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Abstract

We denote by Q(A) the set of all matrices with the same sign pattern as A. A matrix A
has signed null-space provided there exists a set S of sign patterns such that the set of sign
patterns of vectors in the null-space of Ã is S, for each Ã ∈ Q(A). We show that if A is an m
by n matrix with no duplicate columns up to multiplication by −1 and A has signed null-space,
then n � 3m − 2. We also classify the set of matrices satisfying the equality.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The sign of a real number a is defined by

sign(a) =


−1 if a < 0,
0 if a = 0,
1 if a > 0.

A sign pattern is a (0, 1,−1)-matrix. The sign pattern of a matrix A is the matrix
obtained from A by replacing each entry by its sign. We denote by Q(A) the set of
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all matrices with the same sign pattern as A. The zero pattern of a matrix A is the
(0, 1)-matrix obtained from A by replacing each nonzero entry by 1.

Let A be an m by n matrix and b an m by 1 vector. The linear system Ax = b has
signed solutions provided there exists a collection S of n by 1 sign patterns such
that the set of sign patterns of the solutions to Ãx = b̃ is S, for each Ã ∈ Q(A)
and b̃ ∈ Q(b). This notion generalizes that of a sign-solvable linear system (see [1]
and references therein). The linear system, Ax = b, is sign-solvable provided each
linear system Ãx = b̃ (Ã ∈ Q(A), b̃ ∈ Q(b)) has a solution and all solutions have the
same sign pattern. Thus, Ax = b is sign-solvable if and only if Ax = b has signed
solutions and the set S has cardinality 1.

The matrix A has signed null-space provided Ax = 0 has signed solutions.
Thus, A has signed null-space if and only if there exists a set S of sign patterns
such that the set of sign patterns of vectors in the null-space of Ã is S, for each
Ã ∈ Q(A). An L-matrix is a matrix, A, with the property that each matrix in Q(A)
has linearly independent rows. A square L-matrix is a sign-nonsingular, or SNS-
matrix for short. A totally L-matrix is an m × n matrix such that each m × m sub-
matrix is an SNS-matrix. It is known that totally L-matrices are matrices with
signed null-spaces [3]. Hence matrices with signed null-spaces generalize totally
L-matrices.

A vector is mixed if it has a positive entry and a negative entry. A matrix is
row-mixed if each of its rows is mixed. A signing is a nonzero, diagonal (0, 1,−1)-
matrix. A signing is strict if each of its diagonal entries is nonzero. A matrix B is
strictly row-mixable provided there exists a strict signing D such that BD is row
mixed.

In this paper, we show that if A is an m by n matrix with no duplicate columns
up to multiplication by −1 and it has signed null-space, then n � 3m − 2. Equality
holds if and only if there exist permutation matrices P and Q such that the zero
pattern of PAQ is in Mm (for definition see Section 2).

We use the following standard notations throughout the paper. If k is a positive
integer, then 〈k〉 denotes the set {1, 2, . . . , k}. Let A be an m × n matrix. If α is a
subset of {1, 2, . . . , m} and β is a subset of {1, 2, . . . , n}, then A[α|β] denotes the
submatrix of A determined by the rows whose indices are in α and the columns whose
indices are in β. We sometimes use A[∗|β] instead of A[〈m〉|β]. The submatrix
complementary to A[α|β] is denoted by A(α|β). In particular, A(−|β) denotes the
submatrix obtained from A by deleting the columns whose indices are in β. We write
diag(d1, d2, . . . , dn) for the n by n diagonal matrix whose (i, i)-entry is di . Let Jm,n

denote the m by n matrix all of whose entries are 1 and let ei denote the column
vector all of whose entries are 0 except for the ith entry which is 1.

2. Matrices with signed null-spaces

We make use of the following property of matrices with signed null-spaces.
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Theorem A ([2,3]). If a strictly row-mixable matrix A has signed null-space, then
there exist matrices B and C (possibly with no rows), and nonzero vectors b and c
such that B and C are strictly row-mixable matrices with signed null-spaces,[

B

b

]
and

[
c

C

]
have signed null-spaces, and up to permutation of rows and columns

A =
B O

b c

O C

 .

The converse also holds.

Let A be an m by n (0, 1,−1)-matrix. The matrix B is conformally contractible
to A provided there exists an index k such that the rows and columns of B can be
permuted so that B has the form[

A[〈m〉|〈n〉\{k}] x y

0 · · · 0 1 −1

]
,

where x = [x1, . . . , xm]T and y = [y1, . . . , ym]T are (0, 1,−1) vectors such that
xiyi � 0 for i = 1, 2, . . . , m, and the sign pattern of x + y is the kth column of A.

Let B be conformally contractible to A. It is known that A has signed null-space if
and only if B has signed null-space, and a strictly row-mixable m by n matrix A has
signed null-space if and only if A has term rank m and has signed mth compound [3].

All matrices we consider from now on are assumed to be (0, 1,−1) matrices.

Lemma 1. Let J be the 2 by 3 matrix obtained from an m by m + 1 matrix A by a
sequence of conformal contractions. If the zero pattern of J is J2,3, then A does not
have signed null-space.

Proof. Let A = Am,Am−1, . . . , A2 = J such that Ai+1 is conformally contractible
to Ai for all i = 2, . . . , m − 1. If A has signed null-space, then Am−1, . . . , A2 = J

have signed null-space. Since J has no zero entry, J does not have signed null-space.
This is impossible. �

Corollary 2. Let an m by n matrix A have a k by k + 1 submatrix B whose comple-
mentary submatrix in A has term rank m − k. If there is a matrix B∗ obtained from
B by replacing some nonzero entries with 0’s (if necessary) such that J2,3 is the zero
pattern of the matrix obtained from B∗ by a sequence of conformal contractions,
then A does not have signed null-space.

Proof. By Lemma 1, B∗ does not have signed null-space. Hence B∗ contains a k
by k submatrix which is not SNS-matrix with term rank k. Thus A contains an m by
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m submatrix which is not SNS-matrix with term rank m. This implies that A does
not have signed null-space. �

Let Mm be the set of m by 3m − 2 (0, 1)-matrices defined inductively as follows:
M1 = {[1]}. Let S ∈ Mm. Then S is of the form[

Sm−1 C

0 · · · 0 1 1 1

]
, (1)

where Sm−1 ∈ Mm−1 and all rows but a row which is (1, 1, 0) in C are zero.

Proposition 3. For any S ∈ Mm, there exists a matrix with signed null-space whose
zero pattern is S.

Proof. We prove it by induction on m. It is clear for m = 1. Let m > 1 and let S be
of the form in (1). By induction, there is a matrix B with signed null-space whose
zero pattern is equal to Sm−1. Let A be the m by 3m − 2 matrix of the form[

B C

0 · · · 0 1 −1 1

]
. (2)

Then the zero pattern of A is equal to S. Since Sm−1 contains a submatrix which
is the identity matrix Im−1 of order m − 1 and B has signed null-space, the matrix
A∗ = A(m|3m − 3, 3m − 2) has signed null-space. Since A(−|3m − 2) is confor-
mally contractible to A∗, A(−|3m − 2) and hence A has signed null-space. �

Let A be a matrix with signed null-space. A is a maximal matrix with signed null-
space if any matrix obtained from A by replacing a zero entry by a nonzero entry
does not have signed null-space. Let Eij denote the matrix all of whose entries are 0
except for the (i, j) entry which is 1. Let A be a strictly row-mixable m by n matrix
with signed null-space. Then A is a maximal matrix with signed null-space if and
only if there is an m by m submatrix B of A such that B ± Eij has term rank m but
B ± Eij is not an SNS-matrix for any (i, j) with aij = 0.

Proposition 4. Let A have signed null-space. If the zero pattern of A is in Mm, then
A is a maximal matrix with signed null-space.

Proof. Let A be an m by 3m − 2 matrix with signed null-space and let its zero
pattern be Sm in Mm. Without loss of generality, we may assume that A = [aij ] is
of the form in (2) where B is a matrix with signed null-space whose zero pattern
is in Mm−1. Let Z1 = {(i, j) ∈ 〈m − 1〉 × {3m − 4, 3m − 3, 3m − 2}|aij = 0} and
Z2 = {(m, j)|j ∈ 〈3m − 5〉}. Since B is a maximal matrix with signed null-space by
induction, it is sufficient to show that Sm + Eij is not zero pattern of a matrix with
signed null-space for any (i, j) ∈ Z1 ∪ Z2.

Let the kth row of C be (1, 1, 0) and the other rows of C be zero. If (i, j) =
(k, 3m − 2), then Sm + Eij has J2,3 as a submatrix such that its complementary
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submatrix has term rank m − 2. Hence A ± Eij does not have signed null-space
by Corollary 2. Let (i, j) ∈ Z1 with j ∈ {3m − 4, 3m − 3}. Then there exist dis-
tinct p1, p2, . . . , pt , and distinct q1, q2, . . . , qt such that ap1,q1 , ap2,q1 , . . . , apt ,qt are
nonzero where p1 = 1, pt = i and qt =j . Similarly, there exist distinct i1, i2, . . . , is ,
and distinct j1, j2, . . . , js+2 such that ai1,j1 , ai2,j1 , . . . , ais ,js−1 , ais ,js , ais ,js+1 ,

ais ,js+2 are nonzero where i1 = 1, is = k, js+1 = 3m − 4 and js+2 = 3m − 3.
Choosing some entries from these entries, we obtain a matrix which is conformally
contractible to a matrix whose zero pattern is J2,3. By Corollary 2, Sm + Eij is
not zero pattern of a matrix with signed null-space. Analogously we can show that
Sm + Eij is not zero pattern of a matrix with signed null-space for i �= k and j =
3m − 2, or (i, j) ∈ Z2. �

Proposition 5. Let A be a strictly row-mixable m by n matrix of the form

0

B
... O

0
b 1 c

0

O
... C

0


.

If

M =
[
B O

b 1

]
and N =

[
1 c

O C

]
have signed null-spaces, then A has signed null-space. Moreover, if the zero patterns
of M and N are in Mk and Mm−k+1 by permuting rows and columns, respectively,
then the zero pattern of A is in Mm by permuting rows and columns.

Proof. Clearly B has signed null-space whether b is zero or not. Analogously C has
signed null-space. Hence A has signed null-space by Theorem A. Let SM and SN
be the zero patterns of M and N, respectively. Then there exist permutation matrices
P1, P2,Q1 and Q2 such that P1SMQ1 ∈ Mk and P2SNQ2 ∈ Mm−k+1. Let the first
row of SN have moved to the pth row of P2SNQ2. Then there exist distinct i1 =
1, i2, . . . , iq =p and distinct j1 =1, j2, . . . , j3q−2 such that L=P2SNQ2[i1, i2, . . . ,
iq |j1, j2, . . . , j3q−2] is of the form

1 1 1
1 1 1 1 1

1 1 1 O

O
. . .

. . .
1 1
1 1 1


.
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Let L′ be the matrix obtained from L by permuting rows and columns in reverse or-
der. Then L=L′ and hence there exist permutation matrices P,Q such that PSNQ ∈
Mm−k+1 where its first row corresponds to the first row of N. This implies that the
zero pattern of A is in Mm by permuting rows and columns. �

Proposition 6. Let A be a strictly row-mixable m by n matrix with no duplicate
columns up to multiplication by −1. If A has signed null-space, then n � 3m − 2.
Equality holds if and only if there exist permutation matrices P and Q such that the
zero pattern of PAQ is in Mm.

Proof. We prove it by induction on m. For m = 2, there is nothing to prove. Without
loss of generality, we may assume that m � 3 and A can be rearranged as

A =
B O

b c

O C

 , (3)

where matrices B and C (possibly with no rows) are strictly row-mixable matrices
which have signed null-spaces, and vectors b and c are nonzero. Also[

B

b

]
and

[
c

C

]
have signed null-spaces. Let

A[α|β] =
[
B

b

]
and A[γ |δ] =

[
c

C

]
such that |α| = k, |β| = s, |γ | = l and |δ| = t . Then k + l − 1 = m and s + t = n.

Let k > 1 and l > 1. If A[α|β] has one of the unit vectors ±ek as a column, then
we can assume that A[α|β] is of the form[

B ′ O

b′ 1

]
.

If b′ = 0, then B ′ is a strictly row-mixable matrix with no duplicate columns up
to multiplication by −1. By induction, we have s − 1 � 3(k − 1) − 2. Hence s <

3k − 2. If b′ /= 0, then A[α|β] is a strictly row-mixable matrix with no duplicate
columns up to multiplication by −1. Hence s � 3k − 2. Let C′ = A[γ |{s} ∪ δ].
Then we have t + 1 � 3l − 2 since C′ satisfies the conditions of hypothesis. This
implies that 3m − 2 − n = 3(k + l − 1) − 2 − (s + t) = (3k − s − 2) + (3l − t −
3) � 0. Hence n � 3m − 2. Similarly, in the case that A[γ |δ] has one of the unit
vectors ±e1 as columns we can show that n � 3m − 2. Assume that A[α|β] and
A[γ |δ] do not have the unit vectors ±ek and ±e1 as a column respectively. Since
b is nonzero, the k by s + 1 matrix B∗ obtained from A[α|β] by adding ek as
the last column is a strictly row-mixable matrix with no duplicate columns up to
multiplication by −1. Also B∗ has signed null-space. Hence s + 1 � 3k − 2.
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Similarly we also have t + 1 � 3l − 2. Hence 3m − 2 = 3(k + l − 1) − 2 = (3k −
3) + (3l − 3) + 1 � s + t + 1 > s + t = n.

Let k = 1. Then s = 1 since columns of A are distinct. Hence we may assume
that A is the form of[

1 c

O C

]
.

If C has no duplicate columns up to multiplication by −1, then t � 3(m − 1) −
2 by induction. Hence n = t + 1 � 3m − 4 < 3m − 2. Let C have duplicate col-
umns up to multiplication by −1. That is, let the columns 1, 2 of C be a pair
of identical columns up to multiplication by −1. Let D be a strict signing such
that M = CD = [mij ] is row-mixed and let (mi11, . . . , mip1) = (mi12, . . . , mip2)

or (mi11, . . . , mip1) = −(mi12, . . . , mip2) for some positive integer p and mi1 =
mi,2 = 0 for all i ∈ 〈l − 1〉\{i1, i2, . . . , ip}. Since C has signed null-space, M has
no mixed cycles and hence the columns 1 and 2 of M must be identical or p = 1.
If p � 2, then the matrix M ′ obtained from M by multiplying column 1 by −1 has
a mixed cycle which is impossible. Hence p = 1. This implies that the number of
the same ones as the first column of C up to multiplication by −1 is at most 3. Thus
without loss of generality, we may assume that the zero pattern of A is of the form

1 u · · · u v · · · v w · · · w 0 or 1
x

. . .
x

v

. . .
v

S

v

. . .
v

T



,

where u = (1, 1, 0), v = (1, 1), w = (1, 0) and x = (1, 1, 1), and the unspecified
entries are zero. Let ε be the set of indices of columns corresponding to[

S

T

]
in A. Then we may also assume that A[γ \{1}|ε] has no duplicate columns up to
multiplication by −1 and the columns are also different from the ones of A(1|ε)
up to multiplication by −1. If A[γ \{1}|ε] is vacuous, we are done. Let only T be
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vacuous. Notice that every column of S has at least two nonzero entries. Any row
of S has at most one nonzero entry. For, suppose that a row of S has two nonzero
entries. Since the columns of A[γ \{1}|ε] are distinct up to multiplication by −1, we
may assume that there exists one of submatrices of A whose zero patterns are1 1 ∗ ∗

1 0 1 1
0 1 1 1

 or


1 1 1 ∗ ∗
1 0 0 1 1
0 1 0 1 ∗
0 0 1 ∗ 1

 ,

where * is 0 or 1. By Corollary 2, A does not have signed null-space. This is a
contradiction. Next, suppose that a row r of A[γ \{1}|〈n〉] has four nonzero entries.
Since each row of S has at most one nonzero entry and each column of S has at least
two nonzero entries, we have a submatrix of A whose zero pattern is1 1 1 ∗

1 1 0 1
0 0 1 1


which is also impossible by Corollary 2. Hence every row of A[γ \{1}|〈n〉] has at
most three nonzero entries. Thus we have n � 3m − 2. Let T be nonvacuous.
Notice that the submatrix of A corresponding to T is a strictly row-mixable matrix
with signed null-space. Let ε′ be the set of indices of nonzero columns in T and
let T [∗|ε′] = T ′. Then we may assume that T = [O T ′]. Let γ1 and γ2 be
the set of indices of rows corresponding to the rows of S and T respectively.
Notice that A(γ2|ε′) has at most 3(|γ1| + 1) − 2 columns by the similar method
we have shown in the case that only T is vacuous. If the submatrix A′ of A
corresponding to T ′ has no duplicate columns up to multiplication by −1, then
n � 3(|γ1| + 1) − 2 + 3|γ2| − 2 = 3(|γ1| + |γ2| + 1) − 4 = 3m − 4 < 3m − 2 by
induction. Hence we have the result. Suppose that A′ has duplicate columns up to
multiplication by −1. It is easy to show that such columns of A′ have exactly one
nonzero entry. We want to show that the number of such duplicate columns is at
most 3. Suppose that there are four duplicate columns in A′ up to multiplication
by −1. We may assume that the zero pattern of the submatrix consisting of such
duplicate columns of A′ is of the form[

1 1 1 1
O

]
.

Since A[γ \{1}|ε′] has no duplicate columns up to multiplication by −1, we may
assume that A[γ \{1}|ε′] must have a submatrix whose zero pattern is of the
form 1 ∗ ∗

∗ 1 1
1 1 1

 or


1 ∗ ∗
∗ 1 ∗
∗ ∗ 1
1 1 1

 ,
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where ∗ is 0 or 1. Hence we can have a submatrix N of A whose zero pattern is
1 1 ∗ ∗ ∗
1 0 1 ∗ ∗
0 1 ∗ 1 1
0 0 1 1 1

 or


1 1 1 ∗ ∗ ∗
1 0 0 1 ∗ ∗
0 1 0 ∗ 1 ∗
0 0 1 ∗ ∗ 1
0 0 0 1 1 1

 ,

where ∗ is 0 or 1. By Corollary 2, A does not have signed null-space. This is a
contradiction. Thus we can assume that T ′ is of the form[

T ′
1 T ′

2

O T ′
3

]
,

where T ′
1 is a block diagonal matrix whose diagonal blocks are (1 1) or (1 1 1),

and [
T ′

2

T ′
3

]
has no duplicate columns up to multiplication by −1. Continuing this process, we
can assume that T is of the formT1 ∗

O
. . .

Tq

 ,

where Ti = [O T ′
i ] for i = 1, 2, . . . , q and T ′

i are block diagonal matrices whose
diagonal blocks are either (1 1) or (1 1 1) for i = 1, 2, . . . , q − 1. Let λi be the set of
indices of rows in Ti . Let εi and δi be the set of indices of nonzero columns and zero
columns in Ti respectively. It is easy to show that each row of A[λi |εi ∪ δi+1] has
at most three nonzero entries for i = 1, 2, . . . , q − 1 by the similar method we have
shown above. Hence A(λq |εq) has at most 3(m − |λq |) − 2 columns. If the submat-
rix A′

q of A corresponding to T ′
q has no duplicate columns up to multiplication by −1,

then |εq | � 3|λq | − 2 by induction. Hence n � 3(m − |λq |) − 2 + |εq | � 3m − 4 <

3m − 2 and we have the result. If A′
q has duplicate columns up to multiplication by

−1, we may assume that T ′
q is of the form [T ′′

q T
′′′
q ] where T

′′
q is a block diagonal

matrix whose diagonal blocks are (1 1 1) or (1 1). As we have shown in the case that
T is vacuous, every row of T ′

q has exactly three nonzero entries. Thus we have the
result. Similarly we have the same result for l = 1.

Let A be an m by n matrix such that the zero pattern of PAQ is in Mm for
some permutation matrices P and Q. Clearly we have n = 3m − 2. Conversely,
assume that A is an m by n matrix of the form in (3) with n = 3m − 2. If k > 1 and
l > 1, then s � 3k − 2 and t � 3l − 2. Since n = 3m − 2, s = 3k − 2, t = 3l − 3
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or s = 3k − 3, t = 3l − 2. Let s = 3k − 2 and t = 3l − 3. By induction, there
exist permutation matrices P1 and Q1 such that the zero pattern of P1

[
B
b

]
Q1 is

in Mk . Hence A has ek or −ek as a column. Thus the submatrix C′ of A obtained from[
c
C

]
by adding e1 or −e1 according as A has ek or −ek as the first column is a l

by t + 1 matrix and t + 1 = 3l − 2. By induction, there exist permutation matrices
P2 and Q2 such that the zero pattern of P2C

′Q2 is in Ml . By Proposition 5, there
exist permutation matrices P and Q such that the zero pattern of PAQ is in Mm.
Analogously we have the result for s = 3k − 3, t = 3l − 2.

Next let k = 1. Since n = 3m − 2, we may assume that T ′
q is a block diagonal

matrix whose diagonal blocks are (1 1 1). Then A(m|n − 2, n − 1, n) is a strictly
row-mixable m − 1 by n − 3 matrix with no duplicate columns up to multiplica-
tion by −1 and it has signed null-space. Hence the zero pattern of P(A(m|n − 2,
n − 1, n))Q is in Mm−1 for some permutation matrices P and Q by induction.
If (P ⊕ 1)A(Q ⊕ I3)[〈m〉|i, j ] has a submatrix whose the zero pattern is of the
form 1 ∗

∗ 1
1 1

 ,

where n − 2 � i, j � n, then we have a submatrix E of (P ⊕ 1)A(Q ⊕ I3) whose
zero pattern is of the form

1 1 1
1 1 1 1

. . . ∗
O 1 1

1 1 1 1
1 1 1

1 1


.

It is impossible by Corollary 2. Thus we may assume that the zero pattern of
(P ⊕ 1)A(Q ⊕ I3)[〈m〉|n − 2, n − 1, n] is of the form

O

1 1 0
O

1 1 1

 .

Hence (P ⊕ 1)A(Q ⊕ I3) ∈ Mm. �

Corollary 7. Let A be an m by n matrix with no duplicate columns up to multiplica-
tion by −1. If A has signed null-space, then n � 3m − 2.

Proof. The result comes from Proposition 5, and Lemma 6 in [3]. �
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Let A be an m by n matrix whose last row is x and let B be an r by s matrix whose
first row is y. Let A ♦ B be such that

A♦B =
A[〈m − 1〉|〈n〉] O

x y

O B[〈r〉\1|〈s〉]

 .

Proposition 8. Let m be a positive integer with m � 2. Then there exists a strictly
row-mixable m × n matrix with no duplicate columns up to multiplication by −1
which has signed null-space for any n with m + 1 � n � 3m − 2.

Proof. Let

A =
[

1 1 −1 0
0 1 1 −1

]
and B =

[
1 −1 0
1 1 −1

]
.

Then C = A♦
m−2︷ ︸︸ ︷

B ♦ · · · ♦B is an m by 3m − 2 row-mixed matrix with signed null-
space whose zero pattern is in Mm by Proposition 5. Let

D =
[

1 −1
0 1

]
♦

m−3︷ ︸︸ ︷[−1
1

]
♦ · · · ♦

[−1
1

]
♦

[−1 0
1 −1

]
.

Then D is an m by m + 1 row-mixed submatrix of C which has signed null-space.
Hence any submatrix of C containing D is a row-mixed submatrix of C which has
signed null-space. Thus we have the result. �
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