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Let K be a number field and A an abelian variety over K. The K-rational points of A are known 

to constitute a finitely generated abelian group (Mordell-Weil theorem). The problem studied in 

this paper is to find an explicit upper bound for the rank r of its free part in terms of other in- 

variants of A/K. This is achieved by a close inspection of the classical proof of the so-called ‘weak 

Mordell-Weil theorem’. 

1. Introduction 

Let K be a number field and A an abelian variety over K. The K-rational points 

of A are known to constitute a finitely generated abelian group (Mordell-Weil 

theorem) and it is an interesting question to give an explicit upper bound for the 

rank r of its free part in terms of other invariants of A/K. 

In case A is an elliptic curve and K= Q there are already some theorems in this 

direction. For example, Tate proved the following (cf. [2, Chapter 61): 

“Let E be an elliptic curve over Q given by an equation y2 =x3 + ax2 + bx with 

a, b E 12. Then TIS + t + 1 where s and t are the numbers of prime divisors of b and 

a2-46 respectively. (Note that the discriminant of this model of E is 24b2(a2-4b).)” 

A somewhat sharper bound for elliptic curves over Q having Q-rational (not 

necessarily 2-) torsion points can be found in [5], and for elliptic curves over Q ha- 

ving no rational 2-torsion points a similar bound is obtained in [I]. 
Under the assumption of very powerful conjectures (Birch and Swinnerton-Dyer, 

Taniyama-Weil and the generalized Riemann hypothesis), Mestre proves in [6] and 
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[7] that for elliptic curves E over Q, the asymptotic equality r = O(log N/log log N) 

(with N the conductor of E/Q) holds. It seems to be beyond our present knowledge 

to obtain such a result without using these hypotheses. Mestre also mentions in the 

introduction of [6], that for elliptic curves E/Q one can prove r = O(log N) without 

using any conjectures. This type of bound is true for abelian varieties over number 

fields in general; our aim in this paper is to prove this fact. 

More precisely our theorem is the following: 

Theorem 1. Let K be a number field and A an abelian variety over K. Write 
d = [K : Q], g = dim(A) and r = rank(A(K)). Denote by JyAjK the conductor of A/K 
and by NKjQ the norm with respect to K/Q. Then one has 

rs CJoglN~&G,~ I + G (1) 

where C, is a constant depending only on [K : Q] and on dim A, and C2 is another 
constant depending not only on dim A and on [K : Q] but also on the discriminant 
of K/Q. In particular, one can take for C, and C2 the values 

and 
d log IdK,QI nz,’ (22g-2i)2 

The proof will be a refinement of that of the (weak) Mordell-Weil theorem, as 

is already remarked in [6] for the case K = Q, dim A = 1. 

2. A result from algebraic number theory 

In this section we will prove the following: 

Proposition 1. Let K be a number field and L a finite extension of K. Denote by 
A,,, the discriminant of this extension. Then for every prime ideal p of K one has 

~&A&I [L : K] - 1+ [L : Q]log([L : K])/log p. (2) 

where up is the valuation at p andp is the characteristic of the residue class field at p. 

This is [lo, Corollaire on p. 1281; see also [9, Chapter III, the end of $61. The 

proof of it follows immediately from the corresponding local result: 

Proposition 2. Let L, c L2 be a finite extension of local fields. Write, as usual, f 
for the degree of the corresponding extension of the residue class fields and e for 
the ramification index. Suppose that these residue class fields have characteristic 
p>O. Denote by v, the discrete valuation on L1 . Then 
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To prove this, write the extension as L, c L, c L2, with L3/L, unramified of 

degree f and L,/L, totally ramified of degree e. One has dLXIL, =d{2,LJ. Let Ui be 

the extention of u1 to Li for i= 2,3 and g the different of L/L,. Then 

To compute ~~(a), take a uniformizing element 71 of Lz. This element 7c satisfies 

an Eisenstein equation f(rc) = 0 for a polynomial f of degree e with coefficients in 

L,. The ideal 68 is generated by f’(n) and it is not hard to check that 

u2(f’(n)) 5 e - 1 + u3(e). 

From this the proposition easily follows. 

3. The main theorem 

We will first give a corollary of Proposition 1. 

Proposition 3. For an abelian variety A defined over a number field K, let L be the 
field obtained by adjoining the coordinates of all m-torsion points of A to K. 
Denote by A,,, the discriminant of L/K and by Jv,,, the conductor of A/K. Then 

AL/K (mh,K)’ (3) 

for a constant c depending only on m, [K: Q] and dim A. 

Proof. By [ll], a prime dividing A,,, divides either m or MA,,. Since [L : K] 5 
# GL,,(Z/mH) (where g = dim A), the proposition immediately follows from Pro- 

position 1. 

The following is essentially [12, Exercise 8.11. 

Theorem 2. K and A being as in Proposition 1, suppose that all m-torsion points 
of A are rational over K. Denote by A(K) the group of K-rational points of A. For 
a finite abelian group G we let Q(G) be the minimal number of generators of G. 
Then the following inequality holds: 

e(A(K)/mA(K))~2g#S+2ge(~K[ml). (4) 

Here g = dim A, S is the set consisting of archimedian primes, primes where A has 
bad reduction, and primes dividing m, 2, is the ideal class group of K, XK[m] is 
its m-primary part. 

Proof. Let i? be an algebraic closure of K and G the Galois group of K/K. 
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Multiplication by m yields an exact sequence of G-modules 

O-A[m]+A(R)+A(K)-+O 

(A[m] is the group of m-torsion points of A). Using Galois cohomology we get an 

injective map 

A(K)/mA(K)-+H'(G,A[m]). 

By the assumption it follows that H'(G,A[m]) = Hom(G,A[m]). Now denote by L 

the Galois extension of K obtained by adjoining to K the coordinates of all points 

PEA(R) such that mPEA(K). In fact from its definition it follows that the image 

of the map above consists of homomorphisms which are trivial on Gal(R/L), hence 

we obtain an induced map 

A(K)/mA(K) --t Hom(GLIK,A[ml), 

where G,,, denotes the Galois group of L/K. 

It is known that L has the following properties [8, Appendix II]: 

(1) L/K is abelian and of exponent m. 

(2) L/K is unramified outside S. 

Such L/K is finite by Kummer theory and this fact is proven for example in [12, 

VIII, Proposition 1.61. Close examination of this proof enables one to give an effec- 

tive upper bound for [L : K] as follows: 

From each m-primary cyclic component of J&, take a generating ideal class and 

add a prime ideal representing it to S. We thus get a set of primes S’ such that 

#S’= #S+~(%~[rn]) and that the ring of S’-integers &, has no m-torsion in its 

ideal class group. Let L' be the maximal abelian extension of K which is of exponent 

m and which is unramified outside S’. Then L'=K($; UE t~$/@~") and by 

Dirichlet’s unit theorem (suitably modified version, see e.g. [4, V, Q l]), we find #S’ 

cyclic components in @~~/@~m. 

So CL/K is a quotient of a subgroup of (Z'/mZ)#s', thereby proving Theorem 2. 

We are now ready to prove our main theorem. 

Proof of Theorem 1. Let L be the extension of K generated by the 2-torsion points 

of A. We apply Theorem 2 to A/L and m = 2. Clearly rank A(K) I rank A(L). For 

S = S(A/L) as in Theorem 2 one has 

#s<[L: K]log INK/Q J'i,,(+2[L :Ql~COog (NK,QJQ,K(+~[K:QI) 

with C= [L : K] 5 # GL,,(Z/212) bounded solely in terms of g = dim A. 

On the other hand, every ideal class of L contains an ideal 9 with NL,,9< 

C’l&&/ for a constant C’ depending only on [K: Q] and dim A (for an exact 

form of C’, compare [3, V, Theorem 41). Starting with a rational integer as 

C’k’m, one finds there are at most [L : Q]*log a prime ideals, so at most aIL’ Q1 

ideals which divide a. We thus get an inequality 
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&49$[2])r [L : Q]log IdL,Ql/log 2+221og C’. 

But IV& =N,,~(d~,h’)ld~,~l’~‘~’ and by Proposition 3 it follows that 

LlL,K j (2.4/A,~)SDme consta”‘. Taking the logarithm, we obtain the desired inequality. It 

is a routine computation to arrive at the explicit constants mentioned in the state- 

ment of Theorem 1. 
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