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1. INTRODUCTION

If 4 is an algebra, a mapping ¢: 4 — A4 is called centralizing if [¢(x), x] € Z,
for all x € 4 where [%, y] = xy — yx and Z , is the centre of A. In this paper we
prove theorems for certain centralizing mappings of C*-algebras and von
Neumann algebras which are related to theorems of Posner [6], Mayne [4], and
Herstein [3] for prime or simple rings. Namely, we show that if d: 4 > A is a
derivation on a C*-algebra 4 with [p(d)(x), ¥} € Z, for all x € A, where p(?)
is a complex polynomial, then p(d)(x) = 0 for all x € A. Moreover, if 4 is a
von Neumann algebra and p(d)(x) = 0 Vxc A there exists 2 € Z, such that
Pa — 2) =0 where d(x) = {a,x], ac 4. In the case that ¢: 4— A4 is a
centralizing *-automorphism of a von Neumann algebra, then 4 = 4, @ A4,
where ¢ |4 is the identity on 4, , and 4, is abelian.

Although C*-algebras are semi-prime and have many special algebraic
properties they are not, in general, prime. In fact, a von Neumann algebra
is prime if and only if it is a factor (i.e. its centre consists of scalar multiples of the
identity). The presence of central projections (self-adjoint idempotents) in von
Neumann algebras means that phenomena of an “either -*- or’’ nature in prime
rings can occur simultaneously but on complementary summands in the von
Neumann case. This is the situation with regard to Mayne’s theorem which
states that for prime rings a centralizing automorphism is the identity or the ring
is commutative.

2. NOTATION AND PRELIMINARIES

We denote by #(H) the ring of all linear operators T: H — H, H a complex
Hilbert space with inner product (-, -), which are bounded in the uniform norm
| TN = supyye | TR |, he H.

In this norm #(H) is a Banach *-algebra with identity operator I and *
operation defined by (Th, k) = (h, T*k) Vh, ke H. An operator T e L(H) is
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positive if 7' = S*S. A B*-algebra is a Banach *-algebra 4, with complex
field, such that [[xx*| =| x|® VxeA. Any B*-algebra is isometrically
*_isomorphic to a uniformly closed *-algebra of bounded linear operators on a
complex Hilbert space. Such operator algebras are called C*-algebras.

In addition to the uniform topology on £(H) we shall be concerned with the
weakest topology making the linear functionals T — ¥_,(Th, , k,) continuous
for all sequences {k,}, {k,} for which Y _ {| &, ||, X1 [l k5 || < c0. Multiplication
is continuous in each variable separably and the *-operation is continuous in this
topology which is called the ultra-weak (= uw) topology. A von Neumann or
W*-algebra is an ultra-weakly closed subalgebra of #(H) which contains 1.
Tt is a fact that if M is a von Neumann algebra then M is the smallest ultra-weakly
closed linear subspace of #(H) containing {pe M |p = p? = p*}. Such
operators p are called projections. If p € M is a projection, the core of p, denoted
by p, is defined to be LUB{s € Z, | s = s* < p}. p always exists, is a projection,
and is in M if p € M. The support of p, denoted by p, is defined to be the least
central projection in M which is larger than p. Two projections p, g M are
parallel if pg = 0 and this occurs iff pxg = O Vxe M. If p is a projection,
Mp={p X p|xe M}. If £ is an ultra-weakly closed two sided ideal in a von
Neumann algebra M then .# = Mc where c is a central projection.

If 4 is a C*-algebra then A4 is isometrically *-isomorphic to #(4) its universal
representation. Moreover U(A4)~* is W*-isomorphic to A** where A* is the
(norm) dual of 4. Automorphisms are understood to be *-automorphisms but
derivations do not necessarily preserve the *-operation. If ¢: 4 — A4 is a *-auto-
morphism of a von Neumann algebra then it is ultra-weakly bi-continuous.
1f d: A~ A is a derivation of a C*-algebra 4 then d is norm continuous. If 4
is a simple C*-algebra or a von Neumann algebra and 4 a derivation on A4 then
d(x) = [a, x] for some a € 4. Such derivations are called inner. If 4 is a C*-
algebra and .# a closed 2-sided ideal in A then .#2 = (3, ab, | a;, b, € S} is
uniformly dense in #. In particular if d is a derivation and # an ideal then
d(#) C J by the uniform continuity of d.

For an excellent account of these and other properties of operator algebras we
refer the reader to [1] or [8].

3. CENTRALIZING DERIVATIONS

Let p(t) = ¢y + ¢3t + *** + ¢,t™ be a complex polynomial of degree n > 0,
so ¢, # 0. Let A be an algebra with identity e and for each a € A let ad a be the
derivation (ad a)(x) = [a, x], x€ 4.

Lemma 1. (i)

plad a)x) = pla) + 3 uy(a) xa*

k=1
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where w(a) = (—1)p®(a)/k! and p(ad a)(x) = xp(—a) + Y i_, a*xv,(a) where
vy(@) = pE(—a)/kl.

(i) If [p(ad a)(x), x] = O Va then [p(ad a)(x), y] + [p(ad a)(y), x] = O
Vx, v € A, and (ad a){ p(ad a)(x)) = 0 Vx.

(i) If A is a C*-algebra, [p(ad a)(x), x] € Z 4 implies p(ad a)(x) = 0.

(iv) If Ais a C*-algebra and d: A — A is any derivation then p(d)(x) = 0
Vx € A implies ¢y = 0.

Proof. (i) Follows by expansion of p(ad a)(x) = ¥, c:(ad a)i(x).

(ii) Replace ¥ by x + y and use the linearity of ad . In the relation
[£(ad a)(x), y] + [p(ad a)(y), #] = O, set y = a and get 0 = [p(ad a)(x), a] =
—(ad @)(p(ad a)()).

(iii) The assertion follows from [7: Theorem [.3.1].

(iv) By [8: 4.1.2], d|z, = 0, so that if 2 5+ 0, 2€Z,, we have 0 =
pd)=) = ¢z |

Lemma 2 [6, Theorem 1]. If 4 is a prime ring and d, , d, derivations on A
with (ddy)(x) = dy(dy(x)) a derivation, then one of d, or d, is zero.

CoroLLARY. If A is a factor von Neumann algebra, with ac A, then
(Rangeada) N A = CoracZ,. (Here

S = {te L(H)|st = tsVse S})

Proof. Suppose a¢ Z,. If be(Range ad @) N A then (ad d)((ad a)(x)) =
[3, [a, x]] = 0. Hence ad & = 0 or ad @ = 0 since factors are prime. But a ¢ Z,
soada # 0. Henceadb = 0orbeZ, =C. |

THEOREM 1. Let A be a C*-algebra and d: A — A a derivation for which
[p(d(x)), x] = O Vx e A. Then p(d(x)) = 0 Vx.

Proof. First assume A4 is a von Neumann factor. Then d(x) = (ad a)(x) for
some a € 4 [8, Theorem 4.1.6]. By Lemma 1, [ p(ad a)(x), ¥] = —[p(ad a)(y), ]
Vx,y € A. Hence y € (Range p(ad a) N A iff p(ad a)(y) € Z4iff p(ad a)(y) =0
since Z 4 contains no nonzero commutators and ¢, = 0. Hence [Range p(ad a)]’ N
A = Ker p(ad a). Now (ad a)(p(ad a)(x)) =0 Vx implies 0 = (ad a) - p(ad a) =
?(ad a) o (ad @) so that Range(ad a) C Ker p(ad @). Therefore [Range(ad a)]’ N
A2 [Ker p(ad @)]’ " A = ([Range p(ad a)]’ N 4) 2 Range p(ad a). By the
corollary to Lemma 2, ad @ = 0 or [Range(ad @)]' " 4 = C. Hence ac Z 4 or
Range p(ad a) C C. The latter implies p(ad @) = 0 since Z 4 contains no nonzero
commutators.
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Now let A be any C*-algebra and m: 4 — m(4) an irreducible representation.
In particular #(4)~“* is a factor. Moreover, since d is uniformly continuous [8,
Lemma 4.1.3], and if 7 is a uniformly closed, twosided ideal in 4,

:I,

k
z ab;
i=1

we have d(I)CI. Thus d induces a derivation d: A/Ker 7 — A/Ker m. Let
my: AJ/Ker m — m(A) be the canonical isomorphism induced by . 7, is then a
faithful irreducible representation and d, = myodom," is a derivation on
m(A) = B with the property that [ p(d;)(x), x] = 0Vx € B. There exists b B~*
such that d,(x) = [, ] = (ad b)(x) Vx € B. Since multiplication is «« continuous
in one variable we have [p(ad d)(x), ] = 0 Vx € B-*. By the first part of the
argument, p(ad b)(x) = O so that p(d;)(x) = 0. Thus p(d) =0. That is, p(d)
maps into Ker . Since N, Ker 7 = {0} where the intersection is taken over all
irreducible =, we have p(d) = 0. |

ai,biGI

4. ALGEBRAIC DERIVATIONS

In this section we study derivations, ad a, for which p(ad ) = 0 and show that
for certain algebras a is algebraic over the centre. In [3], Herstein showed that if
A is a simple ring and (ad a)* = 0 there exists A € Z4 such that (a — A)" = 0.
If 4 is a complex, topologically simple Banach algebra with identity e, the
argument simplifies and shows

THeoreM 2. If p(ad a) = O, there exists o€ C such that p(a — ae) = 0 or
plee — a) = 0.

Proof. By a standard argument 4 is algebraically simple.

For each xe C, ad a = ad{a — «¢). Hence p(ad(e¢ — «e)) = 0. Since the
spectrum of @ in A4 is non-empty, we can replace @ by a — «e, for appropriate
a € C, so as to assume p(ad a) = 0 and a is not regular. By Lemma 1(i), for some
a,€ 4, 0 = p(ad a)x = p(a)x + a,xa. Hence p(a) € Aa, so that Ap(a)4 C Aa.
Since Ap(a)A is a 2-sided ideal in 4 we have p(a) = 0 or A = Aa, namely a is
left-regular. Similarly, xp(—a) € a4, so that Ap(—a)4 C a4, and p(—a) = 0
or a is right regular. Thus, unless p(a) = 0 or p(—a) = 0, a is both left and
right regular, hence regular. But a is not regular and the theorem follows. ||

We now turn our attention to operator algebras. The following lemma is
similar to {3, Teorema].

LemMa 3. Let H be a complex Banach space and A an algebraically irreducible
algebra of bounded operators on H containing the identity operator e. If p(ad a) = 0,
a € A, then for each u ¢ H, the subspace W = Span (u, au,..., a"u) reduces a.
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Proof. Algebraic irreducibility means that A is 1-fold transitive on H. By
[2, Lemma 2} A is then n-fold transitive if H is infinite dimensional or of
dimension at least .

It suffices to show that the vectors u, au,..., a"u are linearly dependent. Suppose
to the contrary that they are linearly independent. Let « € C, ve H. By (n -+ 1)-
fold transitivity, choose x€ A4 such that xa*u = o*v for k& =0,...,n. By
Lemma 1(i) we have

0= i (—1)k p'*a) xa*ulk! = p(a — xe)v,

by Taylor’s formula. Thus p(a — ae) = 0 Ya € C. The Hahn-Banach theorem
implies that if p(a — ae) = 0 for n - 1 distinct values «, then all coeflicients of
p(a — oe) are zero. But ¢, # 0, a contradiction. §

TueorReM 3. Let A be an algebraically irreducible algebra of bounded operators
on a complex Banach space H containing the identity e. If, for ac A, p(ad a) = 0
then the point spectrum PS(a) is non-empty and for each o € PS(a), pla — oe) = 0.

Proof. Lemma 3 shows PS(a) # ¢ since there are non-trivial finite-dimen-
sional subspaces of H invariant under a. Hence there exist x€ Cand 0 2 v e H
such that (a — ae)v = 0. Hence (a — ae)*v = O for all positive integers k so
that by Lemma 1, 0 = p(ad(a — ae))av = p(a — ae)xv. Since A is 1-fold
transitive, p(a — ae) = 0. |

CoROLLARY. Let A be a simple C*-algebra with identity e, and a c A be such
that p(ad a) = 0. There exists o € C such that pla — xe) = 0.

Proof. Since 4 is simple it has a faithful irreducible *-representation which is
algebraically irreducible by [1, 2.8.4]. |

THEOREM 4. Let A be a C*-algebra of operators acting on a complex Hilbert
space H, and assume A contains the identity operator e. Let R = A" the ultra-weak
closure of A. If p(ad a) = 0, ac A, there exists z € Zy such that pla — z) = 0.

Proof. We recall a few facts about representations of C*-algebras. Let M
be the universal enveloping von Neumann algebra of R. If ¢ is any *-representa-
tion of R and = the natural injection of R into M, there exists a normal *-repre-
sentation § of M such that ¢(x) = §(n(x)) for all x € R. The image (M) is the
ultra-weak closure of ¢(R). If ¢ is irreducible, then §(M) = H(R)“* = L(H,)
where H, is the representation space of ¢. Moreover, if ¢ is a normal homo-
morphism of M onto a von Neumann algebra V, there exists a central projection
ce€ M and a *-isomorphism ¢ of M, onto N such that §(x) = fi(xc) Vx e M.

Now R has a complete set of irreducible *-representations ¢, , and in the above
notation, (%) =s(m(x)) where &, is a normal *-homomorphism of M on.% (H‘”B)’
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There exist central projections ¢; in M and *-isomorphisms JJ; of M, g O1 L(H, B)
such that (%) = is(xcs) Vx € M. Since &5 is an irreducible representation (and
hence algebraically irreducible by [1: 2.8.4]) we have by Theorem 3 that there
exists az € C such that p(¢ds(a) — o) = 0. One has | oy | < || (@)l < |l al),
and, for each B, p((m(a@) — ag)cg) = 0. By the completeness of the set of irre-
ducible representations, LUB ¢; = e the identity operator on the representation
space of M. Choose a collection of mutually orthogonal central projections
dge M such that d; < ¢z and > dy = e. Let s =Y agdy. Then se Zy, and
p(n(a) — s) = 0.

Let i: R — R be the identity map, and f the normal homomorphism of M on R
such that i(m(x)) = i(x) (=x) Vx € R. Let ¢ be a central projection in M and j an
isomorphism of M, on R such that i(z(x) = j(m(x)c) Vx € R. j sets up an isomor-
phism of the centre of M, with Z5, so there exists 2 € Zy such that j(sc) = =z.
Hence i(s) = 2, and 0 = i(p(m(a) — s)) = p(i(n(a)) — i(s)) = pla — 2). |

5. CENTRALIZING AUTOMORPHISMS

Let M be a von Neumann algebra and ¢: M — M a *-automorphism of M
onto M.

Lemma 4. If p e M is a projection $(p) = $(p) and $( p) = ¢(p).

Proof. ¢ preserves order, projections, and Z,,. §

CoroLLARY. If M is a von Neumann algebra which has no abelian central
summands and ¢ a *-automorphism such that $(p) = p for all core-free projections
(t-e. projections p for which p == 0) then ¢ is the identity automorphism.

Proof. If ce M is a central projection then ¢ = p for a core-free projection
pe MI[5, Lemma4]. Hence ¢(c) = ¢( p) = #(p) = p = c. If p is any projection,
p—p is core-free 50 p — p — (p — ) = $(p) — #(p) = #(p) — p. Hence
&(p) = p for all projections. Since ¢ is ultra-weakly continuous and M the ultra-
weak closure of the linear span of its projections the result follows. ||

Now suppose ¢ is a *-automorphism of the von Neumann algebra M such that
[H(x), x] € Zyy Vx e M.

Lemma 5. [¢(x), x] = O Vx.

Proof. If x = x* then [x, {§(x), #]] = O implies [¢(x), x] = O by [7, Lemma
6]. By the *-linearity of ¢ the result holds for all x. ||

LeMMA 6. If P(xy) 5= x, there exists a nonzero central projection c, such that
co%o € Zag - If, tn addition, cyxy = O then xy = (1 — ¢g) ().
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Proof. We follow [4, Lemma 1]. [¢(x), x] = 0 implies [¢(x + »), x + v] = 0.
Hence [¢(x), ] = [x,$(¥)] Vx, y € M. Replacing y by xy, [¢(x), xy] = [x, $(xy)] =
[x, ¢(x) $(3)] = ¢®)x, $(3)] + [x ()] ¢(¥) = $(x)[x, #(»)]. Moreover,
[#(x), xy] = *[d(x), ¥] + [$(x), x]y = *[¢(x), ¥] = x[x, #(»)]. This implies
($(x) — x)[x, $(¥)] = O ¥y so that (¢(x) — x)[x,¢] = 0 V¢ since ¢ is onto.
Finally replacing ¢ by st we get

(B(x) — x)slx, 1] =0 Vx,s,2e M. )

If ¢(x,) — x5 5 O then (M(¢(x,) — x,)M)~ is a nonzero ultra-weakly closed
two-sided ideal in M. There exists a central projection ¢, M such that
(M($(xo) — 2)M)~ = M, . From (2) we have that M(¢(x,) — x,) M[x,,t] =0
Vte M so that M, [x,,t] = 0 V¢ In particular, [c, , cgt] = 0 Vte M so that
£o% € ZM% = (ZM)co CZy.

Now M contains the identity operator which implies ¢(x,) — x, € M, . Hence
&(xy) — x5 = ¢yt for some t € M. If ¢xy = 0 then 0 = (1 — co)P(xo) — %) =
(1 — co) plxe) — %0 - 1

LemMa 7. If p is a core-free projection in M then $(p) = p or pd{p) = p.

Proof. Suppose ¢(p) = p and let p = ¢. By Lemma 4 there exists a nonzero
central projection ¢, such that ¢,p € Z,,. Since p is core-free and ¢p < p we
have ¢yp = 0. Hence 0 = cop = ¢op = coc- Also by Lemmad, p = (1 — c)d(p)
so that p = cp = ol — co) H(p) = ch(p) = p4(p). I

Our intention is to show that ¢ is the identity on one summand of M and the
other summand is abelian. Since ¢ takes abelian subalgebras of M onto abelian
subalgebras and central projections onto central projections it will take the I,
summand (== largest abelian central summand) of M onto the I; summand.
Hence we assume that M has no abelian summands. By the corollary to Lemma 2,
if ¢ is not the identity on M there exists a core-free projection p such that
&(p) # p. Let {p,} be a maximal collection of parallel core-free projections such

that(ﬁ(?a) # Do and setp = Zpu' ¢ = P_

LemMa 8. ¢ [, is the identity automorphism.

Proof. 1f ¢ |ar,_, is not the identity on M,_, there exists a core free p, =
po(l — e My_, such that $(py(1 — ¢)) # po(l —¢). But if py(l —¢) is
core-free in M, _, it is core-free in M. By the maximality of {p,}, po(1 — ¢) = 0.

But then ¢(py(1 —¢)) = po(1 —¢). 1}
COROLLARY. ¢ maps M, onto M, .

Proof. 1 —c =¢(1 —c) =§(1) — $(c) = 1 —$(c). $(xc) = (%) $(c) =
C A | .
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Lemma 9. M, = {0}.

Proof. We have p, = p#(p,)andc =p =_Z,__h, =Y pg . Claim: p(p,) =0
if B # a. For, p = Pegh(ps) so that Py = Pp(ps) = Ded( Ps). Hence pd( ) =
Peb( Pe) H(po) = Pud( Pap.) = O since p, and p, are parallel for « 5= B. Since ¢

maps M;on M,, ¢(pu) = ¢(Pa)c = ¢(pa)258 = 95(?&)5& = Ps contradiCting
the choice of the p,. |

TraeoREM 5. If ¢ is a centralizing *-automorphism of the von Neumann algebra
M and d the largest central projection of M for which M, is abelian then ¢ | M,_, S
the identity automorphism on M,_,; .

Remark 1. In the proof of Theorem 1 for prime rings essential use is made of
the result that if d, , d, and dyd, are derivations of a prime ring then d; = 0 or
d, = 0. If M is a von Neumann algebra, p and g nonzero core-free projections
with pg = 0 but p = 0 and 7 5= O then [p, [¢, x]] = O for all x € M. That is, if
dy(x) = [p, x], dy(x) = [g, x] then d,d, = 0 is a derivation but neither 4, nor d,
Is zero.

Remark 2. It would be desirable to prove Theorem 2 without the assumption
that ¢ preserves adjoints. We can do this in the special case that ¢(x) == axa™!
and a € M. For, suppose ¢ has this form and [¢(x), x] = O Vx € M. As before this
implies [$(x), ¥] = [%, H(y)] YV, y € M. In particular [¢(x), a] = [x, $(a)] = [x, a]
Vxe M, or [axa™l, a] = [x, a]. Hence, multiplying this relation out, we get
2ax = xa + a*xa~! and multiplying this on left by a—* we get

2x = alxa + axal YxeM. 3)

Let x = p, p an idempotent. Then a~'pa = r and apa = ¢ are idempotents
and (3) becomes

p=r+gq 4
This implies

2or =r+q  and 2up=r-+rq (5)

Now [apa~, p] = [p, apa™?] so that apa—p — papa™ = papa= — apa'p or
2apa'p = 2papa~t. That is rp = pr. From (5) rq = ¢r.

Now dp = (2p) = (r+q* = r+2rg+ q = 2p + 2rq so that p =rq.
From (4) 2rq = r + ¢ so that 2r¢ = rq + ¢ or ¢ = rq. Similarly r = rq. Hence
p =7 =gq. Now p =7 = a'pa so that ap = pa for all idempotents p € M.
Hence ac Z,,.

481/59/1-5



64 C. ROBERT MIERS

REFERENCES

1. J. DixMIER, “‘C*-Algebras,”” North-Holland, Amsterdam, 1977.

2. R. GOoDEMENT, A theory of spherical functions, I, Trans. Amer. Math. Soc. 13 (1952),
496-556.

3. I. N. HERsTEIN, Sui commutator degli anelli semplici,”” Rendiconti del Seminario
Matematico e Fisico di Milano,” Vol. XXXIII, 1963.

4. J. M. Mayng, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1)
(1976), 113-115.

5. C. R. Mizrs, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971),

717-737.

. E. C. PosNERr, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

7. C. R. PurnaMm, “Commutation Properties of Hilbert Space Operators and Related
Topics,” Ergebnisse der Mathematik, Band 36, Springer-Verlag, Berlin/New York,
1967.

8. S. Sakar, “C*-Algebras and W*-Algebras,” Springer—Verlag, Berlin/New York, 1971.

=)}



