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Abstract

An open question in Control Theory over commutative rings is: When does dynamic feed-
back equivalence imply (static) feedback equivalence? A second open problem is: Given a
linear system � = (A,B), when does there exist a matrix F such that A + BF is invertible?
In this paper we solve both questions, obtaining two characterizations of stable rings.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper R denotes a commutative ring with identity element and
� = (A, B) is an m-input, n-dimensional linear system over R (i.e. A = (aij ) an
n × n matrix and B = (bij ) an n × m matrix with entries in R). Two linear
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systems � = (A, B) and �′ = (A′, B ′) are (static) feedback equivalent if there exist
invertible matrices P and Q, and a feedback matrix F such that B ′ = PBQ and
PA − A′P = B ′F .

The (static) feedback classification of linear dynamical systems over commutative
rings is a classical and very difficult problem in Control Theory. The classification
of matrices by similarity and the classification of matrices by equivalence are two
particular cases of this problem, which has not been solved in general. In [4,6,7]
and [9, Section 4] can be found solutions for certain special cases of the feedback
classification problem. In [3] it is proved that, for linear systems over a large class of
commutative rings (including the ring of integers), it is unlikely to obtain a complete
system of invariants and a canonical form for the feedback class of a linear system,
because the problem is “wild”.

The objective of the feedback relation is to obtain a matrix F such that P(A +
BF)P −1 has some desired property. In some cases the difficulty of the static feed-
back classification is eluded by means of a technique called dynamic feedback, see
[12, Section 6.2] for the classical case and [1, Section 3.4] and [2] for the case of
linear systems over a commutative ring.

Two m-input, n-dimensional linear systems � = (A, B) and �′ = (A′, B ′) are
dynamically feedback equivalent if �(r) is statically feedback equivalent to �′(r)
for some positive integer r, where

�(r) =
((

0r×r 0
0 A

)
,

(
Idr×r 0

0 B

))
.

In [10] it is proved that the dynamic feedback equivalence over principal ideal do-
mains is reduced to case r = 1.

Static feedback implies dynamic feedback, but the converse is not true in general.
The open question is: When are dynamic and static feedback equivalent?

In Section 3 we solve this problem, in fact we characterize the class of commut-
tative rings in which the dynamic feedback equivalence implies the static feedback
equivalence. The key for the proof of this characterization is given, in Section 2,
by a solution of the following open problem: When there exists a matrix F such that
A + BF becomes invertible? In [5] this problem is related with the pole assignability
property and with the standarization of generalized linear systems.

2. Feedback invertible matrices

Definition 1. Let � = (A, B) be an m-input, n-dimensional linear system over R.
The matrix A is feedback invertible modulo B if there exists an m × n matrix F such
that A + BF is invertible.

Let Un(A|B) be the ideal of R generated by all the n × n minors of the block
n × (n + m) matrix (A|B), see [9, Section 1] for properties of determinantal ideals.
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If A is feedback invertible modulo B then Un(A|B) = R but the converse is not true
in general (take, by example, R = Z, A = (5) and B = (7)). In the main result of
this section, Theorem 5, we characterize the class of commutative rings in which the
converse is true.

Lemma 2. Let A1 be an n × n matrix and B1 be an n × m matrix. Consider the
matrices

A′ =
(

u 0t

∗ A1

)
and B ′ =

(
0t

B1

)
,

where u is a unit of R and ∗ is an arbitrary column vector. Then

(i) Un(A1|B1) = Un+1(A
′|B ′).

(ii) There exists F1 such that A1 + B1F1 is invertible if and only if there exists F ′
such that A′ + B ′F ′ is invertible.

Proof. Statement (i) is clear. Statement (ii) follows from the equality

det(A′ + B ′F ′) = u det(A1 + B1F1)

for every matrix F ′ of the form F ′ = (f |F1). �

Lemma 3. Let A and A′ be two n × n matrices, B and B ′ be two n × m matrices,
F ′ an m × n matrix and S an (n + m) × (n + m) matrix of the form

S =
(

U11 0
U21 U22

) (
U ′

11 U ′
12

0 U ′
22

)
,

where U11 and U ′
11 are n × n matrices. Suppose that the following statements hold:

(i) (A|B)S = (A′|B ′).
(ii) T = U11U

′
11 + U11U

′
12F

′ is invertible.
(iii) A′ + B ′F ′ is invertible.

Then there exists F such that A + BF is invertible.

Proof. By (i) one has A′ = AU11U
′
11 + BU21U

′
11 and B ′ = AU11U

′
12 +

B(U21U
′
12 + U22U

′
22). The result follows considering the matrix

F = (
U21U

′
11 + (

U21U
′
12 + U22U

′
22

)
F ′) T −1. �

Definition 4. A commutative ring R is stable (or R have one in its stable range) if
whenever the ideal generated by a and b is R then there exists c such that a + bc is a
unit.

Note that if R is stable and a, b1, b2, . . . , bm generate R then there exist c1, c2,

. . . , cm of R such that a + b1c1 + · · · + bmcm is a unit. Semilocal rings, von New-
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mann regular rings and zero-dimensional rings are examples of stable rings. See [8]
and [11, p. 53] for properties of stable rings.

Theorem 5. Let R be a commutative ring. The following statements are equivalent:

(i) R is stable.
(ii) For every n × n matrix A and n × m matrix B, A is feedback invertible modulo

B if and only if Un(A|B) = R.

Proof. Assume (ii) and suppose that the ideal generated by a and b is R. Put A = (a)

and B = (b). Then, by (ii), there exists c such that a + bc is a unit.
Assume (i), we shall deduce (ii) by induction on n. For n = 1 and m arbitrary the

result is clear. Suppose n > 1 and consider two matrices

A =
a11 · · · a1n

...
. . .

...

an1 · · · ann

 and B =
b11 · · · b1m

...
. . .

...

bn1 · · · bnm


such that

Un(A|B) = R.

Hence the ideal of R generated by all elements of the first row of (A|B) is R. Since
R is stable, there exist elements λ21, . . . , λn1, µ11, . . . , µm1 of R such that

a11 + λ21a12 + · · · + λn1a1n + µ11b11 + · · · + µm1b1m = u

is a unit. Consider the invertible n + m matrices

U =



1 0 · · · 0 0 · · · 0
λ21
... Idn−1 0

λn1

µ11
... 0 Idm

µm1


=

(
U11 0

U21 U22

)

(where the double line denotes the partition on blocks) and

U ′ =



1 −a12u
−1 · · · −a1nu

−1 −b11u
−1 · · · −b1mu−1

0
... Idn−1 0
0

0
... 0 Idm

0
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=
(

U ′
11 U ′

12

0 U ′
22

)
.

Put S = UU ′. Then

(A|B)S = (A′|B ′) =
(

u 0t 0t

∗ A1 B1

)
,

where A1 is an (n − 1) × (n − 1) matrix and B1 is an (n − 1) × m matrix.
Since u is unit of R and S is an invertible matrix it follows

Un−1(A1|B1) = Un(A
′|B ′) = Un(A|B) = R.

By induction hypothesis there exists F1 such that A1 + B1F1 is invertible.
Put F ′ = (

0 F1
)
. Then, see Lemma 2, A′ + B ′F ′ is invertible. Moreover the

matrix

U11U
′
11 + U11U

′
12F

′ = U11(U
′
11 + U ′

12F
′)

is invertible because, in the one hand U11 is invertible and in the other hand

U ′
11 + U ′

12F
′ =


1 −a12u

−1 · · · −a1nu
−1

0
... Idn−1
0


+

(−b11u
−1 · · · −b1mu−1

0(n−1)×m

) (
0 F1

)

=


1 0 · · · 0
0
... Idn−1
0

 +


0 ∗ · · · ∗
0
... 0
0

 = Idn + N

is invertible because N is a nilpotent matrix.
Finally (ii) is consequence of Lemma 3. �

3. Static vs. dynamic feedback

Let � = (A, B) and �′ = (A′, B ′) be two m-input, n-dimensional linear system
over R. Recall that � = (A, B) is (static) feedback equivalent to �′ = (A′, B ′) if
there exist invertible matrices P and Q, and a feedback matrix F such that{

PA − A′P = B ′F,

B ′ = PBQ.

For a non-negative integer r we denote by �(r) the (m + r)-input, (n + r)-dimen-
sional linear system given by
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�(r) =
((

0r×r 0
0 A

)
,

(
Idr×r 0

0 B

))
.

Definition 6. � is dynamically feedback equivalent to �′ if there exists r such that
�(r) is statically feedback equivalent to �′(r).

Theorem 7. Let R be a commutative ring. Then the following statement are equi-
valent:

(i) R is stable.
(ii) Two linear systems are dynamically feedback equivalent if and only if they are

statically feedback equivalent.

Proof. Assume (i). Let � = (A, B) and �′ = (A′, B ′) be two m-input, n-dimen-
sional linear system over R and suppose that �(r) is statically feedback equivalent
to �′(r) for some r.

First we prove that we can suppose B = B ′. Since �(r) is statically feedback

equivalent to �′(r) then B̃ =
(

Idr×r 0
0 B

)
and B̃ ′ =

(
Idr×r 0

0 B ′
)

are equivalent

matrices. Therefore one has the following chain of isomorphisms

Coker(B) � Coker(B̃) � Coker(B̃ ′) � Coker(B ′).
By [11, p. 149] it follows that B and B ′ are equivalent matrices because R is stable.
Let P and Q be invertible matrices such that PB ′Q = B. Then �′′ = (PA′P −1, B)

is feedback equivalent to �′ = (A′, B ′) and hence we can suppose that B = B ′.
Assume that

�(r) =
(

Ã =
(

0r×r 0
0 A

)
, B̃ =

(
Idr×r 0

0 B

))
and

�′(r) =
(

Ã′ =
(

0r×r 0
0 A′

)
, B̃ =

(
Idr×r 0

0 B

))
are feedback equivalent. Then there exist an invertible (r + n) × (r + n) matrix P̃ =(

P11 P12

P21 P22

)
, where P22 is an n × n matrix, an invertible (r + m) × (r + m) matrix

Q̃ =
(

Q11 Q12

Q21 Q22

)
, where Q22 is an m × m matrix, and a (r + m) × (r + n) matrix

F̃ =
(

F11 F12

F21 F22

)
, where F22 is an m × n matrix such that

P̃ Ã − Ã′P̃ = B̃F̃ , (1)

P̃ B̃ = B̃Q̃. (2)
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By Eq. (1) one has

−A′P21 = BF21, (3)

P22A − A′P22 = BF22, (4)

and by Eq. (2) one has

P11 = Q11, (5)

P12B = Q12, (6)

P21 = BQ21, (7)

P22B = BQ22. (8)

If P22 and Q22 are invertible then, by Eqs. (4) and (8), � and �′ are feedback equiv-
alent. Next we prove that, without loss of generality, we may suppose that P22 is
invertible.

Since P is invertible it follows that Un(P22|P21) = R. As R is stable then, by The-
orem 5, there exists an r × n matrix N such that P22 + P21N is invertible. Consider
the invertible matrices

Ũ =
(

Idr×r N

0 Idn×n

)
and Ṽ =

(
Idr×r NB

0 Idm×m

)
.

Then, applying the above equations, one has

P̃ Ũ Ã − Ã′P̃ Ũ = B̃H̃

for a suitable matrix H̃ , and

P̃ Ũ B̃ = B̃Q̃Ṽ .

Therefore �(r) and �′(r) are feedback equivalent via the matrices P̃ Ũ , Q̃Ṽ and H̃

where

P̃ Ũ =
(

P11 P11N + P12

P21 P21N + P22

)
,

with P21N + P22 invertible.
Suppose that P22 is invertible. By the formula of Schur [11, p. 30], one has

det P̃ = det(P11 − P12P
−1
22 P21) · det P22

and hence P11 − P12P
−1
22 P21 is invertible because P̃ is invertible. Now consider the

invertible matrix

T̃ =
(

Idr×r −P12P
−1
22 B

0 Idm×m

)
.

Then

T̃ Q̃ =
(

Q11 − P12P
−1
22 BQ21 Q12 − P12P

−1
22 BQ22

Q21 Q22

)
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where, by Eqs. (6) and (8),

Q12 − P12P
−1
22 BQ22 = P12(B − P −1

22 BQ22) = 0.

Since det T̃ Q̃ = det(Q11 − P12P
−1
22 BQ21). det Q22 it follows that Q22 is also invert-

ible and with this it is proved that Statement (ii) holds.
Assume (ii). Let a and b be elements of R such that 1 = λa + µb with λ and µ

elements of R. Considering the matrices

P̃ =
a 0 −µ

0 1 0
b 0 λ

 , Q̃ =
(

λ µb

−1 a

)
and F̃ =

(
0 −µa 0
0 −µ 0

)
it is easy to prove that

� =
(

A =
(

0 0
a 0

)
, B =

(
0
b

))
is 1-dynamically feedback equivalent to

�′ =
(

A′ =
(

0 0
1 0

)
, B ′ =

(
0
b

))
.

By (ii), � and �′ are statically feedback equivalent. Hence there exist an invertible

matrix P =
(

p11 p12
p21 p22

)
, a unit u of R and a matrix F = (

k1 k2
)

such that(
p11 p12
p21 p22

)(
0 0
a 0

)
−

(
0 0
1 0

) (
p11 p12
p21 p22

)
=

(
0
b

) (
k1 k2

)
and (

p11 p12
p21 p22

)(
0
b

)
=

(
0
b

)
u.

Then p12a = p12b = 0 and p22a − p11 = bk1. Therefore p12 = 0, because a and b
generate R, and hence p11 and p22 are units, because P is invertible. Consequently
a − bp−1

22 k1 = p−1
22 p11 is a unit and the proof is completed. �
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