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Let K be a number field and A an abelian variety over K. The K-rational points of 4 are known
to constitute a finitely generated abelian group (Mordell—Weil theorem). The problem studied in
this paper is to find an explicit upper bound for the rank r of its free part in terms of other in-
variants of A/K. This is achieved by a close inspection of the classical proof of the so-called ‘weak
Mordell-Weil theorem’.

1. Introduction

Let K be a number field and A an abelian variety over K. The K-rational points
of A are known to constitute a finitely generated abelian group (Mordell-Weil
theorem) and it is an interesting question to give an explicit upper bound for the
rank r of its free part in terms of other invariants of A/K.

In case A is an elliptic curve and K =@ there are already some theorems in this
direction. For example, Tate proved the following (cf. [2, Chapter 6}):

“Let E be an elliptic curve over Q given by an equation y>=x>+ ax®+ bx with
a,beZ. Then r<s+t+1 where s and ¢ are the numbers of prime divisors of b and
a®—4b respectively. (Note that the discriminant of this model of £ is 2*bHa’—4b).)”

A somewhat sharper bound for elliptic curves over Q having Q-rational (not
necessarily 2-) torsion points can be found in [5], and for elliptic curves over ©Q ha-
ving no rational 2-torsion points a similar bound is obtained in [1].

Under the assumption of very powerful conjectures (Birch and Swinnerton—Dyer,
Taniyama—Weil and the generalized Riemann hypothesis), Mestre proves in [6] and
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[7] that for elliptic curves F over @, the asymptotic equality r= O(log N/log log N)
{with N the conductor of E/Q) holds. It seems to be beyond our present knowledge
to obtain such a result without using these hypotheses. Mestre also mentions in the
introduction of [6], that for elliptic curves E/Q one can prove r = O(log N) without
using any conjectures. This type of bound is true for abelian varieties over number
fields in general; our aim in this paper is to prove this fact.

More precisely our theorem is the following:

Theorem 1. Let K be a number field and A an abelian variety over K. Write
d=[K:Q], g=dim(A4) and r=rank(A(K)). Denote by A, the conductor of A/K
and by Ny,q the norm with respect to K/Q. Then one has

r=Clog|Ny,qsk| +C, n

where C, is a constant depending only on [K : Q) and on dim A, and C, is another
constant depending not only on dim A and on [K : Q] but also on the discriminant
of K/Q. In particular, one can take for C; and C, the values

2g-1 X d _2g—l 22g__2id1 d
C=2¢]] (223—2’)<1+—3<ar_14r IIiZo ( )d log >>
i=0

log log 2
and 21 _ dlog MK/Q|H-2§_1 (% 2y
C2=2g<2d—1+dH % -2+ Lo >
i=0 log 2

The proof will be a refinement of that of the (weak) Mordell—Weil theorem, as
is already remarked in [6] for the case K=0Q, dim A=1.

2. A result from algebraic number theory
In this section we will prove the following:
Proposition 1. Let K be a number field and L a finite extension of K. Denote by
Aj x the discriminant of this extension. Then for every prime ideal p of K one has
v, (A )<IL:K]—1+[L:Qlog([L: K1) /log p. 2)
where v, is the valuation at y and p is the characteristic of the residue class field at y.

This is [10, Corollaire on p.128]; see also [9, Chapter 111, the end of §6]. The
proof of it follows immediately from the corresponding local result:

Proposition 2. Let L, C L, be a finite extension of local fields. Write, as usual, f
for the degree of the corresponding extension of the residue class fields and e for
the ramification index. Suppose that these residue class fields have characteristic
p>0. Denote by v, the discrete valuation on L,. Then
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vi(dp,,)=fle—1+ev(e)).

To prove this, write the extension as L, CL;CL,, with L;/L; unramified of
degree fand L,/L; totally ramified of degree e. One has 4,,,;, =AfL2/L3. Let v; be
the extention of v, to L; for i=2,3 and @ the different of L,/L;. Then

vild ) =Fos(dy,n,) = fo D).

To compute v,(P), take a uniformizing element 7 of L,. This element 7 satisfies
an Eisenstein equation f(z)=0 for a polynomial f of degree e with coefficients in
L;. The ideal @ is generated by f’(7) and it is not hard to check that

v(f'(m))<e—1+uv,(e).

From this the proposition easily follows.

3. The main theorem
We will first give a corollary of Proposition 1.

Proposition 3. For an abelian variety A defined over a number field K, let L be the
Jield obtained by adjoining the coordinates of all m-torsion points of A to K.
Denote by Ay i the discriminant of L/K and by A, x the conductor of A/K. Then

Ap x| (M) (3)

Sor a constant ¢ depending only on m, [K : Q] and dim A.

Proof. By [11], a prime dividing A4, ¢ divides either m or 4, . Since [L : K]=<
# QLo (Z/mZ) (where g=dim A), the proposition immediately follows from Pro-
position 1.

The following is essentially [12, Exercise 8.1].

Theorem 2. K and A being as in Proposition 1, suppose that all m-torsion points
of A are rational over K. Denote by A(K) the group of K-rational points of A. For
a finite abelian group G we let o(G) be the minimal number of generators of G.
Then the following inequality holds:

O(AK)/ mA(K)) <2g# S+ 2g0(Hy [m]). 4)

Here g=dim A, S is the set consisting of archimedian primes, primes where A has
bad reduction, and primes dividing m, #y is the ideal class group of K, #[m) is
its m-primary part.

Proof. Let K be an algebraic closure of K and G the Galois group of K/K.
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Multiplication by m yields an exact sequence of G-modules
0— Afm] - AK)—> AK)~0

(A[m] is the group of m-torsion points of A4). Using Galois cohomology we get an
injective map

AK)Y/mAKK) - HY(G, A[m]).

By the assumption it follows that H (G, A[m])=Hom(G, A[m]). Now denote by L
the Galois extension of K obtained by adjoining to K the coordinates of all points
Pe A(K) such that mP e A(K). In fact from its definition it follows that the image
of the map above consists of homomorphisms which are trivial on Gal(K/L), hence
we obtain an induced map

A(K)/mA(K) - Hom(G, ,x, Alm]),

where G, denotes the Galois group of L/K.

It is known that L has the following properties [8, Appendix II]:

(1) L/K is abelian and of exponent m.

(2) L/K is unramified outside S.

Such L/K is finite by Kummer theory and this fact is proven for example in [12,
VIII, Proposition 1.6]. Close examination of this proof enables one to give an effec-
tive upper bound for [L : K] as follows:

From each m-primary cyclic component of #%, take a generating ideal class and
add a prime ideal representing it to S. We thus get a set of primes S’ such that
# 8’ = #5+ o(#[m]) and that the ring of S’-integers &g has no m-torsion in its
ideal class group. Let L’ be the maximal abelian extension of K which is of exponent
m and which is unramified outside S’. Then L’-—-K(%; ae 05/08™) and by
Dirichlet’s unit theorem (suitably modified version, see e.g. [4, V, §1]), we find #S’
cyclic components in @3/ 0™,

So G, is a quotient of a subgroup of (Z/mZ)*%, thereby proving Theorem 2.

We are now ready to prove our main theorem.

Proof of Theorem 1. Let L be the extension of K generated by the 2-torsion points
of A. We apply Theorem 2 to A/L and m=2. Clearly rank A(K)=<rank A(L). For
S=S(A/L) as in Theorem 2 one has

#S<[L:Kllog |[NgqHyxl +2[L: Q1< C(og [Ny,qHax|+2[K: QD

with C=[L : K]=< #GL,,(Z/2Z) bounded solely in terms of g=dim 4.

On the other hand, every ideal class of L contains an ideal . with N, ¢ <
C'Y|4,p| for a constant C’ depending only on [K : Q] and dim A4 (for an exact
form of C’, compare [3, V, Theorem 4]). Starting with a rational integer a=<
C'\/14, 5, one finds there are at most [L : Q)*log a prime ideals, so at most a'**
ideals which divide a. We thus get an inequality
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o 2)<[L : Qllog |4, ,g|log 2+ 2%log C.

But |4,,0| =Nk )4k %! and by Proposition 3 it follows that
Ap x| QA ) 0™ O™t Taking the logarithm, we obtain the desired inequality. It
is a routine computation to arrive at the explicit constants mentioned in the state-
ment of Theorem 1.
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