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1. INTRODUCTION 

If A is an algebra, a mapping 4: A + A is called centralizing if [4(x), X] E 2, 
for all x E A where [x, y] = xy - yx and 2, is the centre of A. In this paper we 
prove theorems for certain centralizing mappings of C*-algebras and von 
Neumann algebras which are related to theorems of Posner [6], Mayne [4], and 
Herstein [3] for prime or simple rings. Namely, we show that if d: A + A is a 
derivation on a C*-algebra A with [p(d)(x), x] E 2, for all x E A, where p(t) 
is a complex polynomial, then p(d)(x) = 0 for all x E A. Moreover, if A is a 
von Neumann algebra and p(d)(x) = 0 Vx E A there exists z E 2, such that 
$(u - z) = 0 where d(x) = [a, x], a E A. In the case that #: A -+ A is a 
centralizing *-automorphism of a von Neumann algebra, then A = A, @ A, 
where + IA, is the identity on A, , and A, is abelian. 

Although C*-algebras are semi-prime and have many special algebraic 
properties they are not, in general, prime. In fact, a von Neumann algebra 
is prime if and only if it is a factor (i.e. its centre consists of scalar multiples of the 
identity). The presence of central projections (self-adjoint idempotents) in von 
Neumann algebras means that phenomena of an “either ... or” nature in prime 
rings can occur simultaneously but on complementary summands in the von 
Neumann case. This is the situation with regard to Mayne’s theorem which 
states that for prime rings a centralizing automorphism is the identity or the ring 
is commutative. 

2. NOTATION AND PRELIMINARIES 

We denote by 9(H) the ring of all linear operators T: H -+ H, H a complex 
Hilbert space with inner product (., .), which are bounded in the uniform norm 

II T II = supl,h~i~l II Th II> h E H. 
In this norm Y(H) is a Banach *-algebra with identity operator I and * 

operation defined by (Th, k) = (h, T*k) Vh, k E H. An operator T E Z(H) is 
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positive if T = S*S. A B*-algebra is a Banach *-algebra A, with complex 
field, such that 11 XX* 11 = 11 x II2 Vx E A. Any B*-algebra is isometrically 
*-isomorphic to a uniformly closed *-algebra of bounded linear operators on a 
complex Hilbert space. Such operator algebras are called C*-algebras. 

In addition to the uniform topology on 5?(H) we shall be concerned with the 
weakest topology making the linear functionals T - Cli( Th, , K,) continuous 
for all sequences {h,}, {K,} for whichCz==, j/ h, II,C,“=i /j k, 11 < 00. Multiplication 
is continuous in each variable separably and the *-operation is continuous in this 
topology which is called the ultra-weak (= uw) topology. A v&r Neumann or 
W*-algebra is an ultra-weakly closed subalgebra of 9(H) which contains I. 
It is a fact that if M is a von Neumann algebra then M is the smallest ultra-weakly 
closed linear subspace of 9(H) containing {p E IM I p = p2 = p*}. Such 
operators p are called projections. If p E M is a projection, the core of p, denoted 
by p, is defined to be LUB{s E Z,,,, j s = s * < p). p always exists, is a projection, 
and is in M if p E M. The support of p, denoted by p, is defined to be the least 
central projection in M which is larger than p. Two projections p, q E M are 
parallel if Fq = 0 and this occurs iff pxq = 0 Vx E M. If p is a projection, 
Mp = {p x p I x E M). If 9 is an ultra-weakly closed two sided ideal in a von 
Neumann algebra M then .Y = MC where c is a central projection, 

If A is a C*-algebra then A is isometrically *-isomorphic to %(A) its universal 
representation. Moreover U(A)-“” is W*-isomorphic to A** where A* is the 
(norm) dual of A. Automorphisms are understood to be *-automorphisms but 
derivations do not necessarily preserve the *-operation. If +: A + A is a *-auto- 
morphism of a von Neumann algebra then it is ultra-weakly bi-continuous. 
If d: A -+ A is a derivation of a C*-algebra A then d is norm continuous. If A 
is a simple C*-algebra or a von Neumann algebra and da derivation on A then 
d(x) = [a, X] for some a E A. Such derivations are called inner. If A is a C*- 
algebra and 3 a cIosed 2-sided ideal in A then P = {& a$, / ai , bi E 3) is 
uniformly dense in Y. In particular if d is a derivation and 9 an ideal then 
d(9) C 9 by the uniform continuity of d. 

For an excellent account of these and other properties of operator algebras we 
refer the reader to [l] or [8]. 

3. CENTRALIZING DERIVATIONS 

Let p(t) = co + c,t + ... + c,t” be a complex polynomial of degree 71 > 0, 
so c, # 0. Let A be an algebra with identity e and for each a E A let ad a be the 
derivation (ad a)(x) = [a, x], x E A. 

LEMMA 1. (i) 

p(ad 4(x) = p(4x + i 4~) x@ 
k-l 
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where us(a) = (- l)kp(k)(a)/k! and p(ad a)(x) = ~p(-u) + CE=, ukxQu) where 
Q(U) = py-up!. 

(ii) If [p(ad u)(x), X] = 0 ‘dx then [p(ad a)(x), y] + [p(ad u)(y), X] = 0 
Vx, y E A, and (ad u)(p(ad u)(x)) = 0 Vx. 

(iii) If A is a C*-algebra, [p(ad u)(x), x] E 2, implies p(ad U)(X) = 0. 

(iv) If A is a C*-algebra and d: rZ + A is any derivation thenp(d)(x) = 0 
Vx E A implies c, = 0. 

Proof. (i) Follows by expansion of p(ad u)(x) = Cr=,-, c,(ad u?(x). 

(ii) Replace x by x + y and use the linearity of ad a. In the relation 
[p(ad u)(x), y] + [p(ad u)(y), x] = 0, set y = a and get 0 = [p(ad u)(x), a] = 

-(ad 4Mad 4(x)). 

(iii) The assertion follows from [7: Theorem 1.3.11. 

(iv) By [8: 4.1.21, d lz, = 0, so that if z # 0, z E 2, , we have 0 = 

PWW = caz- I 

LEMMA 2 [6, Theorem 11. If A zs a p rzme ring and dl , d, derivations on A 
with (d,d,)(x) = d,(d,(x)) a deriwution, then one of dl OY d, is zero. 

COROLLARY. If A is a factor von Neumann algebra, with a E A, then 
(Range ad a)’ n A = C OY a E Z, . (Here 

s’ = {t E S(H) 1 st = ts Vs E S}.) 

Proof. Suppose a # 2,. If b E (Range ad a)’ n A then (ad b)((ad a)(x)) = 
[b, [a, x]] = 0. Hence ad b = 0 or ad a = 0 since factors are prime. But a $ ZA 
so ad a # 0. Hence ad b = 0 or b E 2, = C. 1 

THEOREM 1. Let A be a C*-algebra and d: A + A a derivation for which 
[p(d(x)), x] = 0 Vx E A. Then p(d(x)) = 0 Vx. 

Proof. First assume A is a von Neumann factor. Then d(x) = (ad a)(x) for 
some a E A [8, Theorem 4.1.61. By Lemma 1, [p(ad u)(x), y] = -[p(ad a)(y), x] 
Vx, y E A. Hence y E (Range p(ad a)’ n rZ iff p(ad u)(y) E 2, iff p(ad u)(y) = 0 
since 2, contains no nonzero commutators and c,, = 0. Hence [Rangep(ad a)]’ n 
A = Kerp(ad a). Now (ad u)(p(ad u)(x)) = 0 Vx implies 0 = (ad u) 0 p(ad a) = 
p(ad a) 0 (ad a) so that Range(ad u) C Ker p(ad a). Therefore [Range(ad a)]’ n 
A 1 [Kerp(ad a)]’ n A = ([Range p(ad a)]’ n A)’ 1 Range p(ad a). By the 
corollary to Lemma 2, ad a = 0 or [Range(ad a)]’ n A = C. Hence a E Z, or 
Range p(ad a) C C. The latter implies p(ad a) = 0 since Z, contains no nonzero 
commutators. 
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Now let A be any C*-algebra and V: A -+ r(A) an irreducible representation. 
In particular m(A)-“” is a factor. Moreover, since d is uniformly continuous [S, 
Lemma 4.1.31, and if I is a uniformly closed, twosided ideal in A, 

we have d(I) _C I. Thus d induces a derivation H: A/Ker r + A/Ker r. Let 
~~‘0: A/Ker r -+ p(A) be the canonical isomorphism induced by n. rr,, is then a 
faithful irreducible representation and dl = r,, o ;E o ai1 is a derivation on 
n(A) = B with the property that [p(d,)(x), x] = 0 VX E B. There exists b E B-“” 
such that d,(x) = [b, x] = (ad b)(x) Vx E B. S ince multiplication is (169 continuous 
in one variable we have [p(ad b)(x), x] = 0 Vx E B-““. By the first part of the 
argument, p(ad b)(x) = 0 so that p(d,)(x) = 0. Thus p(d) = 0. That is, p(d) 
maps into Ker T. Since Q, Ker v = (0) where the intersection is taken over all 
irreducible V, we have p(d) = 0. 1 

4. ALGEBRAIC DERIVATIONS 

In this section we study derivations, ad a, for which p(ad a) = 0 and show that 
for certain algebras a is algebraic over the centre. In [3], Herstein showed that if 
A is a simple ring and (ad a)” = 0 there exists h E 2, such that (a - h)n = 0. 
If A is a complex, topologically simple Banach algebra with identity e, the 
argument simplifies and shows 

THEOREM 2. If p(ad a) = 0, there exists LY E C such that p(u - ale) = 0 or 
p(ae - a) = 0. 

Proof. By a standard argument A is algebraically simple. 
For each a E C, ad a = ad(a - o1e). Hence p(ad(a - ale)) = 0. Since the 

spectrum of a in A is non-empty, we can replace a by a - me, for appropriate 
(Y E C, so as to assumep(ad a) = 0 and a is not regular. By Lemma l(i), for some 
a, E A, 0 = p(ad a)x = p(a)% + a,xa. Hence p(a) E Au, so that Ap( C Au. 
Since Ap( is a %-sided ideal in A we have p(a) = 0 or A = Aa, namely a is 
left-regular. Similarly, xp(-u) E UA, so that Ap(--a)A C aA, and ~(-a) = 0 
or a is right regular. Thus, unless p(a) = 0 or ~(--a) = 0, a is both left and 
right regular, hence regular. But a is not regular and the theorem follows. 1 

We now turn our attention to operator algebras. The following lemma is 
similar to [3, Teorema]. 

LEMMA 3. Let H be a complex Banach space and A an algebraically irreducible 
algebra of bounded operators on H containing the identity operator e. If p(ad a) = 0, 
a E A, then for each u E H, the subspace W = Span (u, au ,..., a%) reduces a. 
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Pyoof. Algebraic irreducibility means that A is l-fold transitive on H. By 
[2, Lemma 21 A is then n-fold transitive if H is infinite dimensional or of 
dimension at least n. 

It suffices to show that the vectors u, au,..., a% are linearly dependent. Suppose 
to the contrary that they are linearly independent. Let 01 E C, u E H. By (n + l)- 
fold transitivity, choose x E A such that xa% = LY~V for k = O,..., n. By 
Lemma l(i) we have 

0 = i (-l)“@“)(a) xaku/k! = p(a - ole)o, 
k=O 

by Taylor’s formula. Thus p(a - oLe) = 0 Va E C. The Hahn-Banach theorem 
implies that if p(a - ale) = 0 for n + 1 distinct values LY, then all coefficients of 
p(a - ,e) are zero. But c, # 0, a contradiction. 1 

THEOREM 3. Let A be an algebraically irreducible algebra of bounded operators 
on a complex Banach space H containing the identity e. If, for a E A, p(ad a) = 0 
then the point spectrum PS(a) is non-empty andfor each OL E PS(a), p(a - eye) = 0. 

Proof. Lemma 3 shows PS(a) # 4 since there are non-trivial finite-dimen- 
sional subspaces of H invariant under a. Hence there exist (31 E C and 0 # v E H 
such that (a - are)v = 0. Hence (a - ae)kw = 0 for all positive integers k so 
that by Lemma 1, 0 = p(ad(a - eye )) xv = p(a - ole)xzI. Since A is l-fold 
transitive, p(a - cue) = 0. 1 

COROLLARY. Let A be a simple C*-algebra with identity e, and a E A be such 
that p(ad a) = 0. There exists (Y E C such that p(a - oLe) = 0. 

Proof. Since A is simple it has a faithful irreducible *-representation which is 
algebraically irreducible by [l, 2.8.41. 1 

THEOREM 4. Let A be a F-algebra of operators acting on a complex Hilbert 
space H, and assume A contains the identity operator e. Let R = A” the ultra-weak 
closure of A. If p(ad a) = 0, a E A, there exists x E 2, such that p(a - z) = 0. 

Proof. We recall a few facts about representations of C*-algebras. Let M 
be the universal enveloping von Neumann algebra of R. If 4 is any *-representa- 
tion of R and ZT the natural injection of R into M, there exists a normal *-repre- 
sentation 6 of M such that +(x) = &v(x)) for all x E R. The image &M) is the 
ultra-weak closure of 4(R). If 4 is irreducible, then &M) = 4(R)-“” = -Ep(H,) 
where H* is the representation space of 4. Moreover, if 4 is a normal homo- 
morphism of M onto a von Neumann algebra N, there exists a central projection 
c E M and a *-isomorphism Z$ of M, onto N such that J(x) = &xc) Vx E M. 

Now R has a complete set of irreducible * -representations & , and in the above 
notation,&(x) =&n(x)) where $a is a normal *-homomorphism of M onZ(H,a). 



CENTRALIZING MAPPINGS OF OPERATOR ALGEBRAS 61 

There exist central projections cs in M and *-isomorphisms I,& of MC@ on 9(&a) 
such that &(x) = &(xc,J VX E M. S ince & is an irreducible representation (and 
hence algebraically irreducible by [I: 2.8.41) we have by Theorem 3 that there 
exists 01s E C such that $(&(a) - @I) = 0. One has / aB 1 < 11 &(a)11 < ]I a 11, 
and, for each p, p((r(a) - c+++) = 0. By the completeness of the set of irre- 
ducible representations, LUB c, = e the identity operator on the representation 
space of M. Choose a collection of mutually orthogonal central projections 
de E M such that de < c, and C de = e. Let s = C asdo . Then s E Z, and 
p(?+z) - s) = 0. 

Let i: R -+ R be the identity map, and i the normal homomorphism of M on R 
such that i(~(x)) = i(x) (=x) VX E R. Let c be a central projection in M andj an 
isomorphism of MC on R such that i(?~(x) =j(,(x)c) VX E R.j sets up an isomor- 
phism of the centre of M, with Z, , so there exists z E Z, such that j(sc) = z. 
Hence i(s) = z, and 0 = i(p(rr(a) - s)) = $@(~(a)) - i(s)) = ~(a - a). m 

5. CENTRALIZING AUTOMORPHISMS 

Let M be a von Neumann algebra and $: M -+ M a *-automorphism of M 
onto M. 

LEMMA 4. Ifp E M is a projection +(p) = 4(p) and& p) = 4(p). 

Proof. 4 preserves order, projections, and Z,+, . 1 

COROLLARY. If M is u van Neumann algebra which hus no ubeliun central 
sum?iu.lnds und (b a *-automorphism such that 4(p) = p for all core-free projections 
(i.e. projections p for which p = 0) then + is the identity automorphism. 

Proof. If c E M is a central projection then c = B for a core-free projection 
p E M [5, Lemma 41. Hence 4(c) = 4( p) = ;b(p) = fi = c. If p is any projection, 
p - p is core-free so p - p = $( p - p) = $(p) - +(p) = 4(p) - p. Hence 
4(p) = p for all projections. Since 4 is ultra-weakly continuous and M the ultra- 
weak closure of the linear span of its projections the result follows. 4 

Now suppose 4 is a *-automorphism of the von Neumann algebra M such that 
[y%(x), x] E Z,,,, Vx E M. 

LEMMA 5. [$(x),x] = 0 Vx. 

Proof. If x = x* then [x, [$(x), x]] = 0 implies [4(x), X] = 0 by [7, Lemma 
61. By the *-linearity of 4 the result holds for all X. 1 

LEMMA 6. If +(x0) # x0 there exists a nonzero central projection c,, such that 
c,,xO E Z, . If, in addition, c,x, = 0 then x0 = (1 - cs) #(x0). 
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Proof. We follow [4, Lemma 11. [4(x), X] = 0 implies [4(x + y), x + y] = 0. 

Hencel$(x),yl = [~,$(y)lV~,y~M. R e ~1 acingy by XY, [#Cd, ~1 = [x, 4(xr)l = 
lx, #(x) YVYII = 4Wk +(r>l + Ix, K-41 +(Y) = vW.x, +(r>l. Moreover, 
k44, XYI = 4iW, ~1 + MW, 4~ = 4+>, yl = 4x, +(r>l. This implies 
(4(x) - x)[x, 4(y)] = 0 Vy so that (4(x) - x)[x, t] = 0 Vt since # is onto. 
Finally replacing t by st we get 

(4(x) - x> sL.5 tl = 0 Vx,s,tcM. (2) 

If +((xs) - x,, # 0 then (M(+(x,) - x,)M)- is a nonzero ultra-weakly closed 
two-sided ideal in M. There exists a central projection c,, EM such that 

W(#@o) - xo)W- = Mc, . F rom (2) we have that M($(x,J - x,,) M[xs , t] = 0 
Vt E M so that MC,[xO, t] = 0 Vt. In particular, [cOxO , c,,t] = 0 Vt E M so that 

Co%0 E ZMMco = vh& c ZM. 
Now M contains the identity operator which implies +(x0) - x0 E MC, . Hence 

$(x0) - x0 = cot for some t E M. If coxo = 0 then 0 = (1 - co)(+(xo) - x0) = 

(1 - co) Go) - x0 . I 

LEMMA 7. If p is a core-free projection in M then 4( p) = p OY &b(p) = p. 

Proof. Suppose 4(p) # p and let p = c. By Lemma 4 there exists a nonzero 
central projection co such that cop E Z, . Since p is core-free and cop <p we 
have cop = 0. Hence 0 = c> = cop = cot. Also by Lemma 4, p = (1 - co)+(p) 
so that p = cp = c(l - co)+(p) = c+(p) = &b(p). 1 

Our intention is to show that + is the identity on one summand of M and the 
other summand is abelian. Since C# takes abelian subalgebras of M onto abelian 
subalgebras and central projections onto central projections it will take the I1 
summand (= largest abelian central summand) of M onto the 1r summand. 
Hence we assume that M has no abelian summands. By the corollary to Lemma 2, 
if q5 is not the identity on M there exists a core-free projection p such that 
#(p) # p. Let (pJ be a maximal collection of parallel core-free projections such 
that +( pa) # p, and set p = C p,, c = p. 

LEMMA 8. 4 /ye, is the identity automorphism. 

PTf. If + IM1-e is not the identity on Ml-, there exists a core free p, = 
p,( 1 - c) E MI-, such that +(po(l - c)) # po( 1 - c). But if po( 1 - c) is 
core-free in Ml-, it is core-free in M. By the maximality of {p,}, p,( 1 - c) = 0. 
But then $(p,(l - c)) = p,(l - c). 1 

COROLLARY. $ maps MC onto MC . 

Proof. 1 - c = #(l - c) = #I) - 4(c) = 1 - 4(c). &Xc) = 4(X) d(c) = 

4w- I 
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LEMMA 9. MC = (0). 

Proof, We havep, = fi&(p,) and c = $ = CT0 = CgB . Claim: &#(pJ = 0 
if j3 # 0~. For, pa = &$(pB) so that p78 = &$$) = p&(&B). Hence &$(p,) = 
Fe54 Pee) $(PcJ = Fe4 FePa) = 0 since pa and pe are parallel for oc # p. Since 4 
maps MO on K , +(P*) = b(P,)c = +(A) C Fe = &)A = PpL contradicting 
the choice of the p, . 1 

THEOREM 5. If 4 is a centralizing *-automorphism of the won Neumann algebra 
M and d the largest central projection of Mfor which M, is abelian then q5 JM,-a is 
the identity automorphism on MI-& . 

Remark 1. In the proof of Theorem 1 for prime rings essential use is made of 
the result that if d, , d, and d,d, are derivations of a prime ring then dI = 0 or 
d, = 0. If M is a von Neumann algebra, p and q nonzero core-free projections 
with pq = 0 but p # 0 and q # 0 then [p, [q, x]] = 0 for all x E M. That is, if 
d,(x) = [p, x], d,(x) = [q, x] then d,d, = 0 is a derivation but neither dI nor d, 
is zero. 

Remark 2. It would be desirable to prove Theorem 2 without the assumption 
that 4 preserves adjoints. We can do this in the special case that +(x) = axa- 
and a E M. For, suppose q6 has this form and [4(x), x] = 0 Vx E M. As before this 
implies [4(x), y] = [x, +(y)] Vx, y E M. In particular [4(x), a] = [x, +(a)] = [x, a] 
Vx E M, or [axa-I, a] = [x, a]. Hence, multiplying this relation out, we get 
2ax = xa + a2xa-l and multiplying this on left by a-1 we get 

2x = a-lxa + axa-l VXEM. (3) 

Let x = p, p an idempotent. Then a-lpa = Y and apa-l = q are idempotents 
and (3) becomes 

2p = Y + q. (4) 

This implies 

2pr = Y + qr and 2rp = Y + Yq. (5) 

Now [apa-], p] = [p, apa-l] so that apa+ - papa-l = papa-l - apa-lp or 
2apa-‘p = 2papa-l. That is YP = pr. From (5) rq = q~. 

Now 4p = (2~)~ = (Y + q)” = Y + 2rq + q = 2p + 2rq so that p = rq. 
From (4) 2rq = Y + q so that 2rq = rq + q or q = rq. Similarly Y = rq. Hence 
p = Y = q. Now p = Y = a-lpa so that up = pa for all idempotents p E M. 
Hence a E 2,. 
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