The Number of Extreme Pairs of Finite Point-Sets in Euclidean Spaces

Herbert Edelsbrunner
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

AND
Gerd Stöckl

Institutes for Information Processing, Technical University of Graz, Schiesstattgasse 4a, A-8010 Graz, Austria

Communicated by the Managing Editors
Received October 20, 1985

To points p and q of a finite set S in d-dimensional Fuclidean space E^{d} are extreme if $\{p, q\}=S \cap h$, for some open halfspace h. Let $e_{2}^{(d)}(n)$ be the maximum number of extreme pairs realized by any n points in E^{d}. We give geometric proofs of $e_{2}^{(2)}(n)=\lfloor 3 n / 2\rfloor$, if $n \geqslant 4$, and $e_{2}^{(3)}(n)=3 n-6$, if $n \geqslant 6$. These results settle the question since all other cases are trivial. 1986 Academic Press, Inc.

1. Introduction

For S, a set of n points in E^{d} and h, a half space, we call $S^{\prime}=S \cap h$ a semispace of S, and a k-set of S if $k=\operatorname{card} S$. 1 Let $e_{k}(S)$ denote the number of k-sets realized by S, and define $e_{k}^{(d)}(n)=\max \left\{e_{k}(S) \mid S\right.$ a set of n points in $\left.E^{d}\right\}$, for $1 \leqslant k \leqslant n-1$. The evaluation of $e_{k}^{(d)}(n)$ is trivial for extremely small values of d, k, or $n: e_{k}^{(1)}(n)=2, e_{1}^{(d)}(n)=e_{1}(S)=n$ if $S=\operatorname{ext} S,{ }^{2} e_{k}^{(d)}(n)=$ $e_{k}^{(d-1)}(n)$ if $n \leqslant d$, and $e_{k}^{(d)}(d+1)=\binom{d+1}{k}$. Other trivial upper bounds follow from the one-to-one correspondence of complementary semispaces of S and cells in a dual arrangement of n hyperplanes in d-dimensional projective space. The results, e.g., in $[6,8]$ imply

$$
\sum_{i=1}^{n-1} e_{i}(S) \leqslant \sum_{i=0}^{d}\left((-1)^{i}+1\right)\binom{n}{d-i},
$$

[^0]if S contains n points in E^{d}. Alon and Györi [1] extend this result to
$$
\sum_{i=1}^{k} e_{k}(S) \leqslant k n,
$$
if S contains n points in E^{2} and $k<n / 2$. Erdös, Lovasz, Simmons, and Strauss [3] proved the existence of positive constants c_{1}, c_{2}, and n_{0} such that $e_{k}^{(2)}(n) \geqslant c_{1} n \log _{2}(k+1)$ and $e_{k}^{(2)}(n) \leqslant c_{2} n \sqrt{k}$, if $n \geqslant n_{0}$; the same results are derived in an independent development in [4].

This paper considers the case $k=2$ and uses extreme pair as a synonym for 2 -set. Section 2 evaluates the value of $e_{2}^{(d)}(n)$ for any choice of positive integers d and n. The geometric proof presented covers all choices of d : it is a new proof of the 2-dimensional result also mentioned in [4], and it is the first proof in E^{3}. Section 3 gives a lower bound for $e_{3}^{(2)}(n)$ and poses the investigation of $e_{3}^{(d)}(n)$ as an essentially open problem. It is not likely that the methods of this paper extend to $k>2$.

2. The Number of Extreme Pairs

This section settles the question of evaluating the maximal number of extreme pairs realized by finite point-sets in Euclidean spaces. We prove

$$
\begin{aligned}
& \text { Theorem 1. (i) } e_{2}^{(2)}(n)=\lfloor 3 n / 2\rfloor \text {, for } n \geqslant 4 \text {, } \\
& \begin{array}{l}
\text { (ii) } e_{2}^{(3)}(5)=10 \text { and } e_{2}^{(3)}(n)=3 n-6, \text { for } n \geqslant 6 \text {, and } \\
\text { (iii) } e_{2}^{(d)}(n)=\binom{n}{2} \text {, for } 4 \leqslant d \leqslant n-2 \text {. }
\end{array} .
\end{aligned}
$$

Note that the restriction to simple sets of points in E^{d} (that is, no $d+1$ points of the set lie in a common hyperplane) is no loss of generality. We prepare the proof of Theorem 1 by two lemmas.

Lemma 2. Let S be a simple set of $n \geqslant d+3$ points in E^{d}. Any point of S ext S is contained in the interior of at least two simplices with the vertices chosen from S.

Proof. Let x be a point in S-ext S, if it exists. By Carathéodory's theorem (see, e.g., [2]), there are $d+1$ points $p_{0}, p_{1}, \ldots, p_{d}$ in ext S with x contained in int $t=\operatorname{intconv}\left\{p_{0}, p_{1}, \ldots, p_{d}\right\} .^{3}$ By $n \geqslant d+3$ there is a point y in $S-\left\{p_{0}, p_{1}, \ldots, p_{d}, x\right\}$. The $\mathrm{d}+1$ simplices $t_{i}=\operatorname{conv}\left\{p_{0}, p_{1}, \ldots, p_{i-1}\right.$, $\left.p_{i+1}, \ldots, p_{d}, y\right\}$, for $0 \leqslant i \leqslant d$ cover simplex t, and therefore x belongs to int t; for at least one index i.

[^1]Note that the above argument could be used to prove the existence of $n-d-1$ simplices that contain x in their interiors.

If point x is in int t, for t, a simplex with vertices in S, then any halfspace that contains x also contains at least one vertex of t. Therefore x can form extreme pairs only with the vertices of t. Since two different simplices in E^{d} share at most d common vertices, Lemma 2 implies

Corollary 3. Let S be a simple set of $n>d+3$ points in E^{d}. Any point in S-ext S belongs to at most d extreme pairs of S.

The second lemma limits the number of non-extreme points which belong to respective d extreme pairs.

Lemma 4. Let S be a simple set of points in E^{d}, x a point in S-ext S that forms extreme pairs with any one of $p_{0}, p_{1}, \ldots, p_{d-1}$ in S.
(i) $\operatorname{conv}\left\{p_{0}, p_{1}, \ldots, p_{d-1}\right\}$ is a facet of conv S.
(ii) There is no point $y \neq x$ in S with $\left\{y, p_{0}\right\},\left\{y, p_{1}\right\}, \ldots,\left\{y, p_{d-1}\right\}$ all extreme pairs of S.

Proof. We show that x belongs to int $t_{y}=\operatorname{intconv}\left\{p_{0}, p_{1}, \ldots, p_{d-1}, y\right\}$ for each point y in $S-\left\{p_{0}, p_{1}, \ldots, p_{d-1}, x\right\}$. By Carathéodory's theorem and since $\left\{x, p_{0}\right\},\left\{x, p_{1}\right\}, \ldots,\left\{x, p_{d-1}\right\}$ are all extreme pairs, there is a point z in ext S with x in int t_{z}. For any y in $S-\left\{p_{0}, p_{1}, \ldots, p_{d-1}, x, z\right\}$, the simplices defined by y any any d vertices of t_{z} cover t_{z}. So one of these $d+1$ simplices contains x, and if x does not belong to int t_{y} then there is an index $i, 0 \leqslant i \leqslant d-1$, such that p_{i} is not a vertex of this simplex. This contradicts the extremeness of $\left\{x, p_{i}\right\}$.

Assertion (i) follows since all points of $S-\left\{p_{0}, p_{1}, \ldots, p_{d-1}\right\}$ lie on the

Fig. 1. Point-sets S in E^{2} with $e_{2}(S)=\lfloor 3 n / 2\rfloor$.
same side of the hyperplane that contains $p_{0}, p_{1}, \ldots, p_{d-1}$ as x. Assertion (ii) follows since x in int t_{y} contradicts y in int t_{x}.

To prove Theorem 1, we need the following classical result in the theory of convex polytopes (see $[2,6]$).

Proposition 5. Let S be a simple set of $n \geqslant d+1$ points in E^{d}, with $S=\operatorname{ext} S$. Then conv S contains $n, 3 n-6$ edges if $d=2, d=3$, and at most $\binom{n}{2}$ edges if $d \geqslant 4$. The upper hound for $d \geqslant 4$ is tight.

Proof of Theorem 1. Let S be a simple set of n points in E^{d} with $m=$ cardext S. By Proposition 5 and Corollary 3,

$$
\begin{array}{ll}
e_{2}(S) \leqslant m+2(n-m) & \text { if } d=2, \\
e_{2}(S) \leqslant 3 m-6+3(n-m) & \text { if } d=3, \\
e_{2}(S) \leqslant\binom{ m}{2}+d(n-m) & \text { if } d \geqslant 4,
\end{array}
$$

provided $n \geqslant d+3$. Unless $d=2$, the upper bounds are weakest if $m=n$. If $d=2$, Lemma 4 strengthens the inequality to

$$
e_{2}(S) \leqslant m+2 \min \{m, n-m\}+\max \{0, n-2 m\}
$$

which is weakest if $m=\lceil n / 2\rceil$; then $e_{2}(S) \leqslant\lfloor 3 n / 2\rfloor$. This proves the upper bounds of Theorem 1 if $n \geqslant d+3$. The upper bounds for $n=d+2$ are trivial since there are only two essentially distinct cases: $S=$ ext S and $\operatorname{card}(S-\operatorname{ext} S)=1$.

The remainder of the proof describes point-sets that prove the lower bounds of Theorem 1 in all cases. If $d=2$ and $n=4$ then one point lies in the triangle defined by the other three. If $n \geqslant 5$ then $m=\lceil n / 2\rceil$ points lie on a circle, and for each but possibly one edge there is a point sufficiently close to its midpoint but interior to the convex hull of the first m points. Figure 1 illustrates both cases and indicates extreme pairs by joining segments. If $d=3$ and $n=5$ then one point is interior to the tretrahedron defined by the other four points. If $n \geqslant 6$ then $m=$ cardext $S \geqslant(n+4) / 3$ and the $n-m$ points of S-ext S are chosen sufficiently close to the centroids of the $2 m-4$ triangles of conv S, at most one point for each triangle. If $d=4$ or larger then all n points can be chosen on the moment-curve (t, t^{2}, t^{3}, t^{4}); then any pair of points is also extreme (see $[2,6]$ and compare with Proposition 5).

Fig. 2. Current best lower bound for $e_{3}^{(2)}(n)$.

3. Extension and Discussion

As Theorem 1 settles the evaluation of $e_{k}^{(d)}(n)$ for the case $k=2$, it seems natural to examine the case $k=3$. Surprisingly, there is no obvious way of extending the methods of this paper, and in fact no tight bounds are known already in E^{2} (which might be the most difficult case, however). The current best lower bound for $e_{3}^{(2)}(n)$ is $\lfloor 11 n / 6\rfloor$, except for a few values of n. For n a multiple of 6 , the point-sets which realize $11 n / 63$-sets consists of groups of respective six points distributed close to a circle (as indicated in Fig. $2\{1,2, \ldots, 6\}$ is a group, and the 3 -sets that contain points of this group and possibly of the next group in clockwise order are: $\{1,2,3\}$, $\{1,2,4\},\{1,2,5\},\{1,4,5\},\{2,4,5\},\{3,4,5\},\{4,5,6\},\{4,5,7\}$, $\{5,7,8\}$, and $\{6,7,8\}$). This scheme has been discovered by Stöckl [7] running computer simulations via circular sequences, a combinatorial encoding of point-sets in E^{2} examined in [5]. We suspect that in order to evaluate $e_{3}^{(2)}(n)$ a significant new insight in the general planar problem will be required.

References

1. N. Alon and E. Györi, The number of small semispaces of a finite set of points in the plane, J. Combin. Theory Ser. A 41 (1986), 154-157.
2. A. Bronsted, "An Introduction to Convex Polytopes," Graduate Texts in Math. Vol. 90, Springer-Verlag, New York, 1983.
3. P. Erdös, L. Lovasz, A. Simmons, and E. G. Strauss, Dissection graphs of planar point sets, in "A Survey of Combinatorial Theory" (J. N. Strivastava et al. Eds.), pp. 139-149, North-Holland, Amsterdam, 1973.
4. H. Edelsbrunner and E. Welzl, On the number of line-separations of a finite set in the plane, J. Combin. Theory Ser. A 38 (1985), 15-29.
5. J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A 29 (1980), 220235.
6. B. Grünbaum, "Convex Polytopes," Interscience, London, 1967.
7. G. STÖckl, "Gesammelte und neue Ergebnisse über extreme k-Mengen für ebene Punktmengen," Diplomarbeit, Institutes for Information Processing, Technical University of Graz, Graz, Austria, 1984.
8. T. Zaslavsky, Facing up to arrangements: Face-counting formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 154 (1975).

[^0]: ${ }^{1}$ card X denotes the cardinality of set X.
 ${ }^{2}$ ext X contains all points of X which cannot be expressed as convex combinations of other points.

[^1]: ${ }^{3}$ int X denotes the interior of set X; conv X is the set of convex combinations of all points in X; it is also known as the convex hull of X.

