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Abstract The objective of this study was to assess the effect of selected pesticides [herbicides

(metribuzin and glyphosate), insecticides (imidacloprid and thiamethoxam) and fungicides (hexac-

onazole, metalaxyl and kitazin)] at recommended and higher dose rates on plant growth promoting

activities of the Mesorhizobium sp. isolated from chickpea-nodules. A total of 50 rhizobial strains

recovered from the nodules of chickpea root systems were identified following morphological, bio-

chemical and host-specificity tests and tested for pesticide-tolerance. Among these strains, the Mes-

orhizobium sp. strain MRC4 was specifically selected due to the highest tolerance levels for all

selected pesticides and the maximum production of plant growth promoting substances. Strain

MRC4 produced indole acetic acid (44 lg ml�1), siderophores [salicylic acid (35 lg ml�1) and

2,3-dihydroxy benzoic acid (19 lg ml�1)], exo-polysaccharides (21 lg ml�1), HCN and ammonia.

Under pesticide-stress, pesticide-concentration dependent progressive-decline in all plant growth

promoting traits of the Mesorhizobium sp. strain MRC4 exposed was observed except for exo-poly-

saccharides which consistently increased with exceeding the concentration of each pesticide from

recommended dose. For instance, hexaconazole at three times the recommended dose elicited the

maximum stress on siderophore-biosynthesis by the Mesorhizobium sp. strain MRC4 and decreased
71 2702945.

iffmail.com (M. Ahemad),

).

y. Production and hosting by

Saud University.

lsevier

mailto:muneesmicro@rediffmail.com
mailto:khanms17@rediffmail.com
http://dx.doi.org/10.1016/j.jssas.2011.10.001
http://dx.doi.org/10.1016/j.jssas.2011.10.001
http://dx.doi.org/10.1016/j.jssas.2011.10.001
http://www.sciencedirect.com/science/journal/1658077X


64 M. Ahemad, M.S. Khan
salicylic acid and DHBA by 40% and 47%, respectively and the greatest stimulatory effect on exo-

polysaccharides secretion was shown by imidacloprid which stimulated the Mesorhizobium sp.

strain MRC4 to secrete EPS by 38%, compared to control. Generally, the maximum toxicity to

plant growth promoting traits of Mesorhizobium was shown by glyphosate, thiamethoxam and hex-

aconazole, at three times the recommended rate among herbicides, insecticides and fungicides,

respectively. This study revealed an additional aspect of the toxicological mechanisms of the pesti-

cides through which they suppress the plant growth.

ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Pulses are important source of dietary proteins, and have un-

ique property of maintaining and restoring soil fertility
through biological N2 fixation (BNF) as well as conserving
and improving physical properties of soil by virtue of their

deep root system and leaf fall. Pulse crops add a reasonable
quantity of nitrogen (upto 30 Kg N/ha) to soils. Of the differ-
ent legumes grown around the world, chickpea [Cicer arieti-
num (L.)] is one of the most widely grown legumes. In India,

chickpea occupies 7.1 million ha with a production of 5.75 mil-
lion tones, accounting for 31% and 31% of total pulse area
and production, respectively (ICAR, 2006). Chickpea replen-

ish nitrogen in soils by forming specific symbiosis with its cog-
nate N2 fixing bacterium, Mesorhizobium that convert
atmospheric N2 to ammonia and other compounds and trans-

port it to the growing plants (Wani et al., 2008). The efficiency
of this approach, however, depends on principally maximizing
symbiotic N2 fixation (SNF) and plant yield to resupply organ-
ic and inorganic nitrogen and other nutrients to soils. Rhizo-

bial inoculants as bio-fertilizers are therefore, applied to
soils/seeds of legumes to ensure effective nodulation and sub-
sequent N2 fixation and consecutively, to increase the nitrogen

pool of soils (Dudeja and Singh, 2008).
The inoculants are often used together with agrochemicals,

which besides containing essential nutrients also contain contam-

inants and toxic elements. The exposure of these chemicals to
field-grown plants could be either intentional (e.g. by spraying
the legumes with pesticides) or through residues remaining from

previous applications (Khan et al., 2004).Of these chemicals, pes-
ticides and theirmicrobially degraded products interactwith soils
and rhizosphere microorganisms including rhizobia and cause
DNA, protein, oxidative or membrane damage (Pham et al.,

2004). In addition, the common use of pesticides in agricultural
practices has been shown to affectN2 fixation adversely, either di-
rectly by affecting the rhizobia (Mallik and Tesfai, 1985; Ander-

son et al., 2004) or disrupting the signaling between legume-
derived phytochemicals (luteolin, apigenin) and Rhizobium Nod
D receptors (Fox et al., 2007) or indirectly by reducing photosyn-

thate allocation to the nodules forN2 fixation (Sprout et al., 1992;
Koopman et al., 1995; Datta et al., 2009) or by restricting root
growth and hence reduce the number of sites available for infec-

tion (Eberbach and Douglas, 1991). Additionally, pesticides that
persist in soils may have a long-lasting impact on rhizobial sur-
vival and function (Eberbach and Douglas, 1989; Mårtensson
and Nilsson, 1989; Eliason et al., 2004).

An alternative to overcome the deleterious effects of pesti-
cides on plants could be the treatment of seeds with rhizobia
as a bio-inoculant which displays a wide range of tolerance to

pesticides and exhibit PGP activities including their inherent
N2-fixing attribute under pesticide-stress (Wani et al., 2005;
Ahemad and Khan, 2010). Therefore, identifying rhizobia pos-
sessing multiple plant growth promoting activities and exhibit-
ing pesticide tolerance will be useful in optimizing the yields of
legumes in stressed production systems (Ahemad and Khan,

2011a).
Studies on the effect of various pesticides have largely, been

focused on changes in populations of soil microorganisms and

the effect of these agrochemicals on plant growth promoting
(PGP) activities of rhizobia remains uninvestigated. The pres-
ent study was therefore, designed to evaluate the effects of her-

bicides (metribuzin and glyphosate), insecticides (imidacloprid
and thiamethoxam) and fungicides (hexaconazole, metalaxyl
and kitazin) at recommended, double and three times the rec-

ommended field rates on the survival and in vitro PGP activi-
ties of Mesorhizobium sp.
2. Materials and methods

2.1. Rhizobial strains and pesticide-tolerance

A total of 50 rhizobial strains were recovered from the root nod-
ules of chickpea (C. arietinum) plants grown in pesticide-con-

taminated agricultural fields of the Faculty of Agricultural
Sciences, Aligarh Muslim University, Aligarh (27�290 latitude
and 72�290 longitude), India using yeast extract mannitol

(YEM)medium (g l�1: mannitol 10;K2HPO4 0.5;MgSO4Æ7H2O
0.2; NaCl 0.1; yeast extract 1; CaCO3 1 and pH 7) (Vincent,
1970). The strains were maintained on the same medium until

use. The rhizobial strains were referred to as rhizobia following
Bergey’s Manual of Determinative Bacteriology (Holt et al.,
1994) and identified as mesorhizobia through host specificity
test (plant infection test) following Somasegaran and Hoben

(1994). The strains were tested for their sensitivity/tolerance to
chemically and functionally diverse pesticides (metribuzin, gly-
phosate, imidacloprid, thiamethoxam, hexaconazole, metalaxyl

and kitazin) by agar plate dilution method using minimal salt
agar medium (g l�1: KH2PO4 1; K2HPO4 1; NH4NO3 1;
MgSO4Æ7H2O 0.2; CaCl2Æ2H2O 0.02; FeSO4Æ7H2O 0.01 and

pH 6.5). The freshly prepared agar plates were amended sepa-
rately with increasing concentrations of pesticides (0 to
3200 lg ml�1; at a two-fold dilution interval). Later, plates were
spot inoculated with 10 ll of 108 cells ml�1 mesorhizobial

strains. Plates were incubated at 28 ± 2 �C for 7 days and the
highest concentration of each pesticide supportingmesorhizobi-
al growth was defined as the maximum tolerance level (MTL).
2.2. Growth patterns of mesorhizobia

For the determination of growth kinetics, 0.1 ml of the culture
(108 cells ml�1) of freshly grown mesorhizobia were inoculated



Table 1 Pesticides used in the present study.

Category Common

name

Grade

(purity)

Chemical

name

Chemical

family

Recommended

dose

Source

Herbicides Metribuzin Commercial

(70% w/w)

4-Amino-6-tert-butyl-4,

5-dihydro-3-methylthio-

1,2,4-triazin-5-one

Triazinone 850 lg kg�1 Singhal Pesticides,

Mumbai, India

Glyphosate Commercial

(71% w/w)

N-(Phosphonomethyl)glycine Organophosphate 1444 lg kg�1 Excel Crop

Core LTD.,

Mumbai, India

Insecticides Imidacloprid Technical

(100% EC)

(E)-1-(6-Chloro-3-pyridylmethyl)-

N-nitroimidazolidin-2-ylideneamine

Pyridylmethylamine 100 lg l�1 Parijat

Agrochemicals,

New Delhi, India

Thiamethoxam Technical

(100% w/w)

(EZ)-3-(2-Chloro-1,3-thiazol-

5-ylmethyl)-5-methyl-1,3,

5-oxadiazinan-4-ylidene(nitro)amine

Thiazole 25 lg l�1 Parijat

Agrochemicals,

New Delhi, India

Fungicides Hexaconazole Technical

(100%w/w)

(RS)-2-(2,4-Dichlorophenyl)-

1-(1H-1,2,4-triazol-1-yl)hexan-2-ol

Conazole 40 lg kg-1 Parijat

Agrochemicals,

New Delhi, India

Metalaxyl Commercial

(35% w/w)

Methyl N-(methoxyacetyl)-N-

(2,6-xylyl)-DL-alaninate

Anilide 1500 lg kg�1 Tropical

Agrosystem Ltd.,

Chennai, India

Kitazin Commercial

(48% EC)

O,O-Bis(1-methylethyl)

S-phenylmethyl phosphorothioate

Organophosphate 96 lg kg�1 P.I. Industries Ltd.,

Rajasthan, India
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into 10 ml mineral salt medium containing 0 (control), the rec-

ommended dose (1·), two times the recommended dose (2·)
and three times the recommended dose (3·) of each pesticide
(Table 1) as the sole source of carbon and nitrogen. The cul-
tures were incubated at 28 ± 2 �C on rotary shaker. At regular

time intervals, the optical density at 540 nm was measured
using a spectrophotometer (Spectronic 20, USA). The growth
curves were obtained by plotting the optical density as a func-

tion of time.

2.3. Quantitative assay of indole acetic acid

Indole-3-acetic acid (IAA) synthesized by mesorhizobial
strains was quantitatively evaluated by the method of Gordon

and Weber (1951), later modified by Brick et al. (1991). For
this activity, the mesorhizobial strains were grown in Luria
Bertani broth (g l�1: tryptone 10; yeast extract 5; NaCl 10
and pH 7.5). Luria Bertani (LB) broth (100 ml) having a fixed

concentration of tryptophan (100 lg ml�1) and supplemented
with 0, 1·, 2· and 3· of each pesticide was inoculated with
0.1 ml culture (108 cells ml�1) of mesorhizobial strains and

incubated for 7 days at 28±2 �C with shaking at 125 rpm.
After seven days, a 5 ml culture from each treatment was cen-
trifuged (9000g) for 15 min and an aliquot of 2 ml supernatant

was mixed with 100 ll of orthophosphoric acid and 4 ml of
Salkowsky reagent (2% 0.5 M FeCl3 in 35% per-chloric acid)
and incubated at 28 ± 2 �C in darkness for 1 h. The absor-
bance of developed pink color was read at 530 nm. The IAA

concentration in the supernatant was determined using a cali-
bration curve of pure IAA as a standard.

2.4. Qualitative and quantitative estimation of siderophores

The mesorhizobial strains were further tested for siderophore

production using Chrome Azurol S (CAS) agar medium fol-
lowing the method of Alexander and Zuberer (1991). Chrome
Azurol S agar plates supplemented with 0, 1·, 2· and 3· of

each pesticide were prepared separately and divided into equal
sectors and spot inoculated with 10 ll of 108 cells ml�1 and

incubated at 28 ± 2 �C for 5 days. Development of yellow or-
ange halo around the bacterial growth was considered as posi-
tive test for siderophores-biosynthesis. The production of
siderophores by the test strains was further detected quantita-

tively using Modi medium (K2HPO4 0.05%; MgSO4 0.04%;
NaCl 0.01%; mannitol 1%; glutamine 0.1% and NH4NO3

0.1%) (Reeves et al., 1983). Modi medium amended with 0,

·, 2· and 3· of each pesticide, was inoculated with
108 cells ml�1 of bacterial cultures and incubated at
28 ± 2 �C for 5 days. Catechol type phenolates were measured

on ethyl acetate extracts of the culture supernatant using a
modification of the ferric chloride-ferricyanide reagent of
Hathway (Reeves et al., 1983). Ethyl acetate extracts were pre-

pared by extracting 20 ml of supernatant twice with an equal
volume of the solvent at pH 2. Hathway’s reagent was pre-
pared by adding one milliliter of 0.1 M ferric chloride in
0.1 N HCl to 100 ml of distilled water, and to this, was added

1 ml of 0.1 M potassium ferricyanide (Reeves et al., 1983). For
the assay, one volume of the reagent was added to one volume
of the sample and the absorbance was determined at 560 nm

for salicylic acid (SA) with sodium salicylate as a standard
and at 700 nm for dihydroxy phenols with 2,3-dihydroxy ben-
zoic acid (DHBA) as a standard.

2.5. Assay of hydrogen cyanide (HCN), ammonia and exo-

polysaccharides

Hydrogen cyanide production by mesorhizobial strains was
detected by the method of Bakker and Schipper (1987). For
HCN production, all mesorhizobial strains were grown on

an HCN induction medium (g l�1: tryptic soy broth 30; glycine
4.4 and agar 15) supplemented with 0, 1·, 2· and 3· of each
pesticide at 28±2 �C for 4 days. Further, 100 ll of

108 cells ml�1 of each mesorhizobial strain was placed in the
center of the petri plates. A disk of Whatman filter paper
No. 1 dipped in 0.5% picric acid and 2% Na2CO3 was placed

at the lid of the petri plates. Plates were sealed with parafilm.
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After 4 days incubation at 28 ± 2 �C, an orange brown color

of the paper indicating HCN production was observed. For
ammonia assessment, the mesorhizobial strains were grown
in peptone water with 0, 1·, 2· and 3· of each pesticide and
incubated at 28±2 �C for 4 days. One milliliter of Nessler re-

agent [potassium iodide 50 g; distilled water (ammonia free)
35 ml; add saturated aqueous solution of mercuric chloride un-
til a slight precipitate persists; potassium hydroxide 400 ml; di-

lute the solution to 1000 ml with ammonia free distilled water;
allow it to stand for 1 week, decant supernatant liquid and
store in a tightly capped amber bottle] was added to each tube

and the development of yellow color indicating ammonia pro-
duction was recorded following the method of Dye (1962). The
exo-polysaccharide (EPS) produced by the mesorhizobial

strains was determined as suggested by Mody et al. (1989).
For this, the bacterial strains were grown in 100 ml capacity
flasks containing basal medium [Luria Bertani (LB) broth
(g l�1: tryptone 10; yeast extract 5; NaCl 10 and pH 7.5)] sup-

plemented with 5% sucrose and treated with 0, 1·, 2· and 3·
of each pesticide. Inoculated flasks were incubated for 5 days
at 28 ± 2 �C on rotary shaker (100 rpm). Culture broth was

spun (5433 g) for 30 min and EPS was extracted by adding
three volumes of chilled acetone (CH3COCH3) to one volume
of supernatant. The precipitated EPS was repeatedly washed

three times alternately with distilled water and acetone, trans-
ferred to a filter paper and weighed after overnight drying at
room temperature.

Each individual experiment was repeated three times.

2.6. Statistical analysis

The experiments were conducted in three replicates using the
same treatments. The difference among treatment means was
compared by high range statistical domain (HSD) using Tukey

test (p � 0.05).

3. Results

3.1. Characterization, identification and pesticide-tolerance

In the present study, a total of 50 rhizobial strains recovered

from the nodules of chickpea root systems were identified on
the basis of morphological, biochemical and host-specificity
tests for nodulation in sterile soils and monitored further for

pesticide-tolerance. Among these strains, the Mesorhizobium
sp. strain MRC4 was specifically selected due to the highest
MTL for all selected herbicides, insecticides and fungicides
(Fig. 1, Table 2) and maximum production of PGP substances

(siderophores, IAA, EPS, HCN and ammonia) (Table 3).

3.2. Siderophore production under pesticide-stress

Production of siderophores by the pesticide-tolerant the Mes-

orhizobium sp. strain MRC4 was determined on CAS agar
plates supplemented with varying concentrations of the pesti-
cides (Table 3). TheMesorhizobium sp. strain MRC4 displayed

siderophores-producing potential by forming an orange zone
of 12 mm size on pesticide free CAS agar medium. In general,
addition of pesticides to the medium significantly (p � 0.05)

reduced the siderophore-zone formed by pure culture of
the Mesorhizobium sp. strain MRC4. At recommended rate,
the effect of all the pesticides was marginally inhibitory to
siderophore-zone except fungicide, hexaconazole which reduced

significantly (p � 0.05) the siderophore-zone to the highest
degree by 25% over control. In addition, the degree of zone-
inhibition was not co-related with the concentration of pesti-
cides. However, maximum decline was observed at the highest

tested dose of each pesticide (Table 3).
Furthermore, the ethyl acetate extraction from culture

supernatant of the Mesorhizobium sp. strain MRC4 grown in

the Modi medium devoid of pesticides yielded SA and DHBA
type siderophores significantly (p � 0.05) (Table 3). Pesticide-
concentration dependent progressive decline for both iron-

binding molecules was observed. Nevertheless, degree of pesti-
cide-mediated decrease for SA and DHBA differed from the
type and functional group of each pesticide. Within herbicide

group, glyphosate showed the highest toxicity to the synthesis
of SA and DHBA. For instance, glyphosate at 3· decreased
significantly (p � 0.05) SA and DHBA secretion by 17% and
32%, respectively, compared to the control. Among insecti-

cides, thiamethoxam at 3· showed the most deleterious effect
on SA and DHBA synthesis which significantly (p � 0.05) de-
creased by 34% and 58%, respectively, over control in the

presence of the same concentration of thiamethoxam. Among
fungicides, hexaconazole at three times the recommended dose
elicited maximum stress on siderophore-biosynthesis by the

Mesorhizobium sp. strain MRC4 and decreased significantly
(p � 0.05) SA and DHBA by 40% and 47%, respectively,
above control. Among all pesticides, hexaconazole and thia-
methoxam at three times of the recommended dose in general,

displayed the most toxic effect on SA and DHBA synthesis,
respectively (Table 3).

3.3. Indole acetic acid production under pesticide-stress

The effect of three concentrations of each pesticide on IAA

synthesized by theMesorhizobium sp. strain MRC4 varied con-
siderably (Table 3). In the medium unsupplied with pesticides,
the Mesorhizobium sp. strain MRC4 produced significant

amount (p � 0.05) of IAA (44 lg ml�1). In contrast, the quan-
tity of IAA released by the Mesorhizobium sp. strain MRC4,
however, decreased progressively with graded-increment of
each pesticide in LB broth. Of herbicides, insecticides and

fungicides, most severe effect on IAA synthesis was evident
in the presence of glyphosate, imidacloprid and hexaconazole,
respectively. For example, glyphosate decreased IAA signifi-

cantly (p � 0.05) by 14%, 18% and 25%, imidacloprid by
9%, 16% and 20% and hexaconazole by 36%, 43% and
52% at 1·, 2· and 3·, respectively. While comparing the con-

centrations and types of pesticides, hexaconazole in general had
the most toxic effect on IAA biosynthesis by the Mesorhizobium
sp. strain MRC4 (Table 3).

3.4. Production of exo-polysaccharides, HCN and ammonia

under pesticide stress

Unlike other PGP substances produced by the Mesorhizobium
sp. strain MRC4 exposed to pesticidal stress, the amount of
EPS synthesized increased significantly (p � 0.05) with gradual

addition of each pesticide in culture medium. Among all tested
pesticides, the greatest stimulatory effect on EPS secretion was
shown by imidacloprid which stimulated significantly

(p � 0.05) the Mesorhizobium sp. strain MRC4 to secrete
EPS by 38% compared to control (Table 3). Interestingly,
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Figure 1 Impact of the recommended (open circle), double (inverted triangle) and three times (open upright triangle) the recommended

rates of metribuzin (a), glyphosate (b), imidacloprid (c), thiamethoxam (d), hexaconazole (e), metalaxyl (f) and kitazin (g) on the

Mesorhizobium strain MRC4 grown in minimal salt agar medium.
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Table 2 Morphological and biochemical characteristics of the

Mesorhizobium sp. strain MRC4.

Characteristics Strain MRC4

Morphology

Gram reaction �
Shape rods

Biochemical reactions

Citrate utilization �
Indole +

Methyl red +

Nitrate reduction +

Oxidase �
Voges Proskaur +

Carbohydrate utilization

Dextrose �
Lactose �
Mannitol +

Sucrose �

Hydrolysis

Starch +

Gelatin �

Maximum tolerance level (MTL) to

Metribuzin 3200 lg ml�1

Glyphosate 3000 lg ml�1

Imidacloprid 2400 lg ml�1

Thiamethoxam 2800 lg ml�1

Hexaconazole 2200 lg ml�1

Metalaxyl 2800 lg ml�1

Kitazin 3200 lg ml�1

‘+’ Indicates positive and ‘�’ indicates negative reactions.
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the three concentrations of each herbicide, insecticide and fun-
gicide did not affect negatively HCN and ammonia synthesis
by the Mesorhizobium sp. strain MRC4 (Table 3).

4. Discussion

In our study, the Mesorhizobium sp. strain MRC4 portrayed
abnormally higher tolerance to selected pesticides of various
chemical groups. The MTL values of pesticides ranged from

2200 to 3200 lg ml�1. Tolerance or resistance in microorgan-
isms against pesticides is a complex process which is regulated
both at physiological/genetic level of microorganism. And

hence, the microorganisms that developed resistance to pesti-
cides are frequently capable of biodegrading them (Kumar
et al., 1996; Ortiz-Hernández and Sánchez-Salinas, 2010).
The temporary resistance (tolerance) against pesticides in gen-

eral, is attributed to physiological changes that induce the
microbial metabolism for the formation of a new metabolic
pathway to bypass a biochemical reaction inhibited by a spe-

cific pesticide (Bellinaso et al., 2003). Permanent resistance,
on the other hand, depends upon genetic modifications, inher-
ited by the subsequent generation of microbes (Johnsen et al.,

2001; Herman et al., 2005).
In similar studies, Gram negative bacteria have also shown

tolerance to other pesticides. For instance, the maximum toler-

ant concentrations of different organophosphorus pesticides
for both Pseudomonas and Flavobacterium species isolated
from polluted sites were 250, 4000 and 8000 lg ml�1 of guthi-
on, methyl parathion and dimethoate, respectively (Nazarian
and Mousawi, 2005). Likewise, both Rhizobium sp. specific

to chickpea and Rhizobium sp. specific to greengram tolerated
aldrin upto 2000 lg ml�1 (Juneja and Dogra, 1978). Moreover,
Boldt and Jacobsen (1998) also reported a variation in the
MTL of Pseudomonas strains to sulfonylurea herbicides (e.g.

metsulfuron methyl, chlorsulfuron and thifensulfuron methyl).
Among the herbicides, metsulfuron methyl was more toxic
compared to other herbicides and order of toxicity was: met-

sulfuron methyl > chlorsulfuron > thifensulfuron methyl.
The variation in tolerance to pesticide by rhizobacteria could
probably be due to the fact that rhizobacteria adopt different

strategies to overcome the toxic effects of pesticides and such
mechanisms included biodegradation (Yang and Lee, 2008)
and enzymatic hydrolysis (Dumas et al., 1989; Herman et al.,

2005) of pesticide. For instance, organophosphorus hydrolase
(OPH), an enzyme isolated from Pseudomonas diminuta MG
and Flavobacterium sp. strain ATCC 27551 possesses the abil-
ity to hydrolyze different organophosphorus insecticides (Du-

mas et al., 1989). Hydrolysis of organophosphorus compounds
by OPH dramatically reduced their toxicity (DiSoudi et al.,
1999). Similarly, dicamba monooxygenase (DMO), an enzyme

extracted from Pseudomonas maltophilia strain DI-6, com-
pletely inactivated the herbicidal activity of dicamba (Herman
et al., 2005). Our study however, showed that the tolerance lev-

els of the mesorhizobial strain against the selected pesticides
was considerably high.

In the present study, the Mesorhizobium sp. strain MRC4
exhibited plant growth promoting traits like production of

siderophores, phytohormone and exo-polysaccharides in sub-
stantial amount in both the absence and presence of pesticide-
stress. In the aerobic environment, iron occurs principally as

Fe3+ and is likely to form insoluble hydroxides and oxyhy-
droxides, thus making it generally inaccessible to microorgan-
isms. To acquire sufficient iron, the most commonly found

strategy in bacteria is the secretion of siderophores, low-molec-
ular mass iron chelators with high association constants for
complexing iron. Thus, siderophores act as solubilizing agents

for iron from minerals or organic compounds under conditions
of iron limitation (Miethke and Marahiel, 2007).

The phytohormone, IAA synthesized from transamination
and decarboxylation of tryptophan, primarily in young leaves

and seeds, controls cell division, root initiation, phototropism,
geotropism and apical dominance in plants (Khan et al., 2010).
In general, the IAA produced by rhizobacteria promotes root

growth by directly stimulating plant cell elongation or cell divi-
sion. A low level of IAA produced by rhizosphere bacteria pro-
motes primary root elongation whereas a high level of IAA

stimulates lateral and adventitious root formation but inhibit
primary root growth (Ma et al., 2009).

The EPS helps to protect bacteria against desiccation,

phagocytosis and phage attack besides supporting N2 fixation
by preventing high oxygen tension (Tank and Saraf, 2003).
Owing to abundance, highly charged nature, and extracellular
location, EPS also plays an important role in the attachment of

bacterial cells to varied surfaces; osmoregulation and ion
transport (Spaink, 2000). In addition, the role of EPS in le-
gume–Rhizobium interaction (symbiosis) is well reported. For

example, Rhizobium leguminosarum has been shown to pro-
duce large amounts of acidic EPS which is essentially required
for nodule invasion and, therefore, for successful

nitrogen-fixing symbioses with many legumes like, Medicago,
Pisum, Trifolium and Vicia spp. (Becker and Pühler, 1998; Per-



Table 3 Plant growth promoting activities of the Mesorhizobium strain MRC4 in the presence of varying concentrations of pesticides.

Pesticides Dose rate (lg l�1) Plant growth promoting activities

Siderophores IAAD(lg ml�1) EPSF(lg ml�1) Ammonia HCNG

Zone on CASA agar (mm) SAB(lg ml�1) DHBAC(lg ml�1) 100TE

Metribuzin 850 11 ± 1b 33 ± 1.4b 18 ± 1.5ab 41 ± 2.1ab 22 ± 2.5e + +

1700 10 ± 2bc 32 ± 1.3bc 17 ± 1.1b 39 ± 1.9b 24 ± 2.2d + +

2550 10 ± 2bc 30 ± 1.1d 15 ± 1.4d 37 ± 1.7c 27 ± 1.8b + +

Glyphosate 1444 12 ± 1a 32 ± 1.6bc 16 ± 1.2cd 38 ± 2.3bc 23 ± 1.6e + +

2888 11 ± 1b 31 ± 1.2c 15 ± 1.5d 36 ± 2.3d 25 ± 2.3c + +

4332 11 ± 1b 29 ± 1.3ef 13 ± 1.3f 33 ± 1.5f 26 ± 2.6b + +

Imidacloprid 100 12 ± 2a 29 ± 1.5ef 18 ± 1.2ab 40 ± 1.2b 26 ± 1.7b + +

200 11 ± 1b 27 ± 1.5gh 15 ± 1.3d 37 ± 1.5c 28 ± 2.5ab + +

300 11 ± 1b 23 ± 1.0kl 15 ± 1.5d 35 ± 1.5d 29 ± 2,3a + +

Thiamethoxam 25 12 ± 1a 33 ± 1.4b 13 ± 1.2f 42 ± 2.0ab 24 ± 2.1d + +

50 12 ± 1a 26 ± 1.3h 10 ± 1.1hi 39 ± 1.6b 25 ± 1.9c + +

75 12 ± 1a 23 ± 1.4kl 8 ± 1.3i 36 ± 1.2d 27 ± 2.4b + +

Hexaconazole 40 9 ± 1cd 26 ± 1.1h 14 ± 1.4ef 28 ± 2.8h 23 ± 1.5e + +

80 8 ± 1d 24 ± 1.3jk 12 ± 1.5g 25 ± 1.9i 26 ± 2.3b + +

120 8 ± 2d 21 ± 1.2l 10 ± 1.2hi 21 ± 1.5j 28 ± 1.3ab + +

Metalaxyl 1500 12 ± 1a 28 ± 1.2f 16 ± 1.4cd 34 ± 2.0ef 23 ± 1.5e + +

3000 10 ± 1bc 25 ± 1.2i 15 ± 1.2d 31 ± 2.3g 25 ± 1.6c + +

4500 9 ± 2cd 22 ± 1.1l 14 ± 1.4ef 29 ± 2.2h 26 ± 1.4b + +

Kitazin 96 12 ± 1a 31 ± 1.2c 17 ± 1.3b 37 ± 2.5c 22 ± 1.6e + +

192 10 ± 2bc 28 ± 1.3f 15 ± 1.4d 35 ± 2.1d 24 ± 2.4d + +

288 9 ± 2cd 26 ± 1.1h 14 ± 1.3ef 32 ± 1.8g 27 ± 2.2b + +

Control (without pesticide) 12 ± 1a 35 ± 1.5a 19 ± 1.7a 44 ± 2.4a 21 ± 2.3f + +

F value (treatment) 57.9 345.6 285.5 459.2 619.4 � �
Values indicate mean of three replicates. Mean values (±S.D.) followed by different letters are significantly different within a row or column at p � 0.05 according to Tukey test. ‘+’ Indicates

positive reaction.
A Chrome azurol S agar.
B Salicylic acid.
C 2,3-Dihydroxy benzoic acid.
D Indole acetic acid.
E Tryptophan concentration (lg ml�1).
F Exopolysaccharides.
G Hydrogen cyanide.
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ret et al., 2000). However, EPS-deficient mutants of rhizobia,

R. leguminosarum for example, fail to nodulate their host
plants (Spaink, 2000) or induce formation of ineffective nod-
ules (Rolfe et al., 1996; van Workum et al., 1997). Rhizobacte-
ria protects the growing plants from pathogen attack by

directly killing parasites by producing HCN (Kang et al.,
2010). In agreement to our report, Devi et al. (2007) also re-
ported the excretion of HCN by the rhizobacterial strains into

the rhizosphere. The ammonia released by the rhizobacterial
strain plays a signaling role in the interaction between rhizo-
bacteria and plants and also increase the glutamine synthetase

activity (Chitra et al., 2002).
Each PGP trait of bacteria is the result of sequentialmetabolic

reactions mediated by various specific functional proteins (en-

zymes) along thedefinedmetabolic pathway.Themetabolic path-
ways for any specific PGP trait may be more than one depending
upon the typeof thePGP substances andbacterial genera/species.
Pesticides adversely affect protein synthesis and themetabolic en-

zymes (Kapoor and Arora, 1996; Boldt and Jacobsen, 1998).
Therefore, it seems probable that pesticides employed in this
studymight have inhibited the functioning of the enzymes partic-

ipating in different metabolic pathways of PGP traits (SA,
DHBA and IAA) in theMesorhizobium sp. strainMRC4. There-
fore, SA, DHBA and IAA production declined under pesticide-

stress. Since In contrast to other PGP traits in this study, the
amount of EPS secreted by the Mesorhizobium sp. strain
MRC4 increased progressively with gradual increment in pesti-
cide-concentrations. The reason for this abnormal trend is un-

known. Nevertheless, the increase in EPS following increased
concentration of each pesticide suggested that the pesticides
might have acted as inducers of EPS biosynthesis. EPS provides

protection to soil bacteria against environmental stresses (Tank
and Saraf, 2003); hence it is possible that rhizobia secreted more
EPS under pesticide-stress to shield themselves against these

chemicals in a proportion to the pesticide-concentrations. Fur-
ther, HCN and ammonia act as signaling molecules. Moreover,
pesticides employed in this study might have induced mesorhizo-

bial metabolism of HCN and ammonia production to form new
metabolic pathways to bypass biochemical pathways inhibited by
pesticides (Bellinaso et al., 2003). Therefore, HCN and ammonia
prduction by Mesorhizobium sp. strain MRC4 remained unaf-

fected under pesticide-stress.
Pesticides vary in their toxicology to organisms owing to

their functional groups and a great degree of variability occurs

even among pesticides of similar functional groups (Ahemad
and Khan, 2011b). Most of the pesticides in our study have dif-
ferent functions groups. In our study, degree of inhibition of

phyto-beneficial traits ofMesorhizobium sp. strainMRC4under
pesticide stress hence differs from one pesticide to another.
Additionally, pesticides not only damage structural proteins

essential for the growth of the organism but also responsible
for geno-toxicity (Pham et al., 2004) and eventually leads to
the decreased functioning and survival of organisms exposed
to high concentration of pesticides (Kumar et al., 2010).

5. Conclusion

This study has shown that the pesticides not only affect the
growth of rhizobia but also have an adverse impact on their
PGP activities. These findings evidently revealed an additional

aspect of the toxicological mechanisms of the pesticides
through which they decline the plant growth. The study
showed that a careful screening of pesticides should be carried

out in laboratory before their field application. Further re-
search on pesticide-rhizobacteria interaction at molecular level
is needed to identify which enzymes or genes are affected in
rhizobacteria under pesticide-stress.
Acknowledgment

Authors thankfully acknowledge the financial assistance from
University Grants Commission (UGC), New Delhi, India.

References

Ahemad, M., Khan, M.S., 2010. Comparative toxicity of selected

insecticides to pea plants and growth promotion in response to

insecticide-tolerant and plant growth promoting Rhizobium legu-

minosarum. Crop Protection 29, 325–329.

Ahemad, M., Khan, M.S., 2011a. Plant growth promoting fungicide-

tolerant rhizobium improves growth and symbiotic characteristics

of lentil (Lens esculentus) in fungicide-applied soil. J. Plant Growth

Regul.. doi:10.1007/s00344-011-9195-y.

Ahemad, M., Khan, M.S., 2011b. Pesticide interactions with soil

microflora: importance in bioremediation. In: Ahmad, I., Ahmad,

F., Pichtel, J. (Eds.), Microbes and Microbial Technology: Agri-

cultural and Environmental Applications. Springer, New York, pp.

393–413.

Alexander, D.B., Zuberer, D.A., 1991. Use of chrome azurol S

reagents to evaluate siderophore production by rhizosphere bacte-

ria. Biol. Fertil. Soils 12, 39–45.

Anderson, A., Baldock, J.A., Rogers, S.L., Bellotti, W., Gill, G., 2004.

Influence of chlorsulfuron on rhizobial growth, nodule formation,

and nitrogen fixation with chickpea. Aust. J. Agric. Res. 55, 1059–

1070.

Bakker, A.W., Schipper, B., 1987. Microbial cyanide production in the

rhizosphere in relation to potato yield reduction and Pseudomonas

spp. mediated plant growth stimulation. Soil Biol. Biochem. 19,

451–457.

Becker, A., Pühler, A., 1998. Production of exopolysaccharides. In:

Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J. (Eds.), Rhizobia-

ceae. Kluwer Academic Publishers, Dordrecht, London, pp. 97–

118.

Bellinaso, M.L., Greer, C.W., Peralba, M.C., Henriques, J.A.,

Gaylarde, C.C., 2003. Biodegradation of the herbicide trifluralin

by bacteria isolated from soil. FEMS Microbiol. Ecol. 43, 191–194.

Boldt, T.S., Jacobsen, C.S., 1998. Different toxic effects of the

sulphonylurea herbicides metsulfuron methyl, chlorsulfuron and

thifensulfuron methyl on fluorescent pseudomonads isolated from

an agricultural soil. FEMS Microbiol. Lett. 161, 29–35.

Brick, J.M., Bostock, R.M., Silversone, S.E., 1991. Rapid in situ assay

for indole acetic acid production by bacteria immobilized on

nitrocellulose membrane. Appl. Environ. Microbiol. 57, 535–538.

Chitra, R.S., Sumitra, V.C., Yash, D.S., 2002. Effect of different

nitrogen sources and plant growth regulators on glutamine

synthetase and glutamate synthase activities of radish cotyledons.

Bulg. J. Plant Physiol. 28, 46–56.

Datta, A., Sindel, B.M., Kristiansen, P., Jessop, R.S., Felton, W.L.,

2009. Effect of isoxaflutole on the growth, nodulation and nitrogen

fixation of chickpea (Cicer arietinum L.). Crop Protection 28, 923–

927.

Devi, K.K., Seth, N., Kothamasi, S., Kothamasi, D., 2007. Hydrogen

cyanide-producing rhizobacteria kill subterranean termite Odont-

otermes obesus rambur. by cyanide poisoning under in vitro

conditions. Curr. Microbiol. 54, 74–78.

DiSoudi, B.D., Miller, C.E., Lai, K., Grimsley, J.K., Wild, J.R., 1999.

Rational design of organophosphorus hydrolase for altered

substrate specificities. Chem. Biol. Interact. 120, 211–223.

http://dx.doi.org/10.1007/s00344-011-9195-y


Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4 71
Dudeja, S.S., Singh, P.C., 2008. High and low nodulation in relation to

molecular diversity of chickpea Mesorhizobia in Indian soils. Arch.

Agron. Soil Sci. 54, 109–120.

Dumas, D.P., Caldwell, S.R., Wild, J.R., Raushel, F.M., 1989.

Purification and properties of the phosphotriesterase from Pseu-

domonas diminuta. J. Biol. Chem. 261, 19659–19665.

Dye, D.W., 1962. The inadequacy of the usual determinative tests for

the identification of Xanthomonas spp.. Nat. Sci. 5, 393–416.

Eberbach, P.L., Douglas, L.A., 1989. Herbicide effects on the growth

and nodulation potential of Rhizobium trifolii with Trifolium

subterraneum L. Plant Soil 119, 15–23.

Eberbach, P.L., Douglas, L.A., 1991. Effect of herbicide residues in a

sandy loam on the growth, nodulation and nitrogenase activity

(C2H2/C2H4) of Trifolium subterraneum. Plant Soil 131, 67–76.

Eliason, R., Schoenau, J.J., Szmigielski, A.M., Laverty, W.M., 2004.

Phytotoxicity and persistence of flucarbazone-sodium in soil. Weed

Sci. 52, 857–862.

Fox, J.E., Gulledge, J., Engelhaupt, E., Burow, M.E., McLachlan,

J.A., 2007. Pesticides reduce symbiotic efficiency of nitrogen-fixing

rhizobia and host plants. PNAS 104, 10282–10287.

Gordon, S., Weber, R.P., 1951. The colorimetric estimation of IAA.

Plant Physiol. 26, 192–195.

Herman, P.L., Behrens, M., Chakraborty, S., Crastil, B.M., Barycki,

J., Weeks, D.P., 2005. A three component dicamba O-demethylase

from Pseudomonas maltiphilia strain DI-6: gene isolation, charac-

terization and heterologous expression. J. Biol. Chem. 280, 24759–

24767.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Willams, S.T.,

1994. Bergey’s Manual of Determinative Bacteriology. Williams

and Wilkins, Baltimore, USA.

ICAR, 2006. Hand Book of Agriculture, 5th ed. Indian Council of

Agricultural Research, New Delhi.

Johnsen, K., Jacobsen, C.S., Torsvik, V., Sorensen, J., 2001. Pesticide

effects on bacterial diversity in agricultural soils – A review. Biol.

Fertil. Soils 33, 443–453.

Juneja, S., Dogra, R.C., 1978. Effect of aldrin on growth and oxidative

metabolism of rhizobia. J. Appl. Microbiol. 44, 107–115.

Kang, B.G., Kim, W.T., Yun, H.S., Chang, S.C., 2010. Use of plant

growth-promoting rhizobacteria to control stress responses of plant

roots. Plant Biotechnol. Rep.. doi:10.1007/s11816-010-0136-1.

Kapoor, K., Arora, L., 1996. Observations on growth responses of

cyanobacteria under the influence of herbicides. Pollut. Res. 15,

343–351.

Khan, M.S., Zaidi, A., Aamil, M., 2004. Influence of herbicides on

Chickpea Mesorhizobium symbiosis. Agronomie 24, 123–127.

Khan, M.S., Zaidi, A., Ahemad, M., Oves, M., Wani, P.A., 2010.

Plant growth promotion by phosphate solubilizing fungi-current

perspective. Arch. Agron. Soil Sci. 56, 73–98.

Koopman, D.J., Tow, P.G., Reeves, T.G., Gibson, A.H., 1995. Soil

acidification, chlorsulfuron application and Rhizobium meliloti as

factors in lucerne yield decline. Soil Biol. Biochem. 27, 673–677.

Kumar, S., Mukerji, K.G., Lal, R., 1996. Molecular aspects of

pesticide degradation by microorganisms. Critic Rev. Microbiol.

22, 1–26.

Kumar, N., Anubhuti Bora, J.I., Amb, M.K., 2010. Chronic toxicity of

the triazole fungicide tebuconazole on a heterocystous, nitrogen-

fixing rice paddy field cyanobacterium, Westiellopsis prolifica

Janet. J. Microbiol. Biotechnol. 20, 1134–1139.

Ma, Y., Rajkumar, M., Freitas, H., 2009. Improvement of plant

growth and nickel uptake by nickel resistant-plant-growth pro-

moting bacteria. J. Hazard. Mater. 166, 1154–1161.
Mallik, M., Tesfai, K., 1985. Pesticidal effect on soybean-rhizobia

symbiosis. Plant Soil 85, 33–41.
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