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Let X be a normed linear space and F, G nonvoid subsets of X. If fO E F 
and g, E G satisfy 

then we call (fO, g,) a best proximity pair of F and G. 
Several authors have studied such proximity pairs. In [ 1, p. 3851 

I. Singer claims the following 

THEOREM 1. Let X be a metric space endowed with the metric p and F, G 
nonvoid, boundedly compact closed sets in X. Then there exist elements f0 E F 
and g, e G such that 

df,, go) = p(F, G) ef inf( df; g): f~ F, g E G). 

Theorem 1 is false, as shown by the following example. Let E2 be the 
Euclidean 2-space and let 

F= {(x, y)~E’:x>0, y<O}, G= (x, y)~E’:x>0, y$ . 
i i 

Then F and G are nonvoid boundedly compact sets. But there do not exist 
fO E F, g,, E G satisfying 

dfo, 8,) = PV’, G) 

because 

FnG=j& p(F, G) = 0. 

It is easy to see that Theorem 1 is true if we add the condition “I; or G is 
bounded.” 

In 1974, D. V. Pai [2] gave the following theorem: 
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THEOREM 2. Let X be a uniformly convex Banach space and F, G two 
closed convex subsets, and let one of them be compact. Then there exist 
f,ceP; and gOe G such that 

llfo - go II = 4E; GB. 

In 1980, B. N. Sahney and S. P. Singh [3] gave the following t 
a strictly convex Banach space. 

THEOREM 3. Let X be a strictly convex Banach space and F a closed, 
convex, locally compact subset of X, and let G be a compact, convex subset 
of X. Then there exist f. E F and g, E G such that 

llfo - go II = W’s 61. 

Unfortunately, the proof of Theorem 3 in [3] is incorrect. However, we 
can easily prove Theorem 3 without the condition “X is strictly convex.” 

extract two sequences {fn)cF and (g&G such that 
IIf, - g, I/ = d(F, G). Since 

GaTt, 
G is compact and F is 

we can extract from { fn> 
close$l~ll 

and {g,> two susequen an 
{ g,,) such that lim, _ o3 f,, = fO E F and lim, ~ m gnk = go E 6. ha?e the 

ilfo - go II = ;-mm llfn, - g,, I! = d(F, G), 

which completes the proof. 
In order to improve Theorems 1-3, we introduce several concepts. 
Let F and G be subsets of X, F is said to be weakly sequentially compact 

if for each sequence in F, there always exists a subsequence weakly 
converging to a point of F. G is said to be proximinal with respect to F if for 
each f E F, there exists a best approximation of f in 6. The concept of 
proximinality can be easily extended to a metric space. 

Obviously, a compact set is a weakly sequentially compact set. .A boun- 
dedly compact set in metric space and a closed convex set in a uniformly 
convex Banach space are all proximinal with respect to the total space. 

Our main result in this paper is the following theorem, which is an 
improvement of Theorems l-3. 

THEOREM 4. Let F and G be two nonvoid sets of a normed linear space X. 
If F is weakly sequentially compact and G is convex and proximitial with 
respect to F, then a best proximity pair of F and G exists. For a metris spase 
X, we assume instead that F is compact and G is p~~x~~i~a~ with respecd zo 
F. 

e extract { f, > c F and ( g, > c G sue 

lim Ilf, - g, II = 4E 61. n-m 
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Since F is weakly sequentially compact, without loss of generality, we can 
assume 

W-lim f,=&,eF. 
n-m 

Since for all m>O, W-lim,,,,.,,f,=f,, we have f,ECO{f,:n>m). 
Therefore, if we let m, = 0, we have then, for k = 1,2, 3, . . . . a natural 
number mk(mk t 1 and numbers c~j’k) > 0 (j=mk-l + 1, . . . . m,), 
~~;mk-,+l cly)= 1, such that 

mk 

j=rnk-,+1 

Let 

then 

and 

mk 

Uk = Vk = 1 ajk’gj, k = 1, 2, . . . . 
j=mk-If1 j-m&l+ 1 

lim &‘fO, vk E G, k = 1, 2, .., 
kAm 

Since uk -ffO, I&- gkII -+ d(F, G)) (k+ co), for any 8 >O, there exists 
K > 0 such that if k z K, then we have 

bk -h 11 <&, kfi - gk iI < d(F, G) + 8. 

Hence for k 3 K and mk- 1 > K we have 

iluk-vkiI <d(F, G)+&. 

Since G is proximinal with respect to F, we have g, E G such that 
IL&-goII =infg.. Il.&-Al. Then 

W> G)d llfo-8oII d lih-vkII (k = 1, 2, . ..). 

Therefore we have, for k > K and mk _ 1 3 K 

d(F, GIG Ilfo- goI/ G llf~-~kli 

< IIf0 - uk /I + II uk - vk 11 

< d(F, G) + 2~. 
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Letting E --+ 0, we have jl f. - g, // = d(F, G), i.e., (fOo, g,) is one of r 
proximity pairs of F and G. 

If X is a metric space, F compact and G proxi 
proof is similar to the former proof; we omit it. 

From the proof of Theorem 4, we can get 

with respect to F, the 
proof is completed. 

COROLLARY 1. Let X be a normed linear space and F, G two nonvoid 
subsets of 3’. If either F is compact and G is proximinal with respect to F or 
F is locally compact and G is bounded and proximinal with respect to F, then 
a best proximity pair of F and G exists. 

COROLLARY 2. Let X be a rejlexive Banach space and F, G two nonvoid 
subsets of X. If F is bounded, weakly closed, and G is closed convex, teen o 
best proximity pair of F and G exists. 

Indeed, any bounded, weakly closed subset of a reflexive 
weakly sequentially compact. Since any closed convex sub 
is proximinal with respect to the total space, this corollary can be obtained 
from Theorem 4. 

The characterizations and uniqueness of best proximity pairs have 
discussed in [4]. 
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