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ABSTRACT 

The canonical factorization theorem for the symbol of a Toeplitz operator is generalized to a class 

of non-Toeplitz operators. The operators in this class may be described as input-output operators of 

time-varying linear systems. Dichotomy of difference equations plays an important role. 

0. INTRODUCTION 

Let TQ = [@k-j]&=, be a block Toeplitz operator with m x m matrix symbol 

(0.1) @(O = F <“@v, 14 = 1. 
“=-CC 

The Fourier series expansion in the right-hand side of (0.1) is assumed to be ab- 

solutely convergent. We consider T@ as an operator on 12, the Hilbert space of 

norm square summable sequences with entries in C”. It is well known (see 

[GKrl]; also [GF]) that TQ is invertible if and only if @ admits a right canonical 

factorization relative to the unit circle, that is, CD factorizes as 

(04 @(I) = Q-(C) Q+(C), (‘ 6 T> 

where @+ and &, g_(c) = @_(CP1), are .rn x m matrix functions which are 

analytic on the open unit disc ID, continuous 113, u T, and their determinants do 

not vanish on D u U. In this case, 
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which is a block upper-lower factorization of T. In this paper we study a gen- 

eralization of such a factorization for a class of non-Toeplitz operators. 

The generalization which we have in mind originates from the factorization 

theory for Toeplitz operators with a rational matrix symbol. Let Q, be such a 

matrix symbol, i.e., the entries of @ are quotients of scalar polynomials. Then one 

may use realization theorems from mathematical systems theory (see [K]) to 

show that @ admits a representation of the form 

(0.3) @(f,) =Z+C(CG-A)-‘& CE%, 

where A and G are square matrices of which the order Y may be larger than the 

order m of @‘, the pencil CG - A is regular on the unit circle I<] = 1, i.e., 

det(CG - A) # 0 for ]<I = 1, and the matrices B and C have sizes r x m and 

m x r, respectively (see [GK], Theorem 3.1). The factorization theorem for block 

Toeplitz operators mentioned above can be reformulated in terms of the rep- 

resentation (0.3). In fact, the following theorem holds (see Section 5 in [GK]). 

Theorem 0.1. Let @ be a rational m x m matrix function given by (0.3). Put 

A” = A - BC. Then @ admits a right canonical factorization relative to % if and 

only ifthe following two conditions hold: 

(i) det((G - AX) # Ofor I<[ = 1, 

(ii) C’=ImQ~KerQXandC’=ImP@KerP”. 

Here r is the order of the matrices G and A, and 

(0.4 

Q=&.$@W'Gd<, P=&G(IG-A)-‘dc, 

Qx =$-.;(<G-A”)-‘Cd6 
1 

Px =,,.;G(cG-A”)-‘d<. 

In that case a right canonicalfactorization @(<) = @-(0 @+(<) of @ relative to T is 

obtained by taking 

@-(c)=Z+C(cG-A)-‘(Z-p)& CEU, 

Q+(C) = Z + CT(CG - A)-’ B, < E U, 

@-(c)-l =I-C(Z-7)(C‘G-AX)-‘& <ET, 

Q+(C)-’ = Z - C(<G - AX)-’ pB, < E 8. 

Here r is the projection of C’ along Im Q onto Ker Q ’ and p is the projection along 

Im P onto Ker Px Furthermore, the two equalities in (ii) are not independent; in 

fact, thefirst equality in (ii) implies the second and conversely. 

Now let us remark that the representation (0.3) allows us to view the corre- 

sponding block Toeplitz operator T@ as the input-output operator of the follow- 

ing discrete time system: 
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(0.5) 

Axk+, = Gxk + Buk (k = o,l,. .) 

Yk= -cxk+, +Uk (k=O,l,...) 

x0 E ImQ 

where Q is the generalized Riesz projection appearing in (0.4). Such a represen- 

tation appears in [GK]. The above fact gives a hint for the class of non-Toeplitz 

operators that will be considered. To be more specific, we shall deal here with 

non-Toeplitz operators T = [7;,]:.=, that appear as input-output operators of 

time-varying discrete time systems. The role of the projections Q, P, P ’ and Q ’ 

in Theorem 0.3 is taken over by dichotomies for certain difference equations. 

This paper consists of three sections (not counting the present introduction). 

In the first section we recall the notion of a dichotomy and some of its properties. 

The second section gives an intrinsic characterization of the class of operators 

that we are dealing with. The time-varying analogue of Theorem 0.3 appears in 

Section 3. Generalizations to input-output operators of time-varying systems of 

other aspects of the theory of Toeplitz operators (like invertibility and Fredholm 

properties) will be the topic of a different publication (see [BGK2]). 

1. PRELIMINARIES ABOUT DICHOTOMY 

We begin by defining the notion of a dichotomy. Let a system 

(1.1) Ak+lXk+l =GkXk @=&I,...), 

be given, where (Ak+ I),“=, and (Gk)pzo are bounded sequences of Y x r matrices. 

We consider bounded sequences of projections (I - Qk)rzo in C’ satisfying the 

conditions: 

(1.2) rank Qk is constant (k = 0, 1, . .), 

(1.3) Gk(KerQk) c Ak+l(KerQk+l), Ak+t(ImQk+,) C GdImQk) 

and 

(1.4) Ak+t(KerQk+t)@Gk(ImQk)=C’ (k=O,l,...). 

Since the rank of the sequence of projections (I - Qk),“=, is constant, it follows 

from the latter direct sum condition that the mappings 

(1.5a) Gk IIm er :ImQk+Im(Gk~t~ek) (k=O,l,...). 

(1.5b) Ak+l KerQk+, :KerQk+l -+Im(Ak+lIKerQk+,) (k=O,l,...) 

are invertible. Using the inclusions in (1.3) we can therefore define the fol- 

lowing forward and backward evolution operators nzk and A,&, (k = 0, 1, ; 
n = k, k + 1, . .) associated with the dichotomy (I - &)p=o via 
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and 

(1.6~) A& = Z IKerek and A,& = Z Itmek (k = O,l,. .). 

Note that 

(1.7a) flLk : Ker Qk -+ Ker Q,,, A,&, : Im Qn + Im Qk, 

and 

(1.7b) LI&A;~ = A&, AcnALt = Ai,, (t > n 2 k > 0). 

Let us remark that by the direct sum condition (1.4) there exists a sequence of 

projections (Z’k)F=e in @’ such that 

(1.8) Im ZS = Im(& I Im ek), Ker h = Im(h+ 1 I Ker Qk+, 1. 

We call (Z’k)pzO the dual sequence of the sequence (I - Qk),“=,. 

A bounded sequence of projections (I - Qk)FzO with the properties (1.2))(1.4) 

above is called a dichotomy for the system (1.1) if there exist positive constants a 

and M, with a < 1, such that 

(1.9) IIA$II <ManPk, IlA,,II <ManPk (k=O,l,...; n=k,k-t-l,... ), 

and if the following three inequalities hold 

(1.11) sup ilpkll < 00, 
k=O.l,... 

where (pk)FzO is the dual sequence of projections defined by (1.8). 

Let (I - Qk)r=o be a dichotomy for the system (1.8). The number 

rank(Z - Qk) (k = 0, 1, . .) which is independent of k is called the rank of the 

dichotomy. Note that the invertibility of the mappings in (1.5a)-(1.5b) and the 

definition (1.8) of the dual sequence (pk)p=o show that rank Pk is equal to the 

rank of the dichotomy for each k = 0, 1, . . . We also call the first projection (20 

the initialprojection of the dichotomy (I - Qk)rzO. This definition of dichotomy 

appears in [BG] and [BGKl], where it is called normal dichotomy. 

Let us mention two special cases that are of particular interest. We say that the 

system (1.1) is dichotomically regular if 

(1.12a) &+I = Z, Qk=O (k=O,l,...) 

,~~~,,, IIGk+j-1 ‘..Gk]l”“) < 1. 
> 1 

In this case, conditions (1.2)-(1.4) and the first inequality of (1.10) are fulfilled 

trivially, the second inequalities in (1.9) and (1.10) are vacuous, and the first in- 

equality in (1.9) is equivalent with (1.12b). Finally, Pk = 0 (k = 0, 1,. .) in this 
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case, and hence (1.11) is also satisfied. Thus, a dichotomically regular system has 

the dichotomy (I - Qk)r==, with Qk = 0 for each k = 0, 1, . . . . 
We say that the system (2.1) is dichotomically coregular if 

(1.13a) &=I, Qk=Z (k=O,l,... ), 

(1.13b) lim ( SUP \\Ak+l -‘Ak+jlf” < 1 
1-m k=O,l,... > 

Also in this case, conditions (1.2)-(1.4) and the second inequality of (1.10) are 

fulfilled trivially, the first inequalities in (1.9) and (1.10) are vacuous, and the 

second inequality in (1.9) is equivalent with (1.13b). Finally, Pk = Z (k = 0, 1, . .), 

and hence (1.11) is also satisfied. In particular, a dichotomically coregular system 

has the dichotomy (I - Qk)rzO with Qk = Z (k = 0, 1, .). 

A system may have different dichotomies. Theorems 1.1 and 1.2 below (which 

appear, respectively, as Corollary 6.5 in [BG] and as part of Theorem 1.2 in 

[BGKl]) describe the freedom one has in the choice of the dichotomies. 

Theorem 1.1. If the system (1.1) admits a dichotomy (I - Qk)pzO, then for 

k=O,l,... 

Ker Qk = {xk E C’: jxk+l,xk+Z,. . . in @‘such that 

A n+l~,+l = G,x, (n > k) and Jirnm x, =0} 

In particular, Ker Qk and Ker Pk = Im(Ak+ 1 ( KerQk+,) are uniquely dejined, and 

all the dichotomies of (1.1) have the same rank. 

Theorem 1.2. Zf the system (1.1) admits a dichotomy (I - Qk)rEO, thenfor each 

subspace L of @’ with L @ Ker Qo = C’, there exists a unique dichotomy 

(I - &)r!o, of (1.1) with Im Qo = L. Furthermore, all the dichotomies of (1 .I) 

are obtained in this way. 

It will be convenient to consider two types of operations on systems of the 

form (1.1). Consider a second system 

(1.14) &+ixk+i = Gkxk, k=O,l,..., 

where (&+ I),“=, and ((?&)pzo are bounded sequences of V x U matrices. The 

systems (1.1) and (1.14) are said to be equivalent if r = ? and there exist invertible 

r x r matrices & and Fk, k = 0, 1, . , such that 

(1.15a) ;s! {lIE?ll, Il4?ll) < 00, 

(1.15b) ;;z k+l = Fi’Ak+,Ek+l> i?k=Fi’GkEk (k=O,l,...). 

In this case a sequence of projections (I - Qk)rzO is a dichotomy of (1.1) if and 

only if (I - E;‘QkEk)pTO is a dichotomy of (1.14). 
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The second operation is that of forming direct sums. By definition, the direct 

sum of the systems (1.1) and (1.14) is the system 

(1.16) “7’ Aktl]xk+, = [; gk]xk, k=O,l,.... 

If (I - Qk)rEO is a dichotomy of (1.1) and (I - &)TzO is a dichotomy of (1.14), 

then it is straightforward to check that the sequence of projections (I - ZZk)rcO 

where 

nk = k=O,l,..., 

is a dichotomy of the direct sum (1.16). The next theorem is proved in [BGK2]. 

Theorem 1.3. In order that the system (1 .l) has a dichotomy it is necessary and 

suficient that ( 1.1) is equivalent to a direct sum of a dichotomically regular and a 

dichotomically coregular system. 

We conclude this section with some relations with operator theory. Consider 

the system (l.l), and let L be a subspace of Cr. By I,’ we denote the Hilbert space 

of all norm square summable sequences with entries in @‘, and 

(1.17) Z$ = ((x0, Xl) .) E I,’ 1 x0 E L}. 

We define two operators as follows: 

(1.18) G : I$ -+ I,‘, G(XO,XI, . .) = (Goxo, Gxlr . . .), 

(1.19) A : I$ -+ I,‘, A(XO,Xl,. . .) = (A,X,,A*X*, . .). 

The following result is contained in Theorem 1.1 and Proposition 2.3 of [BGKl]. 

Theorem 1.4. Let A and G be as (1.18)-(1.19), respectively. Then the operator 

G - A is invertible zf and only tj” the system (1.1) admits a unique dichotomy 

(I - Qk),“= with Im Qo = L. Moreover, CG - A is invertiblefor each < on the unit 

circle T ifand only tf it is invertible for one C on the unit circle, and in this case 

& i (CG - A)-'GdC = diag(Z IL, QI, Qz,. . .>, 
i 

and 

& i G(CG - A))’ d< = diag(Po, Pi,. .), 

where (I - &)rzo is the unique dichotomy of (1.1) with Im Qo = L, and (Z$)r=o 

is its dual sequence ofprojections. 

The next result gives an interpretation of the dichotomy in the time invariant 

case, and appears as Theorem 3.3 in [BGK2]. 
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Lemma 1.5. Let A and G be r x r matrices. Then the system Axk+ 1 = Gxk 

(k = 0, 1, . .) admits a dichotomy ifand only ifcG - A is invertible for I<[ = 1. In 

this case, there exists a unique time invariant dichotomy Z - Qk = Z - Q, where 

Q = & ; (<G - A)-'G d<, 

and the dual sequence is given by Pk = P (k = 0, 1, . .), where 

p = & ; G(W - A)-’ d<. 

2. REALIZATION THEOREM 

In this paper we are interested in operators that appear as input-output op- 

erators of an input-output system. The input-output systems that we have in 

mind are singular time-varying systems of the form 

c 

( 

Ak+lXk+l = GkXk + BkUk (k = O,l,. . .) 

Yk = -Ckflxkfl + uk (k = 0, 1,. . .), 

x, E L. 

Here, (Gk)rEO and (Ak+i)rzO=, (Bk)pzO and (Ck+l)pzO are bounded sequences 

of matrices of sizes r x r, r x r, r x m, m x r, respectively, and we assume that 

(2.1) Ak+lXk+l = GkXk (k=O,l,...), 

has a dichotomy (I - Qk)p=-, with Im Qo = L. 

Choose an input sequence (~0, ~1,. .) in Ii. Then, by Theorem 1.4, the first 

equation in C has a unique solution (x0, xi,. .) E lr2L. Inserting the latter se- 

quence into the second equation in C yields an output sequence (~0, yi , .) E I,$ 

which is uniquely determined by (~0, ~1, . . .). It follows that C has a well defined 

input-output operator, denoted by T_F , which acts as a bounded linear operator 

on I,$ The latter statement also follows from Theorem 1.4 and from the fact that 

the sequences (Bk)kMo and (ck+ I),” o are bounded. 

As usual for operators on 12, we represent Tc by an infinite block matrix 

Tc = [$=o, where each TO is an m x m matrix. A straightforward application 

of Theorem 1.1 in [BGKl] (see also formula (4.6) of [BGK2]) shows that in this 

case 

(2.2) 
&,jG - G+ l”r’+ 1,j+ 1 (Ai+ 1 leer Q,+, )-‘(Ir - Pj)B, (i 2 d, 

Ci+1A,,,j(Gj IIme,)-‘PjBj * (i <j). 

Here (Pk)p=o is the dual sequence of projections of the dichotomy (I - Qk)rzo 

andAT+, j+l andA;+, j denote the forward and backward evolution operators. 

Since the’ sequence (I I Qk)rEo is a dichotomy, we can use the boundedness of 

the sequences (Bk)rYo and (Ck+i)FEo and the estimates (1.9)-(1.11) to show that 

there exist constants A4 > 0,O < a < 1, such that 

(2.3) 117~ll I Ma Ii-j’ (i,j = 0, 1,. . .). 
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In the next three sections, we study the invertibility of the operator Tc, its 

Fredholm properties and its UL-factorizations. In the present section we char- 

acterize the class of operators T on 12 that appears as input-output operators TC 

of the type considered here. 

Consider a bounded linear operator 

(2.4) T = [tij]& : Z; --$ I;. 

We say that T admits a realization if T = TE for some input-output system C of 

the form decribed in the first paragraph of this section. 

The following result appears as Theorem 4.4 in [BGK2]. 

Theorem 2.1. Let T = [tu]yzO be a bounded linear operator in 1;. Then Tadmits 

a realization ifand only if 

(2.5) lltijll I Ma Ii+ (i, j = 0, 1, . . .) 

for some positive constants M, a with a < 1, and 

(2.6) sup {rank H,-, rank H,‘} < 03, 
v=O,l,... 

where 

f”0 t”1 . . t,” 

H,- = 

ii : 

tv+1,0 h/+1,1 ..’ tu+1,v 

i I 

) (v = O,l,. . .), 
to,v to,v+1 ‘.. 

H,+= : : I t u, v &,I/+1 “. 1 ) (v=O,l,... ). 

This theorem may be viewed as an operator version of the realization theo- 

rems in Section 5 of [GKLe], which are algebraic in nature and concern lower 

triangular block matrices which do not have to be related to bounded operators 

on an &space. 

Finally, we make one remark about band operators. An operator T = [t~]~z;P=, 

in 12 is called a band operator if there exists a positive integer N such that tq = 0 

whenever Ii - ji > N. Theorem 2.1 shows that each band operator admits a rea- 

lization. 

3. CANONICAL FACTORIZATION 

Let T = [tij]yzo be a bounded operator in 12 in its standard matrix represen- 

tation where to are m x m matrices. The operator T is upper triangular (res- 

pectively lower triangular) if tii = 0 whenever i > j (respectively i < j). We say 

that T is diagonal if tij = 0 whenever i # j. Let us remark that if T is upper (re- 

spectively lower) triangular and invertible, then T-’ is also upper (respectively 

lower) triangular. We say that T admits a canonical upper lower factorization if 

there exist an invertible upper triangular operator T- and an invertible lower 
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triangular operator T+, such that T = T-T+. We refer to [GF] and [GKr2] for 

canonical factorizations of operators and functions. 

A necessary condition for T to admit canonical factorization is that T is in- 

vertible. This condition is not sufficient in general. 

It is easily seen that if T admits two canonical upper lower factorizations 

T = T-T+ = TL T:, then there exists an invertible diagonal operator D such that 

Ti = T-D and T: F D -' T,. Conversely, if T = T- T+ is a canonical upper 

lower factorization for T, then defining TL and Tl by the above formulas we 

obtain another canonical factorization. 

Assume that as in the introduction, T = Ta = [@i_j]F="=, is a Toeplitz operator, 

where @k are m X m matrices with CrXpoo ll@kll < co. Let Q(C) = C~Z~oo @kCk 

(< E T) be the symbol of T. Assume also that Q, admits a right canonical factor- 

ization Q(C) =@_(C)@+(C), where @+ and &, 6_(c) = @-(C-l), are m x m 

matrix functions which are analytic in the open unit disc ED, continuous on D u % 

and their determinants do not vanish on D u T. Put pi+(C) = CpZO r,‘<“, 

@_(<) =CEZ_,~~ck, and set 7-i =-&=...=O and 7; =-yc =...=O. 

Then the operators Te+ = [ri+-j]~z'=o and TQ_ = [~i:j]~x"=, are lower and upper 

triangular invertible operators, and the following canonical upper lower factor- 

ization holds 

(3.1) T@ = T@_ T@+. 

Conversely if TQ = T-T+ is a canonical upper lower factorization, then in 

particular, Ta is invertible. Whence, @ admits a right canonical factorization 

@ = Qi_@+. This factorization also induces the canonical upper lower facto- 

rization (3.1). By the uniqueness of the canonical upper lower factorization, it 

follows that there exists a diagonal operator D such that T- = T,_D and 

T, = D-'T@+. 

The above remarks show the equivalence between canonical upper lower fac- 

torization of Toeplitz operators, and right canonical factorization of matrix- 

valued functions in the Wiener class. By this equivalence, Theorem 0.1 is 

equivalent to a statement about canonical upper lower factorization of Toeplitz 

operators with rational symbol. 

We now present our extension of this result for input-output operators of time 

varying systems. 

Let T be the input-output operator of the system 

1 

Ak+lxk+t = G/& + &Uk (k = O,l,. . .), 

c yk = -ck+lxk+l +Uk (k = 0, 1,. .), 

x0 E L, 

where the system 

(3.2) /&+tXk+, = GkXk (k = 0, 1,. .) 

admits a dichotomy (I - Qk),“, with 

(3.3) Im Qo = L: 
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The next result gives necessary and sufficient conditions for the existence of a 

canonical upper lower factorization for T. The conditions are in terms of the 

following associated system 

(3.4) A;+,Xk+i = GkXk (k = 0, 1,. . .), 

where At+ 1 = A/‘+1 - &ck+l (k = o,l,. . .). 
In the statement below we use the following terminology about direct sums. 

Let be given a sequence of direct sum decompositions 

(3.5) vk@w,=c=I (k=O,l,...). 

We say that the direct sum decomposition (3.5) holds uniformly if the sequence of 

projections (nk),“=, defined via Ker nk = vk, Im ITk = wk (k = 0, 1, . . .), sa- 

tisfies supkZO llnkll < 00. 

Theorem 3.1. Let T be the input-output operator of the system C, where the sys- 

tem (3.2) admits the dichotomy (I - Qk)p==, with (3.3), and let (Pk)r!o be the 

corresponding dual sequence of proj’ections. Then the following conditions are 

equivalent: 

(I) The operator Tadmits a canonical upper lower factorization. 

(II) The associated system (3.4) admits a dichotomy (I - Qt)pTo such that 

the following direct sum holds uniformly 

(3.6) ImQkCBKerQl =C’ (k=O,l,...). 

(III) The associated system (3.4) admits a dichotomy whose dual sequence of 

projections (Pi ),“=, satisfies the following direct sum condition untformly 

(3.7) ImPk$KerPi =C’ (k=O,l,...). 

Moreover, assume that (3.6) or (3.7) holdf or one dichotomy (I - QL)p=o of (3.4) 

with dual sequence ofprojections (Pkx),“==,, and define projections pk and rk in @’ 

via 

Ker & = Im Pk, Im pk = Ker Pt (k = 0, 1, . .) 

Ker 7k = Im Qk, Im rk = Ker Qc (k = 0, 1, . . .). 

Then the canonical upper lowerfactorization T = T_ T+ holds, where T_, T+, T_-‘, 

T;’ are, respectively, the input-output operators of the following systems 

{ 

Ak+lXk+l =GkXk+(z-/‘k)BkUk (k=O,l,...), 

c- yk = -ck+lxk+l +Uk (k = O,l,. .), 

x0 E L, 

Ak+ lXk+ 1 = GkXk + BkUk (k = 0, 1,. .), 

C+ Yk= -ck+lTk+lXk+l +Uk (k=O,l,...), 

x0 E L, 
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A;+ lxk+ 1 = GkXk + BkUk (k = 0, 1,. . .), 

c: Yk = ck+l(z - Tk+l)xk+l + uk (k = 0, 1,. .), 

x0 E 4 

and 

A:+ Ixk+ 1 = GkXk + PkBkUk (k = 0, 1,. . .), 

c: yk = ck+lxk+l + uk (k = 0, 1,. .), 

x0 E L, 

where At+, = Ak+ L - &ck+, (k = 0, 1,. . .). Finally, the entrieS of the OperatOrS 

T_ = [t;]rTo, T+ = [tT]y=o, T:’ = [y;]yEo, T;’ = [r$]rzo are given by the 

following formulas 

ti = Ci+lA- ,+,,j(Gj )Imp,)Y1(Zr - Pj)Bj (i <j), 

tl: = Si,jG - Ci+lTi+lnlt,,,j+, (Aj+l IK~~Q,+,)-‘(A-P~)B~ (i>.d, 

ri = -Ci+l(Zr -7i+l)AlyJl,j(Gj (Im~~)-Ip,“Bj (i <j)j 

?f$ = &,jZtn + ci+lA,“,+l,j+, (AT+, (KerC);+,)-‘PjBj (i >A, 

and t$ = 7; = 0 (i <j), and t; = 7; = S,Z,,, (i > j), where Ali’+j+, andAy+l,j 

(respectively A,?:, , j + , and AL?;,, j) are the forward and backward evolution opera- 

tors of the system (3.2) (respectively (3.4)) corresponding to the dichotomy 

(Z - &)r!o (respectively (1 - Qc)rzo). 

Remark. Note that by Theorem 1.1, the subspaces Ker Qc and Ker P; 

(k = 0, 1,. .) d o not depend on the particular choice of the dichotomy 

(Z - Qc),“o of the system (3.4). Hence, if (3.6) or (3.7) hold for one dichotomy 

of (3.4) then they hold for each dichotomy of (3.4). For the same reason, the 

projections Pk and r/, (k = 0, 1, .), and consequently also the systems c_, c+, 

CT, and CJ are the same for all the dichotomies (I - Ql),“=, of the system 

(3.4). 

In contrast with the Toeplitz case, in the time-varying case the invertibility of 

T is not equivalent to the existence of a canonical upper lower factorization. 

If T = Te is a Toeplitz operator in Zi with a rational matrix-valued symbol @, 

then one may represent Sp as in (0.3) and view Te as the input-output operator of 

the system (0.5). Theorem 3.1 applies to this representation of TG as an input- 

output operator. Using the description given in Lemma 1.5 of dichotomies of 

time invariant systems, it follows that condition (i) and either direct sum condi- 

tion in (ii) of Theorem 0.1 are equivalent to condition (II) or condition (III) 

above. This proves the first part of Theorem 0.1. The explicit description of the 

right canonical factorization of Q, given in the second part of Theorem 0.1 follows 

from: (a) the connections between the right canonical factorization of Q, and 

the canonical upper lower factorization of the operator TG, given in the be- 

ginning of this section, (b) the explicit formulas of the systems C* and C; given 



in Theorem 3.1, and (c) the representation of Toeplitz operators by input-output 

systems, given by (0.5). 

On the other hand the proof of Theorem 3.1 above is obtained from the 

Banach space version of Theorem 0.1. Before the statement of the latter result 

some preliminary definitions are in order. Let X be a Banach space and L(X) the 

space of bounded linear operators acting in X. We consider an operator-valued 

function @ : UH C(X); t I+ @(e”). A right canonicalfactorization of @ relative to 

the unit circle is a factorization of the type 

@(<) = @p-(0@+(<) (< E T), 

where @+ and &_, g_(c) = @-(c-l), are C(X)-valued functions which are ana- 

lytic on the open unit disc D, continuous in the uniform operator topology on 

D U ‘U, and are invertible on D U 8. 

We are interested in operator-valued functions in realized form and begin by 

describing this notion. Let X, Xi and X2 be Banach spaces, and G, A : Xl H X2, 

B : X H X2 and C : Xi H X linear bounded operators such that <G - A is in- 

vertible for each C E U. Then the formula 

(3.8) @(<) = I + C(<G - A)-‘B ((‘ E U), 

defines an operator-valued function @, and in this case we say that @ is given in 

realizedform by the formula (3.8). The following result is the Banach space ana- 

logue of Theorem 0.1. 

Theorem 3.2. Let @ be an operator-valued function given in the realized form 

(3.8). Put AX = A - BC. Then Q, admits a right canonicalfactorization relative to 

U tfand only tf the following two conditions hold true: 

(i) <G - A” is invertiblefor each c E U, 
(ii) Xi =ImQ@KerQXandX2=ImP@KerPX. 

Here 

(3.9) 

Q=&.;(CG-A)-lGd<, P=&G(CG-A)-‘dC, 

Qx =&(CG-a”)-‘GdC, P” =&.JG(‘G-AY)-ld~, 

In that case a right canonicalfactorization pi(<) = @-(c)@+(C) of @ relative to U is 

obtained by taking 

[ Q_(c) = I + C(<G - A)-‘(I - p)B, (<ET), 

(3.10) 
Q+(c) = I + Cr(CG - A)-‘B, (<ET), 

@-(c)-l = I - C(Z - 7)(<G - A”)-‘B, (~EU), 

l G+(c)-’ = I- C(<G - AX)-lpB, 

Here r is theprojection of Xl along Im Q onto Ker Qx and p is theprojection of X2 

along Im P onto Ker P’. Furthermore, the two equalities in (ii) are not in- 

dependent; in fact, theJirst equality in (ii) implies the second and conversely. 
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This theorem has been proved in the finite dimensional case in [GK]. Most of 

the proof in [GK] carries over without any change to the infinite dimensional 

case and will not be repeated here. The remaining details to be changed can be 

proved without much difficulty in the same spirit as in [GK]. Let us also remark 

that in [GK] the more general case of a Cauchy contour is considered, however 

we shall not need this here. 

Before the proof of Theorem 3.1, we describe the connection between input- 

output operators of systems and operator-valued functions in realized form. As 

above, let T = [t~]~zo be the input-output operator of the system C and let < E T 

be arbitrary. It follows easily from the definition of the dichotomy that since 

(I - Qk),“=, is a dichotomy for the system (3.2), (I - Qk)pYO is also a dichotomy 

for the system 

&+ix/‘+i = [GkXk (< E T; k = O,l,. .). 

Hence, for each C E T the system 

1 

Ak+lXk+l = CGkXk+BkUk (k= 0, I,.. .), 

c(c) Yk = -Ck+lXk+l + uk (k = 0, 1,. .), 

x0 E L, 

admits a well defined input-output operator, which we denote by 

T(C) = [~qK,l;& CC E T). 

The entries tq(<) of T(c) are obtained by the formulas (2.2) after replacing Gk by 

[Gk. This shows immediately that tV(<) = t&-j. Hence, 

(3.11) T(I) = [tii<i-i];x=o (< E U). 

One can approach the function T(c) from a different direction as follows. 

Define the space IL and the operators G and A : l,.TL + I,’ as in (1.17)-(1.19). 

Define also operators B and C via 

(3.12) 
B : 1; + I,?, B(xo,xi,...) = (Boxo,Bixi,...), 

c : I$ + 12, C(XO,Xl,. .) = (ClXl, c*x*, . .). 

Then, it follows immediately from the definition of the input-output operator 

given in Section 2 that G - A is invertible and 

(3.13) T=Z+C(G-A)plB. 
I 

By applying these considerations to the system C(c) (< E U) and its input-output 

operator T(c), it follows that <G - A is invertible and 

(3.14) T(C) = Z + C(CG - A)-+ (< E U). 

In view of this equality we call the operator-valued function T(c) the transfer 

function of the system C. Equality (3.14) gives a representation of the transfer 

function in realized form. The interplay between the representations (3.11) and 

(3.14) of the transfer function is essential in what follows. For future reference we 



note here that (3.13) and (3.14) imply the following relation between the input- 

output operator T of the system C and the corresponding transfer function T(c) 

(3.15) T = T(1). 

Proof of Theorem 3.1. The proof is divided into four parts. 

Part (a). Here we prove that condition (I) implies condition (II). Assume that 

the input-output operator T of the system C admits a canonical upper lower 

factorization T = T_ T+. Denote the entries of the operators T, T_, T+, T:’ and 

T;’ by T = [tq]~zo,, T_ = [t;]T=o,, T+ = [t$]rEo, T:’ = [~i,-]~=o, and Ti’ = 

h;l;d. 
The equality T_ = TT;’ and the fact that T;’ is lower triangular imply that 

tq = CkmT j tikT$. 

Recall that by the inequality (2.3) we have 

llt;kll < lady 

where A4 > 0 and 0 < a < 1. Combining this inequality with the preceding 

equality, and taking into account that t; = 0 for i > j, we obtain 

(3.16) Ilt;/l < CkM_jM&klll(T+)plIl = Mlali-‘l (i,j = 0, 1,. .), 

where Mi = MI1 T;’ [I( 1 - a)-‘. Similarly, we have 

(3.17) Iltill < M&j’ (i,j = 0, I,. .), 

where M2 = M IIT:’ II (1 - a)-‘. 

Now Theorem 6.1 of [BGK2] shows that the inverse operator T -’ = [y~]~=o 

is also an input-output operator. Hence, there are positive numbers it43 and al, 

with al < 1 such that 

Ii-k’ 
lhikll 5 M3q . 

As in the previous paragraph, this inequality and the factorization T* -’ = 

T_*-IT;-‘lead to 

(3.18) I]~~]/, ]]r;l] < Mqa/i-i’ (i,j = O,l,. . .), 

where M4 is a positive number. 

Let 

(3.19) T(C) = [tii<i-i];zo=o = I + C(<G - A)-% (C E U) 

be the transfer function of the system C. We define operator-valued functions by 

the following formulas 

T_(c) = [t,<i-‘];z’=o, T_“(I) = [-&‘I;:‘=0 (ICI 2 I), 
and 

T+(c) = [t$-j]T+ T+V) = [r;C’-‘l&i (ICI 5 1). 
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By the inequalities (3.16)-(3.18) and the triangularity properties of T?’ and 7’:‘, 

it follows that T*(c) and T:(c) are continuous operator-valued functions on 

their respective domains of definitions and are analytic in the interiors of these 

domains (and at co for T_(c) and T_” (C)). M oreover, after writing the factor- 

ization T = T_ T+ entrywise it follows easily from the above definitions that 

(3.20) T(C) = T-(i’)T+(<) (< E u). 

Similarly, the equalities T+T;’ = T;’ T+ = I, T_ T:’ = T:’ T_ = I, the trian- 

gularity of T, and T_, and the above definitions imply 

T_X(C-‘) = T:l((pl) and T+?(C) = T;‘(C) (ICI 51). 

These equalities and the above properties of T*(C) and Tc (0 show that (3.20) is 

a right canonical factorization for T(c). 

Since T(c) admits a right canonical factorization, and in view of the realized 

form in (3.19) for T(c), we may apply Theorem 3.2. It first follows that the 

operator G - A” is invertible. By Theorem 1.4 this means that the system (3.4) 

admits a dichotomy (I - Qt),“,0 with Im Qt = L. In view of equality (3.3) we 

also have Im Qo = L, and therefore, 

(3.21) Im Qo @ Ker Q,” = C’. 

Further, the first direct sum in condition (ii) of Theorem 3.2 leads to 

(3.22) Im Y$ s (CG - A)-‘G d< @ Ker 
T 1 [ & 4 (CG - AX)-‘G d< 1 = lrTL. 

On the other hand, the integral formulas for the dichotomy appearing in Theo- 

rem 1.4 imply that 

and 

& J (CG - A)-‘G dC = diag(Z IL, QI, Qz,. ..I, 

~S(CG-~x)-lGdC=diag(Zl~le;,Q;,-..). 

These diagonal representations and the direct sum condition (3.22) imply that 

the following direct sum condition holds uniformly 

ImQk@KerQ{ =@’ (k=1,2,...). 

Combining this with (3.21) we obtain condition (II) of Theorem 3.1. 

Part (b). Here we prove that condition (II) implies condition (III). Assume 

that (II) holds. Then the associated system (3.4) admits a dichotomy 

(I - Q;)r=o such that the following direct sum holds uniformly 

(3.23) Im Qk @ Ker Q$ = C’ (k = 0, 1,. .). 



In particular, we have 

Im QO @ Ker Q,” = C’, 

and hence by (3.3) 

L@Ker Qc =C’. 

Thus, by Theorem 1.2 the associated system (3.4) admits a dichotomy 

(I - Q~)~Y=, such that 

Im Q,” = L. 

Theorem 1.4 now shows that the operator-valued function <G - Ax is invertible 

for each < E T. Thus, condition (i) in Theorem 3.2 holds. 

Now recall that by the characterization of the sequence of kernels of a di- 

chotomy given in Theorem 1.1, we have 

Ker Qz = Ker Qt (k = 0, 1, . .). 

Hence, by (3.23) the following direct sum holds uniformly 

Im Qk $ Ker Q,” = @’ (k = 0, 1, . .). 

In a similar way as in Part (a), this uniform direct sum and the first formula in 

Theorem 1.4 imply that 

Im Q CD Ker Qx = l,?L, 

where Q and Qx are as in Theorem 3.2. Thus the first part of condition (ii) in 

Theorem 3.2 holds. By the last sentence in Theorem 3.2 we obtain 

ImP@KerPX =l,‘. 

Translating this via the second formula in Theorem 1.4, we obtain that the fol- 

lowing direct sum holds uniformly 

ImPk$KerPt =@’ (k=O,l,...), 

where (Pk)pEo is the dual sequence of (I - Qk),“=,. Hence, condition (III) of 

Theorem 3.1 holds. 

Part (c). Here we prove that condition (III) implies condition (I), and the ex- 

istence of the upper lower canonical factorization T = T-T,, where T-, T,, T:' 

and T;' are the respective input-output operators of the systems C- , C+, C” , 
and C,“appearing in the statement of Theorem 3.1. 

Assume that (III) holds, and let (I - Qc),“=o be a dichotomy for the asso- 

ciated system (3.4) whose dual sequence of projections (PE)r=o satisfies the fol- 

lowing uniform direct sum condition 

(3.24) Im Pk @ Ker Pz = @' (k = 0, 1,. .). 

In particular, we have Im PO @ Ker PO" = C'. Hence, Theorem 6.1 of [BGK2] 

shows that T is invertible and that Im Qo @ Ker Q{ = Cr. 
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As in Part (b), by (3.3) the last equality leads to L $ Ker Q{ = @‘, and there- 

fore Theorem 1.2 shows that the system (3.4) admits a dichotomy (I - Q$),“=O 

with Im Qt = L. Theorem 1.4 then implies that <G - AX is invertible for each 

C E T. Now define two projections P and P ’ as in Theorem 3.2. By Theorem 1.4, 

we have 

P = diag (PO, PI,. .), Px = diag (P<, Pr, .), 

where (Pc)r=0 is the dual sequence of the dichotomy (I - Q,J)pzO. On the other 

hand, Theorem 1.1 shows that 

KerPi =KerPt (k=O,l,...), 

and hence, the uniform direct sum condition (3.24) implies that 

ImP@KerPX =IL. 

Hence, we may apply Theorem 3.2 to the effect that the transfer function 

(3.25) T(() = [t&-j];& = Z + C(cG - A)-% (< E U) 

of the system C admits a right canonical factorization 

(3.26) UC) = @-(O@+(c) (< E u), 

where the factors Q_(C) and G+(c) are given by the formulas (3.10). 

Let 7 and p be the projections as defined in the statement of Theorem 3.2. It 

follows from the formulas in Theorem 1.4 that r is the projection in I;L along 

L 6B Im Qi @ Im Q2 @ . . onto 0 @ Ker Qi @ Ker Q2 @. ., and that p is the 

projection in I,’ along Im PO CD Im PI CE Im P2 @ . . onto Ker PO @ Ker PI @ 

Ker P2 $ . Further, let pk and Tk be the projections in @’ as defined in the 

statement of Theorem 3.1 (k = 0, 1, .). The above description of the kernel and 

the image of r and p implies that 

and 

r = diag (0 IL, 71,72,. . .) : ZrfL --f ZrfL 

p = diag (po,pl,p2,. .) : I,’ + I,‘. 

Thus, it follows from the formulas (3.12) for the operators B and C that pB and 

Cr have the following form 

i 

pB:+1,2, B(xo,xl, . . .) = (POBOXO, PI&XI,. . .I, 

CT : lZL --) 12, C(XO,Xl,. .) = (C171x1, C272X2,“.), 

and similar formulas hold for (I - p)B and C(Z - T). After comparing the above 

formulas with (3.12), and comparing (3.13) with (3.10), it is apparent that the 

functions Q_(C), Q+(C), @-(c)-l and G+(c))’ are the transfer functions of the 

systems C-, C,, C_” and Et appearing in the statement of Theorem 3.1, 
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respectively. Consequently, the general form (3.11) of the entries of a transfer 

function shows that these transfer functions have the form 

1 

@_(<) = [t;<i-i];ZO (C E T), 

(3.27) 
Q+(C) = [t;<‘-i];Zo (C E T), 

@-(c)-l = [r;<i-j];Eo (4- E T), 

@+(0-l = hipl~dl cc E n 

for some suitable m x m matrices I; and +y$. However, the canonical factoriza- 

tion (3.26) implies by definition that Q+(c) and @T’(C) admit analytic continua- 

tions in the disc{< : I<[ < l}, while @_ (<) and @I’ (<) admit analytic con- 

tinuations in the region {C : 151 > l} U 03. Hence, the representation (3.27) shows 

that 

(3.28) 
{ 

tii =r; =o (i>j), 

t$=$=O (i<j). 

Denote by T-, T+, T_" and T+" the respective input-output operators of the 

systems C-, C+, C_” and C+” appearing in the statement of Theorem 3.1. Since 

@-(I), @+ (0 @- (c)Y’ and G+(C)-’ are the transfer functions of these systems, it 

follows from (3.15) that 

1 

T- = @_ (1) = [t,]y=,, 

(3.29) 
T+ = G+(l) = [t;]yYO, 

T_" = Q_(l)-’ = [y;];Z)=o, 

T+" = Q+(l)-’ = [$];=a, 

where we used (3.27). These equalities show that T_ and T+ are invertible with 

(3.30) T:' = T_" = [yij]yzo and T;' = T+" = [$]Tco. 

In particular, it follows from these equalities and (3.28) and (3.29) that the 

operators T- and T:' are upper triangular and the operators T+ and T;' are 

lower triangular. Furthermore, the factorization (3.26) and the equalities (3.29) 

imply that T admits the following factorization 

(3.31) T= T_ T+. 

By the last mentioned invertibility and triangularity properties of T_ and T+, 
this factorization is a canonical upper lower factorization for T. Thus condition 

(I) holds. Finally, T_ and T+ are the input-output operators of the systems C- 

and C,, respectively, and by (3.30) T:' and T;' are the input-output operators 

of the systems C: and C:, respectively. 

Part (d). We complete the proof of Theorem 3.1 by deriving the formulas in 

the last part of its statement. 

We first derive these formulas in the case when (I - Q<)rZO is the unique 

dichotomy of (3.4) satisfying Im Ql = L, and (P,X)p=s is its dual sequence of 

projections. 
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Let T_ = (t;)y=, and T+ = (t$)r=, be the input-output operators of the 
systems C_ and C+, respectively. Then by Part (c), the canonical upper lower 
factorization T = T- T+ holds, and the operators T:’ = (7;)yzo and T;’ = 

(yiT)TEo are the input-output operators of the systems CJ and Et, respectively. 
Since (I - Qc)& is the unique dichotomy of (3.4) satisfying Im Q: = L, the 
entries of these operators may be computed from the formula (2.2). Taking into 
account the fact that T- and T:’ are upper triangular and T+ and T;’ are lower 
triangular the following formulas follow from (2.2) 

&,j[Zm - Ci+l(Ai+l lKerQi+, )-’ (Zr - Pi)(Zr - pi) Bi] (i >A, 

iii = Ci+lJ+,,j(Gj JIme,)-l Pj(Zr - pi) Bj (i <A, 

h,jZm - Ci+l Ti+l nT+‘,,,j+,(Aj+l IKerp,+,)-’ (Zr -Pj)Bj (i Lj), 
ti; = 

0 (i <A, 

7; = 
6i,j[Z,+Ci+I(z,-Ti+I)(Ai;llKerV:,l)-1(Z~-PiX)Bi] (i>j), 

-Ci+l(Z,-~i+I)n,X,-l,j(Gj Ilme;)-‘P,“~j (i <j), 

and 

7; = 
h,jzm+ G+l Aix++l,j+,(A~+l lKerg,;,)-l(Z,-Pi")~jBj (i>j)~ 

0 (i <j). 

Here, AT+ i, j+l and Ai, i, j (respectively Al?:,, j+, and AIF;,, j) are the forward 
and backward evolution operators of the system (3.2) (respectively (3.4)) relative 
to the dichotomy (I - Qk)rEO (respectively (I - Q,“)y=J. 

Now recall that by the definition of pk, Ker pk = Im Pk and Im Pk = Ker P: 

(k = 0, 1, . ). Hence, 

(3.32) Pk(Z, - &) = Z,. - pk, (Zr - P;),,k = ,,k (k = 0, 1,. . .). 

By the left hand side of this equality we have 

(3.33) (Zr - Pk)(Z, - ,&) = 0 (k = 0, 1,. . .). 

Inserting this equality in the above formula for li; we obtain 

(3.34) ti = z, (i = O,l,. ..). 

Since both T- = [t;]r=, and its inverse T:’ = [r;]rzo are upper triangular, 
this leads to 

(3.35) -yiT =I, (i=O,l,... ). 

After inserting (3.34) and (3.35) in the above formulas for the entries ti;, t;, ri 
and riT, and further simplifying via (3.32), we obtain the formulas in the last part 
of the statement of Theorem 3.1. 
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We still have to show that the formulas for t;, t$, 7; and 7; in the statement 

of Theorem 3.1 are applicable with any choice of dichotomy of the system (3.4). 

Note that the dichotomy (I - Qk)pEO of the original system (3.2) is uniquely 

determined by the condition (3.3), and so is its dual sequence (Z’k)rTO. Hence, 

the transformations (&‘+I IKerex+,)-‘, (Gk Irmp,)-‘, $+i,j+, and ny+t,j, are 

uniquely determined. In addition, it follows from Theorem 1.1 that Ker Qz and 

Ker Pt are the same for all the dichotomies of the system (3.4). Therefore, the 

transformations (A$+ 1 IQ* Q;+ , )-’ and AzF:l,j + , are also uniquely determined. 

Moreover, by the remark following the statement of Theorem 3.1, the projections 

Pk and rk are also the same for all the dichotomies of (3.4). Inspecting the for- 

mulas in Theorem 3.1, it follows from these remarks that the formulas for tf, tlT 

and $ have the same value for all the dichotomies of (3.4). Thus, there remains 

to be shown that the expression for ~~7 given in Theorem 3.1 is valid for all 

choices of dichotomies of the system (3.4). We may clearly assume that i < j, and 

hence, we must prove that the expression 

(3.36) -C;+l(Z~-~i+l)~~~~,j(Gj~~m~~)~lPjx~j (iIj)l 

is the same for all dichotomies of (3.4). 

As above, let (I - Qz)rzO be the unique dichotomy of (3.4) satisfying 

Im Ql = L, (Pt )," o be its dual sequence of projections, and AIFz,, j + , and A::, ,j 

be the forward and backward evolution operators. In addition, let (I - Qz)reO 

be an arbitrary dichotomy of (3.4) with dual sequence (i”,x),“=, and forward and 

backward evolution operators Ai”,‘,, j+ 1 and ili”,-i, j. 

The following formula follows from Lemma 2.6 of [BGK2]. 

(3.37) j,X,-i,j(Gj Itme:)-’ = Q,“+i Ai”,-t,j(G/- /rm~;)-’ (Pi” IImp;) (i<.Z). 

In addition, by the definition of ri+ 1 the equality Im Ti+ 1 = Ker Qi”, , holds. By 

Theorem 1.1, this leads to Im ri+ 1 = Ker Q,“+ , . Hence, 

(I,-ri+i)(Zr-QF+i)=O (i=O,l,...), 

and therefore, 
_ 

(Zr - Ti+i) = (Zr - Tit,) Qi’+l (i=O,l,...). 

These equalities and (3.37) imply 

(Zr - ri+ 1) ~~‘~i.,(Gj Itm e; )-’ 

(3.38) 

1 

=(I,-7i+l)ei+lA:i,,j(GjI1me,‘)-‘(P,” IImp;) (i<.Z) 

= (Zr- Tl+i)Aix,-i,j(Gj Itme;)-‘(P,” (tm~;)- 

Now recall that by Theorem 1.1, Ker pj” = Ker Pi" (j = 0, 1, . ). Hence, 

P,"(Z, - Pj") = 0, and therefore 

PjXPjX = Pj" (j = 0, 1,. . ). 
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This leads to (P,” IIm Px 
I 

) Fix = PTpjx = P/" (j = 0, 1,. ). Therefore, (3.38) im- 

plies that 

1 

(I, - r~+t)~~‘~t,~(Gj It,o;)-‘P, 

= (1, - ri+ I) Aix,-t,j(Gj Itm QY)-~ (Pi” Itm p,x,Py (’ <j) 

= (Z, - ~,+l)il:,-,,j(G,II,e,“)-‘P,“. 

Hence, the expression in (3.36) is the same for all the dichotomies of the asso- 

ciated system (3.4). 0 

Remark. The property ti; = Z, (i = 0, 1, . ) of the factor T_ = [tj;]TEo given 

by equality (3.34) above, reflects the property 

(3.39) @-(oc) = I 

of the factorization Q(c) = Q_(c) Q+(C) (< E U) given in Theorem 3.2. We now 

show that (3.39) holds true in general, using the notation of [GK]. By equality 

(5.20) of [GK] we have 

(3.40) Q-(c) = I+ Ct(CGtt - AH-~& (C E Jr), 

where Gtt and At,, B1 and Ct are suitable operators whose relevant property 

here is that the pencil 

is D_ U T regular, where El_ = {C : I<1 > l} U {cG}. By definition, this implies in 

particular that Gt 1 is invertible, and therefore equality (3.39) follows immediately 

from the representation (3.40). 
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