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a  b  s  t  r  a  c  t

SF6 plasmas  were  employed  to  improve  the  water  repellency  of cornstarch  films  by producing  physical
as  well  as chemical  modifications  of the film  surface.  Samples  were  placed  in  the  cathode  of  a  capaci-
tively  coupled  plasma  enhanced  chemical  vapor  deposition  (PECVD)  reactor.  Local  surface  modifications
resulting  from  SF6 plasma  treatment  were  evaluated  using  atomic  force  microscopy  (AFM)  and  scanning
electron  microscopy  (SEM).  Photoelectron  spectroscopy  (XPS)  and  Raman  spectroscopy  were  used to
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characterize  sulfur  and  fluoride  incorporation  on the  surface  as  well  as  changes  in the  chemical  state  of
carbon.  The  results  indicate  that  fluoride  and  sulfur  incorporation  is  dependent  on  the  self  bias,  and  flu-
oride  is  preferentially  incorporated  at self-biases  higher  than  100  V. The  carbon  chemical  state  changed,
and an  amorphous-like  layer  was  formed  upon  treatment.  Surface  reticulation  was  observed,  indicated
by the formation  of a  structure  that  resembled  starch  recrystallization.  Optimized  treatment  conditions
led  to  water  contact  angles  over  120◦.
. Introduction

The development of bioplastics derived from renewable
esources has been encouraged by the increasing interest in the
eduction of the amount of plastic waste in the environment. Due
o its total biodegradability, low cost and worldwide availability
rom a large number of crops, there has been much interest in the
pplication of thermoplastic starch (TPS) as the base element for
he production of single-use biodegradable plastic items. However,
echnological application of thermoplastic starch as a bioplastic has
een limited by its inherent hydrophilicity. Starch-based materials
re susceptible to moisture uptake during storage, which may cause
hanges in dimensional stability and both mechanical and bar-
ier properties (Hulleman, Kalisvaart, Janssen, Feil, & Vliegenthart,
999). Similar to starch, other polysaccharides like carrageenan are
eing tested to produce edible or environmentally friendly plastics.
n this case, the natural polymer is associated with fat to enhance
ts water barrier properties. The authors related the surface sta-
ility upon water contact to the dynamic contact angle behavior.

 variation in shape and size of the water droplet was  observed
ver time, and the results were related to either water absorp-
ion, evaporation or polymer dissolution (Karbowiak, Debeaufort,
hampion, & Voilley, 2006). A new approach to overcome the great

ydrophilicity and water sensitivity of natural polymer-based films
ight be the protection of starch based materials from humid-

ty changes with a thin polymeric layer, deposited by plasma

∗ Corresponding author. Tel.: +55 21 2562 8527; fax: +55 21 2290 6626.
E-mail address: renata@metalmat.ufrj.br (R.A. Simão).
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polymerization (Thiré, Simão, & Andrade, 2005). Additionally, it
is well established that fluoride-containing plasmas can be used
to modify surface hydrophilicity. The flat surfaces of low surface
energy materials such as carbon fluorine compounds have a max-
imum contact angle with water of about 120◦ (Nishino, Meguro,
Nakamae, Matsushita, & Ueda, 1999). Surfaces with higher con-
tact angles can be obtained by structuring these surfaces with an
appropriate roughness. Surfaces presenting contact angles as high
as 150◦ are called super-hydrophobic surfaces (Bico, Marzolin, &
Quere, 1999; Cassie & Baxter, 1954; Dorrer & Rühe, 2006; Shibuichi,
Onda, Satoh, & Tsujii, 1996). To obtain such high contact angles,
roughness size and topography have to be controlled in such a way
that drops are suspended on top of the roughness features, with air
trapped underneath.

As pointed out by Dorrer and Rühe (2006),  in their analysis of
artificially prepared rough surfaces composed of micromachined
silicon chemically modified with fluoride groups, contact angle can
be varied on surfaces by varying the distances and sizes of posts,
varying the area of the water droplet spanning the trapped air. The
best conditions obtained by the authors were surfaces composed
of posts of 4 �m in size and spaced 16 �m.

Highly hydrophilic/hydrophobic contrast surfaces on polyethy-
lene terephthalate (PET) substrates were formed by a shadow
mask technique in an electron cyclotron resonance generated sul-
fur hexafluoride plasma atmosphere. XPS analysis indicated that
the unmasked PET surfaces contained a high proportion of CF2–CF2

Open access under the Elsevier OA license.
groups, and therefore were hydrophobic with a large water contact
angle (Chuang & Chu, 2011).

Plasma treatment was  carried out on PET surfaces, generat-
ing surface roughness at different length scales to maximize the
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tability of the superhydrophobic or superhydrophilic properties,
epending on the surface chemistry. These properties were main-
ained during storage and resisted moderate mechanical stress
Fernández-Blásquez, Fell, Bonaccurso, & del Campo, 2011).

SF6 plasma treatment enhances starch film hydrophobicity, as
eported elsewhere. Plasma treatment at −100 V self bias led to
urfaces presenting 130◦ contact angle with water. Surface topog-
aphy changes were clearly observed, and hydrophobicity was
ttributed to the creation of surface roughness, fluoride incorpo-
ation and surface reticulation (Bastos, Santos, da Silva, & Simão,
009).

The hydrophobicity improvement of Thai silk fabrics achieved
ia SF6 plasma treatment showed that fluorine atoms were effi-
iently attached to the treated silk surface via plasma deposition
Hodak, Supasai, Paosawatyanyoung, Kamlangkla, & Pavarajarn,
008; Suanpoot et al., 2008). Cold plasma treatments created
uorine-rich layers on the surface of starch–aspen foam tray
amples, enhancing their hydrophobic properties (Chuang & Chu,
011).

In the present study, we analyzed the significant reduction of
he water sensitivity of cornstarch films upon plasma treatment
ith sulfur hexafluoride (SF6). This was accomplished by control-

ing plasma parameters such as self bias and treatment time and
bserving the global and local chemical variation of the surface
sing different analysis techniques.

. Experimental procedures

Regular cornstarch composed of 26–30% amylase and 74–70%
mylopectin with less than 0.5% gluten and 12% moisture con-
ent was supplied by Corn Products Brazil Ltda. (São Paulo, Brazil).
ornstarch was dispersed in distilled water under reflux (5%, w/v)
nd kept under stirring for 300 s. Analytical grade glycerol (15%,
/w) was purchased from Vetec Química Fina Ltda. (Rio de Janeiro,
razil) and added as a plasticizer. After casting, films with thickness
anging from 70 to 100 �m were obtained.

The cornstarch films were used as substrates for surface treat-
ent with sulfur hexafluoride (SF6). Cornstarch substrates were

laced on the cathode of a glow discharge reactor operating at
3.56 MHz. The vacuum chamber was operated below 8 Pa, and
ifferent cathode self-bias voltages (Vb) were applied for different
reatment periods. To avoid excessive solvent loss, the chamber
ase pressure was always kept above 6 Pa, as described elsewhere
Thiré et al., 2005). To characterize the different surface treatments,
mall pieces of silicon wafers that had previously been coated with
morphous carbon films were placed on the cathode close to the
ornstarch films.

The influence of the plasma treatment on the hydrophilicity of
tarch films was  determined from water contact angle measure-
ents obtained using a NRL A-100-00 Ramé-Hart Goniometer. The

volution of the droplet shape was recorded with a CCD camera
very 15 s over the measurement time of 600 s.

The elemental composition of the surface was  evaluated by
-ray photoelectron spectroscopy (XPS) using a Phoibos 100
pectrometer equipped with a monochromatic MgK( source. XPS
easurements were performed on both the corn starch films and

he amorphous carbon films with surfaces modified by the same
F6 treatments. The elements present were identified from sur-
ey spectra recorded at 50 eV pass energy. High-resolution spectra
ere recorded from individual peaks at 20 eV pass energy.

A Topometrix Accurex II (Topometrix, Santa Clara, USA) instru-

ent, equipped with a non-contact AFM probe head and a

00 mm Tripot scanner, was used to image the samples. The tips
Topometrix 1660 e) were made of silicon and mounted on a
antilever with a spring constant of ca. 40 N/m and resonance
Fig. 1. Contact angle dynamics for cornstarch films treated with SF6 plasma at dif-
ferent self-bias potentials and the same treatment time.

frequencies in the 100–150 kHz range. Scanning was carried out at
the free cantilever oscillation frequency and different amplitudes,
depending on the stability and contrast obtained. The amplitude
was set higher than 80 nm,  and the set point was fixed at 10–30%
of the free oscillation amplitude to guarantee that the microscope
was operating in intermittent contact mode. Samples were fixed
on double-sided adhesive tapes, and the AFM images of the upper
surface were obtained in air.

SEM micrograph at 3500× magnification of corn starch SF6-
treated films were obtained with JEOL JSM (model 6460 LV; Tokyo,
Japan) with a tungsten filament operated at 15 kV. The samples
were coated with 250 Å of gold.

Confocal Raman spectroscopy was performed in a Witec
alpha300 R Confocal Raman Microscope System operating with a
50 mW laser (� = 532 nm). Surface depth profiles were obtained at
different locations, and images of selected bands were compared.

3. Results

The films produced in this study were partially gelatinized, pre-
senting a granular region formed by the swollen granular envelopes
and a continuous region composed mainly of amylose molecules.
The granule surface presented a roughness that was  different from
that of the matrix, confirming that the granule surface can possess
a different molecular structure than the matrix (Thiré, Simão, &
Andrade, 2003).

Dynamic contact angles were measured for the cornstarch ther-
moplastic films before and after 100 s of SF6 plasma treatment at
different self bias potentials; the data obtained are presented in
Fig. 1. The cornstarch films presented an initial contact angle with
water of 45◦. After 600 s of wetting, the contact angle decreased
to almost zero. Surfaces treated with SF6 plasma at −20 V self-bias
presented an initial contact angle with a water droplet of 75◦, and
the measured angle also decreased continuously with time. After
SF6 plasma treatment at a self-bias of −100 V, the cornstarch film
surface presented the same initial contact angle observed for the
−20 V treatment, but the contact angle remained stable for almost
180 s. After 180 s, the measured angle decreased continuously with
time, reaching a value of 42.7◦ after 600 s.

The variation of the measured contact angle for the cornstarch

film was previously reported (Thiré et al., 2005) and was related
to the complete absorption of the water droplet into the polymeric
film. The difference in stability observed for the analyzed surface
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Table  1
Binding energies (eV) and the corresponding amount (%) in different samples.

Binding energy (eV) Amount (%) in different samples

−20 V SF6 plasma on a-C:H −100 V SF6 plasma on a-C:H −100 V SF6 plasma on starch films

285.4 (C–C sp2/sp3) 77.3 77.2 17.9
287.1  (C–CF ionic) 15.9 1
288.15  (O C–OR; O C–OH) – 

289.6  (C–F covalent) 6.8 
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ig. 2. Photoelectron spectroscopy spectra of SF6 a-C:H film and starch film after
lasma treatment at different voltages.

reatments was related either to chemical or to topographic effects
Bastos et al., 2009; Thiré et al., 2003).

X-ray photoelectron spectroscopy (XPS) measurements were
erformed on SF6-treated starch film surfaces and compared with
reviously reported results (Saad, Gaiani, Mullet, Scher, & Cuq,
011). XPS spectra of the amorphous carbon films treated at −20 V
nd −100 V for 60 s, and the XPS data of starch films treated at
100 V for 60 s are presented in Fig. 2. The data indicate that the SF6
lasma treatment leads to fluoride incorporation on the film surface
or all treatments. It can also be observed that sulfur incorporation
s strongly dependent on the plasma self-bias.

Detailed spectral analysis of the carbon XPS peak is presented
n Table 1. The spectrum indicates that, independent of treat-

ent bias, the C1s contribution remains, primarily composed of
hree mains peaks at 285.4 eV, 287.1 eV, and 289.6 eV. The peak
t 285.4 eV is related to sp2 and sp3 carbon, as presented in amor-
hous carbon films (Ayala, Costa, Prioli, & Freire, 2004). The peak at
87.1 eV (C–CF) may  be related to carbon atoms bonded to another
arbon in the neighborhood of a fluorine and amounts for 15.9% and
7.1% of the total intensity of the carbon peak for films treated with
20 V and −100 V self-bias, respectively. The band at 289.6 eV (C–F)

orresponds to the C1s binding energy of a carbon atom directly

onded to a fluorine atom (Bastos et al., 2009). This peak accounts
or 6.8% and 5.7% of the total peak intensity for films treated with
20 V and −100 V self-bias, respectively. Based on these results, it

an be said that the amount and type of carbon–fluoride bonding

able 2
inding energies (eV) and the corresponding amount (%) in different samples.

Binding energy (eV) Amount (%) in different samples

−20 V SF6 plasma on a-C:H −
679.5 – 

687.5  (C–F ionic) 64 4
689.0  (C–F covalent) 32 4
690.5  4 
7.1 41.1
– 25.1
5.7 15.9

did not vary significantly with self-bias, as observed for the C1s
chemical states. No peak was  observed with higher binding energy.

XPS chemical analysis was  also performed on cornstarch films
treated with SF6. The results, also presented in Table 1, indicate
a relative increase in the number of fluoride modified groups,
accounting for 41.1% for the C–CF and 15.9% for the C–F peak. The
peak at 288.15 eV can be attributed to O C–OR and O C–OH in the
glucose units (Thiré et al., 2003). The SF6-plasma treated films show
a decrease of the atomic abundance at 285.4 eV and an increase at
287.1 eV and 288.15 eV in comparison with the untreated starch
(Saad et al., 2011), which can be explained by the fact that the C O
and C–F bonds were preferentially formed in relation to the C–C
(285.4 eV) bonds.

Detailed analysis of the fluoride F1s XPS peak, shown in Table 2,
indicates the presence of three peaks at 687.5 eV, 689.0 eV and
690.5 eV. The intensity of the third peak accounts for less than 5% of
the total intensity for both treatments applied to amorphous carbon
substrates. The peak at 689 eV is related to C–F bonds in CF, CF2,
and –CF3 groups, while the peak at 687.5 eV is related to C4F bond-
ing as presented in graphite. It can be observed that, for surfaces
treated at −100 V, roughly the same amount of the first two species
was obtained. Additionally, the quantity of the species related to
the peak at 687.5 eV was double that of the peak at 689.0 eV for sur-
faces treated at −20 V, indicating that −20 V plasma did not provide
enough energy to induce strong bonding between C and F. Table 2
also presents the chemical analysis of the corn starch films after
plasma treatment with −100 V SF6 plasma for 60 s, and it can be
observed that the main contribution to the fluoride peak is due to
the C–F bonds on the CF, CF2, and –CF3 groups. The presence of a
peak at 679.5 eV that amounts for 6.8% of the total intensity is also
observed.

The chemical state of sulfur does not vary with treatment con-
dition, but it can be observed that four times more sulfur than
fluoride is incorporated into the surface of films treated at −20 V
compared to the ones treated at −100 V self-bias SF6 plasma. Sulfur
was hardly detected on corn starch films treated with −100 V SF6
plasma (Fig. 2). The carbon–fluorine interactions in a material can
range from ionic to covalent. Covalent carbon–fluorine bonds show
higher core electron binding energies than bonds that are more
ionic in character. The method of fluorination affects the nature
of the fluorine bonds. In the starch-treated films, ionic fluorine
is predominant because the C–OH terminal bonds are disrupted
and fluorine is incorporated, increasing the hydrophobicity of the

starch-treated films.

To evaluate the effect of treatment time on the surface
hydrophobicity, starch films were treated at −100 V self-bias for
different periods of time. These data are presented in Fig. 3. It can

100 V SF6 plasma on a-C:H −100 V SF6 plasma on starch films

– 6.8
8 3.5
8 89.7
4 0.0
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Fig. 3. (a) Initial contact angle with water of corn starch films submitted to SF6 plas-
mas  at −100 V; (b) contact angle dynamics measured for corn starch films treated
with SF6 plasma at −100 V and different treatment time.

6005004003002001000

50

60

70

80

90

100

110

120

130

C
on

ta
ct

 A
ng

le
 (0 )

Time (s)

 SF6 -100V 900s
 SF6 -150V 900s
 SF6 -240V 900s

Fig. 5. (a) SEM images of cornstarch film treated with SF6 plasma at −100 V and −200 V
plasma at −100 V and −200 V for 900 s, respectively.
Fig. 4. Contact angle dynamics for corn starch films treated with SF6 plasma at
different self-bias potentials and the same treatment time.

be observed that the initial contact angle varied logarithmically
with treatment time. Starch films that initially presented a con-
tact angle of 45◦ with water presented a contact angle of almost
120◦ after exposure of the surface to SF6 plasma for 600 s. It was
observed that the surface composition does not vary significantly
with the treatment time.

To guarantee the optimal plasma treatment conditions, treat-
ment time was fixed at 900 s, and the self-bias voltage was  varied
to include values higher than −100 V. These results are presented
in Fig. 4. Dynamic contact angle measurements indicate that the

surface treated with −100 V plasma for 900 s was reasonably sta-
ble to water contact; the contact angle varied from 120◦ to 110◦

after 600 s of contact between the droplet and the surface.

, respectively. (b) AFM phase contrast images of cornstarch film treated with SF6
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Fig. 6. Confocal Raman spectroscopy on SF6 plasma-treated films at −200 V for
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00  s: (a) typical Raman spectrum obtained for this film (b) difference spectrum
btained when graphic in (a) is subtracted from the starch film spectrum. This
pectrum was obtained mainly in the lighter areas in the image shown in the insert.

It can be observed that surface stability to water contact was
educed when self-biases higher than −100 V were employed, and
lthough the initial contact angle was roughly the same, the angle
aried significantly after the initial contact.

Surface modification induced by plasma treatment was  also con-
rmed by SEM as presented in Fig. 5a. A significant decrease in the
verall granular envelope morphology can be observed, indicat-
ng major surface changes. AFM phase contrast images of samples
reated at −100 V and −200 V for 900 s indicates the formation of a
tructure that resembles starch recrystallization (Fig. 5b).

Confocal Raman Spectroscopy was performed on the films
reated with SF6 plasma at −200 V for 900 s, and data are presented
n Fig. 6. Fig. 6(a) shows the typical Raman spectrum obtained for
hese films. Comparing this spectrum with that of partially gela-
inized starch films, a slight variation of the Raman bands can be
bserved for films treated with SF6 plasma. Fig. 6(b) presents the
ifference spectrum obtained when the graphic in Fig. 6(a) is sub-
racted from the starch film spectrum. The difference spectrum is
haracteristic of the D and G bands of amorphous carbon, indicat-
ng that plasma treatment can induce the restructuring of carbon,
ausing both reticulation and amorphization of the carbon skeleton.

. Discussion and conclusions

As reported by Olthoff, Van Brunt, Benck, and Roberts (1996),
F6 plasma is dominated by the presence of atomic fluoride species
esulting primarily from electron-impact excitation

 + F → F∗ + e → F + h� + e

ith minor contribution from the process of dissociative excitation

 + SFx → SFx−1 + F∗ + e

Laser plasma data analysis (Olthoff et al., 1996) showed sharp
eaks in the time averaged emission intensity close to both elec-
rode surfaces. This indicates a narrow sheath region and the
ormation of a double-layer close to the cathode surface, leading to

n enhancement of the ionization rate in these regions. Addition-
lly, an increase in SF6 dissociation was observed to be related to an
ncrease in the plasma potential. Therefore, the incorporation of dif-
erent species can be found, depending on plasma self-bias. In this
lymers 87 (2012) 2217– 2222 2221

study we  found that at higher self bias voltages, the dissociation rate
increased and the density and energy of F* species colliding with the
starch film surface was also enhanced. The energy was  insufficient
to fuse the film surface when self-biases lower than −100 V were
employed. This is indicated by the similar global surface topogra-
phy before and after plasma etching. Plasma treatment introduced
a greater density of atomic excited fluoride related to SFx species
to the surface when compared to lower self bias treatments.

It can be inferred that the stabilization of the contact angle
for starch films treated with SF6 plasma for times greater than
600 s might be related to the cross-linking among d-glucose units
of starch, in addition to fluoride incorporation in the film. The
cross-linking might prevent the reorientation of the surface starch
molecules, and the aging process would be retarded. The reactions
of starch in the SF6 plasma zone should be similar to those pro-
posed for cross-linking by an argon glow discharge plasma (Zou,
Liu, & Eliasson, 2004). The helical structure of native starch leads
to hydrophobic channels in which polarizable organic molecules
or charged species can be absorbed. Fluoride species were eas-
ily absorbed into the helical channels, where charge and energy
were transferred to the hydrogen atom of the C-2 hydroxyl group
through collision of fluoride species with this group. At the same
time, the effect of the plasma electric field should induce a further
polarization of the O–H bonds of some hydroxyl groups, causing
the covalent bond to become electrovalent to some degree. With
the energy transferred by F* via another collision, two kinds of OH
groups have a high probability to dehydrate, causing the crosslink-
ing of two �-d-glucose units.

Strong plasma treatment can also lead to a stronger reorienta-
tion of the surface chains with the formation of covalent bonds,
as confirmed by Raman spectroscopy where the formation of the
carbon D and G Raman bands were clearly assigned.
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