant resolution q : D’ +D, i.e. the homotopy types of the simplicial 

sets homp(D’, S*) and hom,(D’, cask, S*) (n > 0) as well as the resulting obstruc- 

tions in H”+‘(D;q *7c,S*) (which is canonically isomorphic to Hn+‘(D;p*~,,S*)) 
are independent of the choice of such a cofibrant resolution. This is, however, not 

the case for the homotopy types of the simplicial sets homp(sk,D’, S#) (where 

sk,D’ denotes the subcategory of D’ generated by the n-skeletons of the simplicial 

horn-sets), and that is why we did not define n-homotopy commutative D-diagrams 

in terms of maps sk,F,D + S# E SO-Cat, even though these are in a natural l-l 

correspondence with the maps F,D --f cask, S# E SO-Cat. 

We end with a 

3.8. Comparison with the realization results of [9]. In the notation of the proof of 

Theorem 2.4, let WS* be the pullback of the diagram V ho S# + V” ho S# + I/” S* 

and let g : UF,D + WS* E Sd* be the obvious map determined by Y. Then there is 

a commutative solid arrow diagram in Sd’ 
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UF,D’ - ws# - f’hoS# 

in which the upper maps are weak equivalences and the vertical maps are fibrations 

(1.4(iii)), and it follows readily from 2.7 that P has a realization iff there exists a 

broken arrow UF,D + V, S* such that the resulting diagram is commutative, while 

the results of [9] imply that r has a realization iff there exists a broken arrow 

UF,D --f V,S# with this property. 

Application of the obstruction theory of [S] to the first of these lifting problems 

yields the same obstructions as above; the cohomology groups of UF,D involved 

have coefficients in the homotopy groups of the products S(YD,, FDr) x ... x 

S(YDk_,, Y&), and can be shown to be naturally isomorphic to the groups 

H”+‘(D;p,7r,S#) of 3.5 and 3.6. The second lifting problem, on the other hand, 

gives rise to obstructions which lie in the cohomology of D%,D with coefficients in 

the less easily accessible homotopy groups of the bar constructions [7, $91 

B(haut I%,,S(FD,, YDt), haut YD1, . . . . haut yDk) 

which fit into long exact sequences involving the homotopy groups of the products 

S(Y& YDt) x ... xS(YD~_,,~D~) and Bhaut YQ,x...xBhaut yIIk. 

4. The relative case 

Next we discuss a relative version of the results of Sections 2 and 3, i.e. the realiza- 

tion problem for 

4.1. Homotopy commutative (D, C)-diagrams. Let D be a small simplicial category 

and let CC D be a subcategory which contains all the objects. A homotopy commu- 
tative (D, C)-diagram of simplicial sets then will be just a commutative diagram of 

the form 
incl 

C-D 

X Y I I 
S’ A ho Sf 

The corresponding relativizations of Definitions 2.2, 2.3 and 3.1 are: 

4.2. Realizations of homotopy commutative (D,C)-diagrams. A realization of a 
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homotopy commutative (D, C)-diagram (XX) consists of a D-diagram Y: D + St, 

a C-diagram X’: C + Sf and a ‘zigzag’ of weak equivalences in SC 

Z” 
Yl, -XXI-X 

such that (rcz”)(nz’)-’ : rcY-+ Y is a natural equivalence. A map (Y,,X;,z;,z;l) --f 
(Y2,X&z;,z;I) between two such realizations is a pair of weak equivalences 

y : Y, + Y, E SD and x’ : Xi + Xi E SC such that the diagram 

is commutative. The space real(Y,X) of realizations of (Y,X) will be the nerve of 

the resulting category and two realizations of (Y, X) are called equivalent whenever 

they are in the same component of real(xX). 

4.3. n-homotopy commutative (D, C)-diagrams (15 n 5 w). The inclusion C -+ D 

admits a functorial factorization 

P” 
C -F,cD -D 

in which F’:D is the pushout of the diagram C + F,C + F,D. Given a homotopy 

commutative (D, C)-diagram (Y, X), an n-homotopy commutative (D, C)-diagram 
over (F,X) (1 I nl w) will be a factorization 

Sf = cask, S# - cask, S# - hoS* 

of the diagram (4.1) representing (Y,X), i.e. a vertex of the simplicial set 

hc,,(xX) = homG(F,C‘D, cask, S*) 

which has as n-simplices the commutative diagrams 

incl proj 
C - FzD@“d[n] -D 

X 

. 

S* = cask, S# - cask, S# - hoS# 
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where F’$D ocO [n] denotes the pushout of the diagram C + C @A [n] --t 

F$D @A [n]. Two n-homotopy commutative (D, C)-diagrams over (Y,X) are called 

equivalent whenever they lie in the same component of hc,(%X). 

Theorem 2.4, Proposition 3.2 and their corollaries now become: 

4.4. Theorem. Let (XX) be a homotopy commutative (D, C)-diagram. Then 
real(xX) and hc,(Y,X) are naturally weakly (homotopy) equivalent. 0 

4.5. Corollary. (XX) has a realization iff there exists an o3-homotopy cornmuta- 
tive (D, C)-diagram over (Y, X). Moreover, the equivalence classes of the realizations 
of (y,X) are in a natural l-1 correspondence with the equivalence classes of the 
c+homotopy commutative (D, C)-diagrams over (K X). 0 

4.6. Proposition. The canonical map [l, Chapter XI] 

hc,(Y,X)=@hc,(Y;X)+ho&hc,(Y;X)~SF 

is a homotopy equivalence. q 

4.7. Corollary. Let {Y,,} be a compatible sequence of n-homotopy commutative 
(D, C)-diagrams over (z X) (i.e. each Y, is in the same component of hc,(Y,X) as 
the image of Y,, + ,). Then there exists an m-homotopy commutative (D, C)-diagram 
Y, such that, for every integer n >O, its image in hc,(rX) is in the same compo- 
nent as Y,. 0 

Of course the discussion of 3.5 applies. In particular, an n-homotopy com- 

mutative (D, C)-diagram Y,, (n 2 2) over (Y,X) gives rise to a cocycle hY, E 
Zn+‘(F$D, C; n,,S*) and hence to a cohomology class [hY,] EH”“(D, C; p$rr,S#) 
with the property: 

4.8. Proposition. Let Y, be an n-homotopy commutative (D,C)-diagram over 
(x X) (n 2 2). Then there exists a compatible (n + 1 )-homotopy commutative (D, C)- 

diagram iff the element [hY,,] E Hn+’ (D, C; p$ n, S#) is the zero element. 0 

4.9. Remark. If C consists of the objects of D and their identity maps only, then 

the above results reduce to the ones of Sections 2 and 3. 

Propositions 4.6 and 4.8 are proved in the same manner as Propositions 3.2 and 

3.6 and it thus remains to give a 

Proof of Theorem 4.4. This is essentially the same as that of Theorem 2.4. One 

readily sees that Lemma 2.6 remains valid if real’ Y is replaced by its obvious rela- 

tivization real’(xX) and Do by C. Similarly, Lemma 2.7 and the fact that Do = Co 
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imply that Lemma 2.7 remains valid if hom(F,D, S*) is replaced by homX(F.$D, S#), 

the fibre of the restriction map hom(F,D, S#) ---t hom(F,C, S#), and again Do by 

c. 0 

5. The topological case 

Finally we prove that the results of the preceding sections hold, not only for sim- 

plicial diagrams of simplicial sets, but also for topological diagrams of topological 

spaces. We do this by showing that the usual singular functor Sin: T --f S induces, 

for every small topological category E (with discrete object set), a singular functor 

Sin : T” (from the category TE of E-diagrams of topological spaces to the category 

SSinE of Sin E-diagrams of simplicial sets), which is an equivalence of homotopy 

theories in the strong sense of [lo, $71. This means that it induces, not only an 

equivalence between the homotopy categories of TE and SSinE, but also weak 

(homotopy) equivalences between the function complexes. 

We start with making precise what we mean by 

5.1. Topological diagrams of topologicalspaces. Let (see 1.4(vi)) T be the category 

of topological spaces and E a small topological category. An E-diagram of topo- 
logical spaces then will be a function X which assigns 

(i) to every object E E E a space XE E T, and 

(ii) to every pair of objects E,, E2 E: E a map (1.4(vi)) 

subject to the obvious associativity and identity conditions. Similarly a map x : X + 

X’ between two such E-diagrams assigns to every object E E E a map xE: XE --f 
X’E E T such that, for every pair of objects E,, E2 E E, the following diagram in T 

is commutative: 

EN, E2) x X-4 

X(EI,EZ) 

’ XE2 

E(EI,&)xxEI xE2 

The resulting category will be denoted by TE. 

An obvious example of an E-diagram is, for every object E E E, the diagram 

E(E, -) (1.4(vi)). 

The usual simplicial structure on T gives rise to a simplicial structure on TE 

which is part of 

5.2. A closed simplicial model category for TE. The category TE admits a closed 
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simplicial model category structure in which the simplicial structure is the above one 
and in which a map x : X-t X’ is a weak equivalence or a fibration whenever, for 
every object E E E, the map xE: XE + X’E E T is a weak homotopy equivalence or 

a Serre fibration. 

Next we define 

5.3. The singular jimctor Sin : TE --f S”” E. This is the functor which assigns to an 

object XE T” the object Sin X E SSi” E (i.e. functor Sin E --f S) such that (Sin X) E = 

Sin(XE) for every object E E E, and such that, for every pair of objects E,, E2 E E, 

the map 

Sin E(E,, E,) + S(Sin XE,, Sin XE,) E S 

is the one which corresponds (under the usual adjointness) to the map 

Sin E(E), E2) x Sin XE, --t Sin XE2 E S 

induced by the map X(E,, E2). 

As mentioned above this singular functor induces the desired 

5.4. Equivalence of homotopy theories. The functor Sin : TE --f SSin E is an equiva- 
lence of homotopy theories in the sense of [lo, $71; it preserves weak equivalences 
and induces a weak equivalence between the simplicial localizations of T” and 
SSin E 

It remains to give a 

Proof of 5.2 and 5.4. These propositions follow readily from [6, 2.2 and 3.11 and 

the fact that 

(i) for every pair of objects X E TE and E E E, the simplicial horn-set 

T”(E(E,-),X) is naturally isomorphic to the singular complex Sin(XE), and 

(ii) the full simplicial subcategory of TE spanned by the objects E(E,-), for all 

E EE, is (in view of (i)) canonically isomorphic to the opposite of the small sim- 

plicial category Sin E. il 

6. A generalization of Quillen’s Theorem B 

Given a functor f: X + Y and an object YEY, Quillen’s Theorem B [15, p.971 

provides a sufficient condition in order that (the nerve of) the over category f 1 Y 
(which has as objects the pairs (X, y) in which X is an object of X and y is a map 

fX+ YE Y) is a homotopy fibre of (the nerve of) f. The aim of this section is to 

prove a similar theorem B, in which the category f 1 Y is replaced by the category 
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f& Y, which has as objects the pairs (X,y) in which X is an object of X and y is 

a ‘zigzag’ 

fX= Y,***+Y,tY,+Y 

in Y of length n. Of course there is also a dual version involving the categoryfl, Y, 

which has as objects the pairs (X, y) in which X is an object of X and y is a zigzag 

fX = Y, ... + Y, + Y, 6 Y 

in Y of length n. 

If Y is the category of weak equivalences between fibrant (resp. cofibrant) objects 

in a closed model category, then fi, Y (resp. f], Y) is a homotopy fibre off (for 

any f), even though J-1 Y (resp. fT Y) need not be so. 

In order to simplify the formulation of Theorem B, we first define 

6.1. Property B,. Let n be an integer 2 1, let f: X -+ Y be a functor between small 

categories, let YE Y be an object, let f 1, Y denote the category of which an object 

consists of an object XEX, together with a zigzag 

fX = Y, ... + Y, + Y, + Y 

in Y of length n, and of which a map consists of a map x:X+ X’E X together with 

a commutative diagram 

fX’= y;... y; t- y; - y 

and let f T, Y be defined similarly (see above). Then f will be said to have property 

B,, if every map Y’+ Y”E Y induces (see 1.4(v)) a weak (homotopy) equivalence 

f 1, Y’-+ f 1, Y”. This clearly implies that f Op : X Op-+Yop has property B, iff every 

map Y’+ Yn~ Y induces a weak (homotopy) equivalence f 1, Y” + f T, Y’. 

Now we can state 

6.2. Theorem B,. Zf a functor f: X + Y (resp. f Op : X”P + Yap) between small cate- 

gories has property B,, then, for every object YE Y, (the nerve of) f 1, Y (resp. 

f 7, Y) is a homotopy fibre off over Y. 

Proof. For n = 1 this is Quillen’s Theorem B [ 15, p. 971. For n > 1 one has f 1, Y= 

(f ?,- t Y) 1 Y, where f I,_, Y denotes the category of which an object consists of a 

pair of objects XEX, Y, EY, together with a zigzag fX= Y, ... + Y,+ Y, in Y of 

length n - 1, and the desired result therefore follows from Quillen’s Theorem B and 

the fact that (the nerve of) the obvious functor X-f 1,-I Y is a weak (homotopy) 

equivalence. 0 
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Next we show that every functorf: X + Y between small categories has property 

B,, if one assumes that Y has 

6.3. Property C,. Let 0 denote the category with only one object and its identity 

map. A small category Y then is said to have property C,, if all functors 0 --f Y 

have property B,. 

As just mentioned, the usefulness of this notion is due to 

6.4. Theorem C,. If f: X --t Y is a functor between small categories and Y (resp. 
Yap) has property C,, , then f (resp. f Op) has property B,. 

Proof. This follows immediately from the homotopy invariance of Grothendieck 

constructions [4,9.6] and the fact that f 1, Y is in an obvious manner a Grothendieck 

construction. 0 

A similar argument yields 

6.5. Proposition. If a small category Y has property C,, then it also has property 
C, for k>n. q 

6.6. A sIight generalization. The above results remain valid for not necessarily small 
categories as long as all nerves of categories involved are homotopically smaN 

(1.4(v)). 

We end with some examples. 

6.7. Example. Every groupoid has property Ct. Conversely, if Y has property C, 

and if, for every two objects Yi, YZeY, Y contains a map Yi --t Y, iff Y contains 

a map Y,-t Y,, then Y is a groupoid. 

6.8. Example. Let C be a closed model category [I, Chapter VIII], let W c C be its 

category of weak equivalences, let Wf (resp. WC) be the full subcategory of W 

spanned by the fibrant (resp. cofibrant) objects and let WCf = W’fl W’. Then 

(14, @I and 1% 881) 
(i) Wop has property C,, and 

(ii) Wf, WCf, (Wc)“p and (Wcf)Op have property C,. 

7. A connection between simplicial categories and diagrams of simplicial sets 

The aim of this section is to show that the homotopy theory of smaN simplicial 
categories (1.4(ii)) with respect to (i.e. with as weak equivalences) the functors 

which are l-l and onto on objects and are weak (homotopy) equivalences on the 
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simplicial horn-sets, is equivalent to the homotopy theory of the diagrams of sim- 
plicial sets indexed by the simplicial indexing category Aop, which are ‘special’ in 

the sense that they satisfy a slight variation on a condition of Segal [16,1.5]. This 

will be done by establishing, more generally, that the homotopy theory of the cate- 
gory Cat”‘” (of AoP-diagrams of small categories), with respect to a slightly 

unusual notion of weak equivalence, is equivalent to the homotopy theory of the 
category SAO” of all AoP-diagrams of simplicial sets. 

We thus start with a brief discussion of 

7.1. The category CatAO”. As usual Cat will denote the category of small categories 
and A the category of finite ordered sets. If, for every integer n r 0, n E Cat is the 

category which has as objects the integers 0, . . . , n and which has exactly one map 

i-j whenever i<j, then A can be identified with the full subcategory of Cat span- 

ned by the n (n 10). The category CatA” of simplicial small categories (which has 
as objects the functors Aop 4 Cat and as maps the natural transformations between 

them) has an obvious simplicial structure. (If C is a simplicial small category and 

K is a simplicial set, then C 0 K consists in dimension n of the sum in Cat (i.e. the 

disjoint union) of as many copies of the category Cn as there are n-simplices in K 
and the face and degeneracy operators in C 0 K are the obvious ones. The simplicial 

set hom(C, D) then has as its n-simplices the maps C @ d [n] -+ D E CatAop.) One 

now readily verifies that the set of objects {n},,, is a set of orbits for CatAop in the 

sense of [6,2.1]. Hence [6,2.2] 

7.2. Proposition. The category CatAop admits a closed simplicial model category 
structure in which the simplicial structure is the obvious one and in which a map 
Y + Y’ E CatAop IS a weak equivalence or a fibration whenever, for every integer 
n L 0, the induced map of function complexes hom(n, Y) + hom(n, Y’) E S is a weak 
(homotopy) equivalence or a fibration. 0 

Moreover [6,3. l] 

7.3. Proposition. The nerve or singular functor 

hom(A, -) : CatAoP + SAop 

has a left adjoint, the realization functor 

A@ : SAop + CatAop. 

Furthermore 
(i) The functor hom(A, -) preserves fibrations and weak equivalences, 

(ii) the functor A@ preserves cofibrations and weak equivalences between co- 
fibrant objects, and 

(iii) for every cofibrant object XES~‘~ and every fibrant object YE CatAoP, a 
map A@X-+ YECatADP is a weak equivalence iff its adjoint X 4 hom(A, Y) E SAD’ 

is so. 0 
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7.4. Corollary. The functor hom(A, -) : CatA”‘-+ SAop is an equivalence of homo- 
topy theories in the sense of [ 10, $71; it preserves weak equivalences and induces a 
weak equivalence between the simplicial localizations of CatA”’ and SAoQ. 0 

Now we turn to 

7.5. The special case. Let S, ‘“‘c SA”” be the full subcategory spanned by the objects 

XE sA”” such that 

(i) X0 is discrete, and 

(ii) for every integer nz2, the natural map 

induced by the (iterated) face maps d, . . . d;d;_ , . . . d, (15 is n), is a weak equiva- 

lence. 

Similarly let Cat, A”PCCatA”p be the full subcategory spanned by the small sim- 

plicial categories (1.4(ii)), i.e. the simplicial small categories with discrete object 

sets. Then one has 

7.6. Proposition. The functor hom(A, -) : CattoP+ St”’ is an equivalence of homo- 
topy theories in the sense of [ 10,971; it preserves weak equivalences and induces a 
weak equivalence between the simplicial localizations of Cat:“* and St”‘. 

Proof. Let St”’ c SAop and CaftoP c CatAop be the full subcategories spanned by the 

objects which are weakly equivalent to objects in St”” and Cat:“” respectively. Cor- 

ollary 7.4 then readily implies that the functor hom(A, -) :?%top -+SoA”” is an 

equivalence of homotopy theories and the desired result now follows from the fact 

that there are obvious functors 

SAop+ sA"P 
0 0 and CattoP + Cat:“’ 

such that their compositions with the inclusion functors 

sgop + so -‘“’ and Cat;“’ --f caftoP 

are naturally weakly equivalent to the identity functors of St”’ and at”“. 0 
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