On matrices which have signed null-spaces ${ }^{\text {T}}$

Si-Ju Kim ${ }^{\text {a,* }}$, Bryan L. Shader ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Department of Mathematics, Andong National University, Andong, Kyungpuk 760-749, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA

Received 25 September 2001; accepted 15 February 2002
Submitted by R.A. Brualdi

Abstract

We denote by $\mathscr{2}(A)$ the set of all matrices with the same sign pattern as A. A matrix A has signed null-space provided there exists a set \mathscr{S} of sign patterns such that the set of sign patterns of vectors in the null-space of \widetilde{A} is \mathscr{S}, for each $\widetilde{A} \in \mathscr{Q}(A)$. We show that if A is an m by n matrix with no duplicate columns up to multiplication by -1 and A has signed null-space, then $n \leqslant 3 m-2$. We also classify the set of matrices satisfying the equality. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 05C50 Keywords: Zero patterns; Conformal contractions; Signed null-spaces

1. Introduction

The sign of a real number a is defined by

$$
\operatorname{sign}(a)= \begin{cases}-1 & \text { if } a<0 \\ 0 & \text { if } a=0 \\ 1 & \text { if } a>0\end{cases}
$$

A sign pattern is a $(0,1,-1)$-matrix. The sign pattern of a matrix A is the matrix obtained from A by replacing each entry by its sign. We denote by $\mathscr{2}(A)$ the set of

[^0]all matrices with the same sign pattern as A. The zero pattern of a matrix A is the $(0,1)$-matrix obtained from A by replacing each nonzero entry by 1 .

Let A be an m by n matrix and b an m by 1 vector. The linear system $A x=b$ has signed solutions provided there exists a collection \mathscr{S} of n by 1 sign patterns such that the set of sign patterns of the solutions to $\widetilde{A} x=\tilde{b}$ is \mathscr{S}, for each $\widetilde{A} \in \mathscr{Q}(A)$ and $\tilde{b} \in \mathscr{2}(b)$. This notion generalizes that of a sign-solvable linear system (see [1] and references therein). The linear system, $A x=b$, is sign-solvable provided each linear system $\widetilde{A} x=\tilde{b}(\tilde{A} \in \mathscr{2}(A), \tilde{b} \in \mathscr{2}(b))$ has a solution and all solutions have the same sign pattern. Thus, $A x=b$ is sign-solvable if and only if $A x=b$ has signed solutions and the set \mathscr{S} has cardinality 1 .

The matrix A has signed null-space provided $A x=0$ has signed solutions. Thus, A has signed null-space if and only if there exists a set \mathscr{S} of sign patterns such that the set of sign patterns of vectors in the null-space of \widetilde{A} is \mathscr{S}, for each $\widetilde{A} \in \mathscr{Z}(A)$. An L-matrix is a matrix, A, with the property that each matrix in $\mathscr{Z}(A)$ has linearly independent rows. A square L-matrix is a sign-nonsingular, or SNSmatrix for short. A totally L-matrix is an $m \times n$ matrix such that each $m \times m$ submatrix is an SNS-matrix. It is known that totally L-matrices are matrices with signed null-spaces [3]. Hence matrices with signed null-spaces generalize totally L-matrices.

A vector is mixed if it has a positive entry and a negative entry. A matrix is row-mixed if each of its rows is mixed. A signing is a nonzero, diagonal $(0,1,-1)$ matrix. A signing is strict if each of its diagonal entries is nonzero. A matrix B is strictly row-mixable provided there exists a strict signing D such that $B D$ is row mixed.

In this paper, we show that if A is an m by n matrix with no duplicate columns up to multiplication by -1 and it has signed null-space, then $n \leqslant 3 m-2$. Equality holds if and only if there exist permutation matrices P and Q such that the zero pattern of $P A Q$ is in \mathscr{M}_{m} (for definition see Section 2).

We use the following standard notations throughout the paper. If k is a positive integer, then $\langle k\rangle$ denotes the set $\{1,2, \ldots, k\}$. Let A be an $m \times n$ matrix. If α is a subset of $\{1,2, \ldots, m\}$ and β is a subset of $\{1,2, \ldots, n\}$, then $A[\alpha \mid \beta]$ denotes the submatrix of A determined by the rows whose indices are in α and the columns whose indices are in β. We sometimes use $A[* \mid \beta]$ instead of $A[\langle m\rangle \mid \beta]$. The submatrix complementary to $A[\alpha \mid \beta]$ is denoted by $A(\alpha \mid \beta)$. In particular, $A(-\mid \beta)$ denotes the submatrix obtained from A by deleting the columns whose indices are in β. We write $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for the n by n diagonal matrix whose (i, i)-entry is d_{i}. Let $J_{m, n}$ denote the m by n matrix all of whose entries are 1 and let e_{i} denote the column vector all of whose entries are 0 except for the i th entry which is 1 .

2. Matrices with signed null-spaces

We make use of the following property of matrices with signed null-spaces.

Theorem A ([2,3]). If a strictly row-mixable matrix A has signed null-space, then there exist matrices B and C (possibly with no rows), and nonzero vectors b and c such that B and C are strictly row-mixable matrices with signed null-spaces,

$$
\left[\begin{array}{l}
B \\
b
\end{array}\right] \text { and }\left[\begin{array}{l}
c \\
C
\end{array}\right]
$$

have signed null-spaces, and up to permutation of rows and columns

$$
A=\left[\begin{array}{ll}
B & O \\
b & c \\
O & C
\end{array}\right]
$$

The converse also holds.

Let A be an m by $n(0,1,-1)$-matrix. The matrix B is conformally contractible to A provided there exists an index k such that the rows and columns of B can be permuted so that B has the form

$$
\left[\begin{array}{ccc|c|c}
A[\langle m\rangle \mid\langle n\rangle \backslash\{k\}] & x & y \\
\hline 0 & \cdots & 0 & 1 & -1
\end{array}\right],
$$

where $x=\left[x_{1}, \ldots, x_{m}\right]^{\mathrm{T}}$ and $y=\left[y_{1}, \ldots, y_{m}\right]^{\mathrm{T}}$ are $(0,1,-1)$ vectors such that $x_{i} y_{i} \geqslant 0$ for $i=1,2, \ldots, m$, and the sign pattern of $x+y$ is the k th column of A.

Let B be conformally contractible to A. It is known that A has signed null-space if and only if B has signed null-space, and a strictly row-mixable m by n matrix A has signed null-space if and only if A has term rank m and has signed m th compound [3].

All matrices we consider from now on are assumed to be $(0,1,-1)$ matrices.
Lemma 1. Let J be the 2 by 3 matrix obtained from an m by $m+1$ matrix A by a sequence of conformal contractions. If the zero pattern of J is $J_{2,3}$, then A does not have signed null-space.

Proof. Let $A=A_{m}, A_{m-1}, \ldots, A_{2}=J$ such that A_{i+1} is conformally contractible to A_{i} for all $i=2, \ldots, m-1$. If A has signed null-space, then $A_{m-1}, \ldots, A_{2}=J$ have signed null-space. Since J has no zero entry, J does not have signed null-space. This is impossible.

Corollary 2. Let an m by n matrix A have a k by $k+1$ submatrix B whose complementary submatrix in A has term rank $m-k$. If there is a matrix B^{*} obtained from B by replacing some nonzero entries with 0 's (if necessary) such that $J_{2,3}$ is the zero pattern of the matrix obtained from B^{*} by a sequence of conformal contractions, then A does not have signed null-space.

Proof. By Lemma 1, B^{*} does not have signed null-space. Hence B^{*} contains a k by k submatrix which is not SNS-matrix with term rank k. Thus A contains an m by
m submatrix which is not SNS-matrix with term rank m. This implies that A does not have signed null-space.

Let \mathscr{M}_{m} be the set of m by $3 m-2(0,1)$-matrices defined inductively as follows: $\mathscr{M}_{1}=\{[1]\}$. Let $S \in \mathscr{M}_{m}$. Then S is of the form

$$
\left[\begin{array}{ccc|ccc}
& S_{m-1} & & & C & \tag{1}\\
\hline 0 & \cdots & 0 & 1 & 1 & 1
\end{array}\right],
$$

where $S_{m-1} \in \mathscr{M}_{m-1}$ and all rows but a row which is $(1,1,0)$ in C are zero.
Proposition 3. For any $S \in \mathscr{M}_{m}$, there exists a matrix with signed null-space whose zero pattern is S.

Proof. We prove it by induction on m. It is clear for $m=1$. Let $m>1$ and let S be of the form in (1). By induction, there is a matrix B with signed null-space whose zero pattern is equal to S_{m-1}. Let A be the m by $3 m-2$ matrix of the form

$$
\begin{equation*}
\left[\right] . \tag{2}
\end{equation*}
$$

Then the zero pattern of A is equal to S. Since S_{m-1} contains a submatrix which is the identity matrix I_{m-1} of order $m-1$ and B has signed null-space, the matrix $A^{*}=A(m \mid 3 m-3,3 m-2)$ has signed null-space. Since $A(-\mid 3 m-2)$ is conformally contractible to $A^{*}, A(-\mid 3 m-2)$ and hence A has signed null-space.

Let A be a matrix with signed null-space. A is a maximal matrix with signed nullspace if any matrix obtained from A by replacing a zero entry by a nonzero entry does not have signed null-space. Let $E_{i j}$ denote the matrix all of whose entries are 0 except for the (i, j) entry which is 1 . Let A be a strictly row-mixable m by n matrix with signed null-space. Then A is a maximal matrix with signed null-space if and only if there is an m by m submatrix B of A such that $B \pm E_{i j}$ has term rank m but $B \pm E_{i j}$ is not an SNS-matrix for any (i, j) with $a_{i j}=0$.

Proposition 4. Let A have signed null-space. If the zero pattern of A is in \mathscr{M}_{m}, then A is a maximal matrix with signed null-space.

Proof. Let A be an m by $3 m-2$ matrix with signed null-space and let its zero pattern be S_{m} in \mathscr{M}_{m}. Without loss of generality, we may assume that $A=\left[a_{i j}\right]$ is of the form in (2) where B is a matrix with signed null-space whose zero pattern is in \mathscr{M}_{m-1}. Let $Z_{1}=\left\{(i, j) \in\langle m-1\rangle \times\{3 m-4,3 m-3,3 m-2\} \mid a_{i j}=0\right\}$ and $Z_{2}=\{(m, j) \mid j \in\langle 3 m-5\rangle\}$. Since B is a maximal matrix with signed null-space by induction, it is sufficient to show that $S_{m}+E_{i j}$ is not zero pattern of a matrix with signed null-space for any $(i, j) \in Z_{1} \cup Z_{2}$.

Let the k th row of C be $(1,1,0)$ and the other rows of C be zero. If $(i, j)=$ $(k, 3 m-2)$, then $S_{m}+E_{i j}$ has $J_{2,3}$ as a submatrix such that its complementary
submatrix has term rank $m-2$. Hence $A \pm E_{i j}$ does not have signed null-space by Corollary 2 . Let $(i, j) \in Z_{1}$ with $j \in\{3 m-4,3 m-3\}$. Then there exist distinct $p_{1}, p_{2}, \ldots, p_{t}$, and distinct $q_{1}, q_{2}, \ldots, q_{t}$ such that $a_{p_{1}, q_{1}}, a_{p_{2}, q_{1}}, \ldots, a_{p_{t}, q_{t}}$ are nonzero where $p_{1}=1, p_{t}=i$ and $q_{t}=j$. Similarly, there exist distinct $i_{1}, i_{2}, \ldots, i_{s}$, and distinct $j_{1}, j_{2}, \ldots, j_{s+2}$ such that $a_{i_{1}, j_{1}}, a_{i_{2}, j_{1}}, \ldots, a_{i_{s}, j_{s-1}}, a_{i_{s}, j_{s}}, a_{i_{s}, j_{s+1}}$, $a_{i_{s}, j_{s+2}}$ are nonzero where $i_{1}=1, i_{s}=k, j_{s+1}=3 m-4$ and $j_{s+2}=3 m-3$. Choosing some entries from these entries, we obtain a matrix which is conformally contractible to a matrix whose zero pattern is $J_{2,3}$. By Corollary $2, S_{m}+E_{i j}$ is not zero pattern of a matrix with signed null-space. Analogously we can show that $S_{m}+E_{i j}$ is not zero pattern of a matrix with signed null-space for $i \neq k$ and $j=$ $3 m-2$, or $(i, j) \in Z_{2}$.
Proposition 5. Let A be a strictly row-mixable m by n matrix of the form
$\left[\begin{array}{c|c|c} & 0 & \\ B & \vdots & O \\ & 0 & \\ \hline b & 1 & c \\ \hline & 0 & \\ O & \vdots & C\end{array}\right]$.

If

$$
M=\left[\begin{array}{ll}
B & O \\
b & 1
\end{array}\right] \quad \text { and } \quad N=\left[\begin{array}{cc}
1 & c \\
O & C
\end{array}\right]
$$

have signed null-spaces, then A has signed null-space. Moreover, if the zero patterns of M and N are in \mathscr{M}_{k} and \mathscr{M}_{m-k+1} by permuting rows and columns, respectively, then the zero pattern of A is in \mathscr{M}_{m} by permuting rows and columns.

Proof. Clearly B has signed null-space whether b is zero or not. Analogously C has signed null-space. Hence A has signed null-space by Theorem A. Let S_{M} and S_{N} be the zero patterns of M and N, respectively. Then there exist permutation matrices P_{1}, P_{2}, Q_{1} and Q_{2} such that $P_{1} S_{M} Q_{1} \in \mathscr{M}_{k}$ and $P_{2} S_{N} Q_{2} \in \mathscr{M}_{m-k+1}$. Let the first row of S_{N} have moved to the p th row of $P_{2} S_{N} Q_{2}$. Then there exist distinct $i_{1}=$ $1, i_{2}, \ldots, i_{q}=p$ and distinct $j_{1}=1, j_{2}, \ldots, j_{3 q-2}$ such that $L=P_{2} S_{N} Q_{2}\left[i_{1}, i_{2}, \ldots\right.$, $\left.i_{q} \mid j_{1}, j_{2}, \ldots, j_{3 q-2}\right]$ is of the form

$$
\left[\begin{array}{llllllllll}
1 & 1 & 1 & & & & & & & \\
& 1 & 1 & 1 & 1 & 1 & & & & \\
& & & & 1 & 1 & 1 & O & & \\
& & O & & & \ddots & \ddots & & & \\
& & & & & & & 1 & 1 & \\
& & & & & & & 1 & 1 & 1
\end{array}\right] .
$$

Let L^{\prime} be the matrix obtained from L by permuting rows and columns in reverse order. Then $L=L^{\prime}$ and hence there exist permutation matrices P, Q such that $P S_{N} Q \in$ \mathscr{M}_{m-k+1} where its first row corresponds to the first row of N. This implies that the zero pattern of A is in \mathscr{M}_{m} by permuting rows and columns.

Proposition 6. Let A be a strictly row-mixable m by n matrix with no duplicate columns up to multiplication by -1 . If A has signed null-space, then $n \leqslant 3 m-2$. Equality holds if and only if there exist permutation matrices P and Q such that the zero pattern of PAQ is in \mathscr{M}_{m}.

Proof. We prove it by induction on m. For $m=2$, there is nothing to prove. Without loss of generality, we may assume that $m \geqslant 3$ and A can be rearranged as

$$
A=\left[\begin{array}{ll}
B & O \tag{3}\\
b & c \\
O & C
\end{array}\right]
$$

where matrices B and C (possibly with no rows) are strictly row-mixable matrices which have signed null-spaces, and vectors b and c are nonzero. Also

$$
\left[\begin{array}{l}
B \\
b
\end{array}\right] \text { and }\left[\begin{array}{l}
c \\
C
\end{array}\right]
$$

have signed null-spaces. Let

$$
A[\alpha \mid \beta]=\left[\begin{array}{l}
B \\
b
\end{array}\right] \quad \text { and } \quad A[\gamma \mid \delta]=\left[\begin{array}{l}
c \\
C
\end{array}\right]
$$

such that $|\alpha|=k,|\beta|=s,|\gamma|=l$ and $|\delta|=t$. Then $k+l-1=m$ and $s+t=n$.
Let $k>1$ and $l>1$. If $A[\alpha \mid \beta]$ has one of the unit vectors $\pm e_{k}$ as a column, then we can assume that $A[\alpha \mid \beta]$ is of the form

$$
\left[\begin{array}{ll}
B^{\prime} & O \\
b^{\prime} & 1
\end{array}\right] .
$$

If $b^{\prime}=\mathbf{0}$, then B^{\prime} is a strictly row-mixable matrix with no duplicate columns up to multiplication by -1 . By induction, we have $s-1 \leqslant 3(k-1)-2$. Hence $s<$ $3 k-2$. If $b^{\prime} \neq \mathbf{0}$, then $A[\alpha \mid \beta]$ is a strictly row-mixable matrix with no duplicate columns up to multiplication by -1 . Hence $s \leqslant 3 k-2$. Let $C^{\prime}=A[\gamma \mid\{s\} \cup \delta]$. Then we have $t+1 \leqslant 3 l-2$ since C^{\prime} satisfies the conditions of hypothesis. This implies that $3 m-2-n=3(k+l-1)-2-(s+t)=(3 k-s-2)+(3 l-t-$ $3) \geqslant 0$. Hence $n \leqslant 3 m-2$. Similarly, in the case that $A[\gamma \mid \delta]$ has one of the unit vectors $\pm e_{1}$ as columns we can show that $n \leqslant 3 m-2$. Assume that $A[\alpha \mid \beta]$ and $A[\gamma \mid \delta]$ do not have the unit vectors $\pm e_{k}$ and $\pm e_{1}$ as a column respectively. Since b is nonzero, the k by $s+1$ matrix B^{*} obtained from $A[\alpha \mid \beta]$ by adding e_{k} as the last column is a strictly row-mixable matrix with no duplicate columns up to multiplication by -1 . Also B^{*} has signed null-space. Hence $s+1 \leqslant 3 k-2$.

Similarly we also have $t+1 \leqslant 3 l-2$. Hence $3 m-2=3(k+l-1)-2=(3 k-$ $3)+(3 l-3)+1 \geqslant s+t+1>s+t=n$.

Let $k=1$. Then $s=1$ since columns of A are distinct. Hence we may assume that A is the form of

$$
\left[\begin{array}{ll}
1 & c \\
O & C
\end{array}\right]
$$

If C has no duplicate columns up to multiplication by -1 , then $t \leqslant 3(m-1)-$ 2 by induction. Hence $n=t+1 \leqslant 3 m-4<3 m-2$. Let C have duplicate columns up to multiplication by -1 . That is, let the columns 1,2 of C be a pair of identical columns up to multiplication by -1 . Let D be a strict signing such that $M=C D=\left[m_{i j}\right]$ is row-mixed and let $\left(m_{i_{1} 1}, \ldots, m_{i_{p} 1}\right)=\left(m_{i_{1} 2}, \ldots, m_{i_{p} 2}\right)$ or $\left(m_{i_{1} 1}, \ldots, m_{i_{p} 1}\right)=-\left(m_{i_{1} 2}, \ldots, m_{i_{p} 2}\right)$ for some positive integer p and $m_{i 1}=$ $m_{i, 2}=0$ for all $i \in\langle l-1\rangle \backslash\left\{i_{1}, i_{2}, \ldots, i_{p}\right\}$. Since C has signed null-space, M has no mixed cycles and hence the columns 1 and 2 of M must be identical or $p=1$. If $p \geqslant 2$, then the matrix M^{\prime} obtained from M by multiplying column 1 by -1 has a mixed cycle which is impossible. Hence $p=1$. This implies that the number of the same ones as the first column of C up to multiplication by -1 is at most 3 . Thus without loss of generality, we may assume that the zero pattern of A is of the form

where $u=(1,1,0), v=(1,1), w=(1,0)$ and $x=(1,1,1)$, and the unspecified entries are zero. Let ϵ be the set of indices of columns corresponding to

$$
\left[\begin{array}{l}
S \\
T
\end{array}\right]
$$

in A. Then we may also assume that $A[\gamma \backslash\{1\} \mid \epsilon]$ has no duplicate columns up to multiplication by -1 and the columns are also different from the ones of $A(1 \mid \epsilon)$ up to multiplication by -1 . If $A[\gamma \backslash\{1\} \mid \epsilon]$ is vacuous, we are done. Let only T be
vacuous. Notice that every column of S has at least two nonzero entries. Any row of S has at most one nonzero entry. For, suppose that a row of S has two nonzero entries. Since the columns of $A[\gamma \backslash\{1\} \mid \epsilon]$ are distinct up to multiplication by -1 , we may assume that there exists one of submatrices of A whose zero patterns are

$$
\left[\begin{array}{llll}
1 & 1 & * & * \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lllll}
1 & 1 & 1 & * & * \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & * \\
0 & 0 & 1 & * & 1
\end{array}\right]
$$

where $*$ is 0 or 1 . By Corollary 2, A does not have signed null-space. This is a contradiction. Next, suppose that a row r of $A[\gamma \backslash\{1\} \mid\langle n\rangle]$ has four nonzero entries. Since each row of S has at most one nonzero entry and each column of S has at least two nonzero entries, we have a submatrix of A whose zero pattern is

$$
\left[\begin{array}{llll}
1 & 1 & 1 & * \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

which is also impossible by Corollary 2 . Hence every row of $A[\gamma \backslash\{1\} \mid\langle n\rangle]$ has at most three nonzero entries. Thus we have $n \leqslant 3 m-2$. Let T be nonvacuous. Notice that the submatrix of A corresponding to T is a strictly row-mixable matrix with signed null-space. Let ϵ^{\prime} be the set of indices of nonzero columns in T and let $T\left[* \mid \epsilon^{\prime}\right]=T^{\prime}$. Then we may assume that $T=\left[\begin{array}{ll}O & T^{\prime}\end{array}\right]$. Let γ_{1} and γ_{2} be the set of indices of rows corresponding to the rows of S and T respectively. Notice that $A\left(\gamma_{2} \mid \epsilon^{\prime}\right)$ has at most $3\left(\left|\gamma_{1}\right|+1\right)-2$ columns by the similar method we have shown in the case that only T is vacuous. If the submatrix A^{\prime} of A corresponding to T^{\prime} has no duplicate columns up to multiplication by -1 , then $n \leqslant 3\left(\left|\gamma_{1}\right|+1\right)-2+3\left|\gamma_{2}\right|-2=3\left(\left|\gamma_{1}\right|+\left|\gamma_{2}\right|+1\right)-4=3 m-4<3 m-2$ by induction. Hence we have the result. Suppose that A^{\prime} has duplicate columns up to multiplication by -1 . It is easy to show that such columns of A^{\prime} have exactly one nonzero entry. We want to show that the number of such duplicate columns is at most 3. Suppose that there are four duplicate columns in A^{\prime} up to multiplication by -1 . We may assume that the zero pattern of the submatrix consisting of such duplicate columns of A^{\prime} is of the form

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
& & O &
\end{array}\right]
$$

Since $A\left[\gamma \backslash\{1\} \mid \epsilon^{\prime}\right]$ has no duplicate columns up to multiplication by -1 , we may assume that $A\left[\gamma \backslash\{1\} \mid \epsilon^{\prime}\right]$ must have a submatrix whose zero pattern is of the form

$$
\left[\begin{array}{lll}
1 & * & * \\
* & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lll}
1 & * & * \\
* & 1 & * \\
* & * & 1 \\
1 & 1 & 1
\end{array}\right],
$$

where $*$ is 0 or 1 . Hence we can have a submatrix N of A whose zero pattern is

$$
\left[\begin{array}{lllll}
1 & 1 & * & * & * \\
1 & 0 & 1 & * & * \\
0 & 1 & * & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llllll}
1 & 1 & 1 & * & * & * \\
1 & 0 & 0 & 1 & * & * \\
0 & 1 & 0 & * & 1 & * \\
0 & 0 & 1 & * & * & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right],
$$

where $*$ is 0 or 1 . By Corollary 2, A does not have signed null-space. This is a contradiction. Thus we can assume that T^{\prime} is of the form

$$
\left[\begin{array}{cc}
T_{1}^{\prime} & T_{2}^{\prime} \\
O & T_{3}^{\prime}
\end{array}\right]
$$

where T_{1}^{\prime} is a block diagonal matrix whose diagonal blocks are (lll) or (lll $\left.1 \begin{array}{ll}1 & 1\end{array}\right)$, and

$$
\left[\begin{array}{l}
T_{2}^{\prime} \\
T_{3}^{\prime}
\end{array}\right]
$$

has no duplicate columns up to multiplication by -1 . Continuing this process, we can assume that T is of the form

$$
\left[\begin{array}{ccc}
T_{1} & & * \\
O & \ddots & \\
& & T_{q}
\end{array}\right],
$$

where $T_{i}=\left[\begin{array}{ll}O & T_{i}^{\prime}\end{array}\right]$ for $i=1,2, \ldots, q$ and T_{i}^{\prime} are block diagonal matrices whose diagonal blocks are either (11) or (111) for $i=1,2, \ldots, q-1$. Let λ_{i} be the set of indices of rows in T_{i}. Let ϵ_{i} and δ_{i} be the set of indices of nonzero columns and zero columns in T_{i} respectively. It is easy to show that each row of $A\left[\lambda_{i} \mid \epsilon_{i} \cup \delta_{i+1}\right]$ has at most three nonzero entries for $i=1,2, \ldots, q-1$ by the similar method we have shown above. Hence $A\left(\lambda_{q} \mid \epsilon_{q}\right)$ has at most $3\left(m-\left|\lambda_{q}\right|\right)-2$ columns. If the submatrix A_{q}^{\prime} of A corresponding to T_{q}^{\prime} has no duplicate columns up to multiplication by -1 , then $\left|\epsilon_{q}\right| \leqslant 3\left|\lambda_{q}\right|-2$ by induction. Hence $n \leqslant 3\left(m-\left|\lambda_{q}\right|\right)-2+\left|\epsilon_{q}\right| \leqslant 3 m-4<$ $3 m-2$ and we have the result. If A_{q}^{\prime} has duplicate columns up to multiplication by -1 , we may assume that T_{q}^{\prime} is of the form $\left[T_{q}^{\prime \prime} T_{q}^{\prime \prime \prime}\right]$ where $T_{q}^{\prime \prime}$ is a block diagonal matrix whose diagonal blocks are (111) or (11). As we have shown in the case that T is vacuous, every row of T_{q}^{\prime} has exactly three nonzero entries. Thus we have the result. Similarly we have the same result for $l=1$.

Let A be an m by n matrix such that the zero pattern of $P A Q$ is in \mathscr{M}_{m} for some permutation matrices P and Q. Clearly we have $n=3 m-2$. Conversely, assume that A is an m by n matrix of the form in (3) with $n=3 m-2$. If $k>1$ and $l>1$, then $s \leqslant 3 k-2$ and $t \leqslant 3 l-2$. Since $n=3 m-2, s=3 k-2, t=3 l-3$
or $s=3 k-3, t=3 l-2$. Let $s=3 k-2$ and $t=3 l-3$. By induction, there exist permutation matrices P_{1} and Q_{1} such that the zero pattern of $P_{1}\left[\begin{array}{c}B \\ b\end{array}\right] Q_{1}$ is in \mathscr{M}_{k}. Hence A has e_{k} or $-e_{k}$ as a column. Thus the submatrix C^{\prime} of A obtained from $\left[\begin{array}{l}c \\ C\end{array}\right]$ by adding e_{1} or $-e_{1}$ according as A has e_{k} or $-e_{k}$ as the first column is a l by $t+1$ matrix and $t+1=3 l-2$. By induction, there exist permutation matrices P_{2} and Q_{2} such that the zero pattern of $P_{2} C^{\prime} Q_{2}$ is in \mathscr{M}_{l}. By Proposition 5, there exist permutation matrices P and Q such that the zero pattern of $P A Q$ is in \mathscr{M}_{m}. Analogously we have the result for $s=3 k-3, t=3 l-2$.

Next let $k=1$. Since $n=3 m-2$, we may assume that T_{q}^{\prime} is a block diagonal matrix whose diagonal blocks are (1111$)$. Then $A(m \mid n-2, n-1, n)$ is a strictly row-mixable $m-1$ by $n-3$ matrix with no duplicate columns up to multiplication by -1 and it has signed null-space. Hence the zero pattern of $P(A(m \mid n-2$, $n-1, n)) Q$ is in \mathscr{M}_{m-1} for some permutation matrices P and Q by induction. If $(P \oplus 1) A\left(Q \oplus I_{3}\right)[\langle m\rangle \mid i, j]$ has a submatrix whose the zero pattern is of the form

$$
\left[\begin{array}{ll}
1 & * \\
* & 1 \\
1 & 1
\end{array}\right],
$$

where $n-2 \leqslant i, j \leqslant n$, then we have a submatrix E of $(P \oplus 1) A\left(Q \oplus I_{3}\right)$ whose zero pattern is of the form

$$
\left[\begin{array}{lllllllllll}
1 & 1 & & & & & & & & 1 & \\
1 & 1 & 1 & 1 & & & & & & & \\
& & & & \ddots & & & & * & & \\
& & O & & & 1 & 1 & & & & \\
& & & & & 1 & 1 & 1 & 1 & & \\
& & & & & & & 1 & 1 & & 1 \\
& & & & & & & & & 1 & 1
\end{array}\right]
$$

It is impossible by Corollary 2 . Thus we may assume that the zero pattern of $(P \oplus 1) A\left(Q \oplus I_{3}\right)[\langle m\rangle \mid n-2, n-1, n]$ is of the form

$$
\left[\begin{array}{lll}
& O & \\
1 & 1 & 0 \\
& O & \\
1 & 1 & 1
\end{array}\right] .
$$

Hence $(P \oplus 1) A\left(Q \oplus I_{3}\right) \in \mathscr{M}_{m}$.
Corollary 7. Let A be an m by n matrix with no duplicate columns up to multiplication by -1 . If A has signed null-space, then $n \leqslant 3 m-2$.

Proof. The result comes from Proposition 5, and Lemma 6 in [3].

Let A be an m by n matrix whose last row is x and let B be an r by s matrix whose first row is y. Let $A \diamond B$ be such that

$$
A \diamond B=\left[\begin{array}{c|c}
A[\langle m-1\rangle \mid\langle n\rangle] & O \\
\hline x & y \\
\hline O & B[\langle r\rangle \backslash 1 \mid\langle s\rangle]
\end{array}\right] .
$$

Proposition 8. Let m be a positive integer with $m \geqslant 2$. Then there exists a strictly row-mixable $m \times n$ matrix with no duplicate columns up to multiplication by -1 which has signed null-space for any n with $m+1 \leqslant n \leqslant 3 m-2$.

Proof. Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1
\end{array}\right] .
$$

Then $C=A \diamond \overbrace{B \diamond \cdots \diamond B}^{m-2}$ is an m by $3 m-2$ row-mixed matrix with signed nullspace whose zero pattern is in \mathscr{M}_{m} by Proposition 5. Let

$$
D=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \diamond \overbrace{\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \diamond \cdots \diamond\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}^{m-3} \diamond\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] .
$$

Then D is an m by $m+1$ row-mixed submatrix of C which has signed null-space. Hence any submatrix of C containing D is a row-mixed submatrix of C which has signed null-space. Thus we have the result.

References

[1] R.A. Brualdi, B.L. Shader, The Matrices of Sign-Solvable Linear Systems, Cambridge University Press, Cambridge, 1995.
[2] K.G. Fisher, W. Morris, J. Shapiro, Mixed dominating matrices, Linear Algebra Appl. 270 (1998) 191-214.
[3] S.J. Kim, B.L. Shader, Linear systems with signed solutions, Linear Algebra Appl. 313 (2000) 21-40.

[^0]: ${ }^{4}$ This work is partially funded by Andong National University.

 * Corresponding author.

 E-mail addresses: sjkim@ andong.ac.kr (S.-J. Kim), bshader@uwyo.edu (B.L. Shader).

