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Abstract

We study the interactions of Maldacena’s long folded strings in two-dimensional string theory. We find
the amplitude for a state containing two long folded strings to come and go back to infinity. We calculate
this amplitude both in the worldsheet theory and in the dual matrix model, the matrix quantum mechanics.
The matrix model description allows to evaluate the amplitudes involving any number of long strings, which
are given by the mixed trace correlators in an effective two-matrix model.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the scattering of long folded strings in 2D string theory. As pointed out
by Maldacena [1], long folded strings stretching from infinity correspond to non-singlet states
in the dual matrix model. It is expected that condensation of such states can produce curved
background with horizon [2,3]. Our main motivation for this work is to study the possibility of
formulating a Lorentzian version of the “black hole matrix model”, discussed in [1]. Our results
suggest that the chiral formalism introduced in [4] and further developed in [5–11] is well adapted
for this purpose.
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The two-dimensional strings have only longitudinal modes, and the closed string spectrum is
that of a single massless particle, the ‘tachyon’ [12]. In addition to the closed string spectrum,
the theory has states of infinite energy, associated with long folded strings stretched to infinity in
the space direction φ. Folded strings in two dimensions were studied in [13] and more recently in
[1,14,15]. Such strings have infinite energy since they stretch all the way to φ → −∞. After sub-
tracting the infinite part, the spectrum is unbounded from below. Any physical observable in such
a theory can be formulated as a scattering amplitude relating incoming right moving and outgo-
ing left moving states. The asymptotic states can be thought of as composed of quasiparticles.
Each such quasiparticle represents the tip of a folded string.

An exact worldsheet description of folded strings based on Liouville string theory was given
by Maldacena [1]. He argued that a stack of FZZT branes placed far away in the asymptotically
free region (μB � √

μ ) can be considered as a source for long folded strings. The evolution of
a long string starts with a very energetic short open string in the region φ � − logμB . When the
ends of the string reach φ ∼ − logμB , they get trapped by the brane, while the bulk of the string
continues to move until it looses all its kinetic energy at distance φ ∼ − logμ and starts to evolve
back. This picture allows to express the reflection amplitude for the tip of a long folded string
as a certain limit of the boundary two-point function in Liouville theory. Using the expression
for this correlation function found in [16], Maldacena gave an explicit formula for this reflection
amplitude.

In the dual matrix model, the Matrix Quantum Mechanics (MQM), the closed strings propa-
gate in the singlet sector, while the folded strings propagate in the non-singlet sector of MQM,
characterized by the presence of Wilson lines. In MQM, the states containing one folded string
are those in the adjoint representation. They can be considered as impurities in the Fermi sea.
The wave function of such states depends on a collective coordinate giving the position of the tip
of the folded string. It satisfies a Calogero type equation, whose collective field formulation was
given in [1]. The explicit solution of this equation was found later in [17], and the result for the
scattering phase was identical with the one obtained from the worldsheet theory.

The states with n folded strings, or n impurities, are described by irreducible representations
whose Young tableaux contain n boxes and n anti-boxes. These are the representations that occur
in the direct product of n fundamental and n anti-fundamental representations.

The extension of the canonical formalism of MQM to higher representations passes through
the solution of the corresponding Calogero problem, which seems to be a quite difficult, although
not impossible, task. Instead one can try to attack the problem using the chiral quantization of
MQM, which operates directly in terms of asymptotic incoming and outgoing states. Here the
Hamiltonian is first order and therefore has no Calogero term. Using the chiral formalism, the
scattering problem in the non-singlet sector of MQM was reformulated by one of the authors [18]
in terms of the mixed trace correlators in an effective two-matrix model. This allowed to apply
some powerful results derived for the two-matrix model [19,20]. In particular, it was shown
in [18] that the scattering amplitude in the adjoint representation, evaluated originally in [1,17],
coincides with the simplest mixed trace correlator in the effective two-matrix model.

In this paper we evaluate, using the chiral formalism of MQM, the reflection amplitudes of
higher non-singlets, focusing mainly on the case n = 2. The reflection amplitude can be expanded
in the inverse cosmological constant gs ∼ 1/μ. The leading term is the Young-symmetrized prod-
uct of the reflection amplitudes for two non-interacting quasiparticles. The interaction appears in
the subleading term, for which we find an explicit expression.

We give two independent derivations of the subleading term, performed in the worldsheet
theory and in the matrix model. In the worldsheet theory, the subleading term is given by the
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4-point boundary amplitude in a suitable limit. In the derivation we make a heavy use of the
symmetries imposed by the boundary ground ring. To set the notations and explain the problem,
we first present the derivation of the n = 1 amplitude, the reflection factor for a single long string,
originally obtained in [1].

The result is unexpectedly simple. We find that the reflection amplitude in the subleading
order consists of two terms, which have a natural interpretation in terms of reflection and scatter-
ing of the two quasiparticles. The first term describes a scattering of the two quasiparticles with
non-zero energy transfer, followed by reflection of each quasiparticle. In the second term the
scattering and the reflections occur in the opposite order. The scattering amplitude for two qua-
siparticles does not depend on μ and μB and therefore occurs in the extreme asymptotic domain
φ � − logμB , where the incoming and the outgoing strings are short.

The matrix model description allows to evaluate the amplitudes for states with any number n

of quasiparticles. We first evaluate the amplitudes in the coordinate space and then perform a
Fourier transformation. We performed explicitly the Fourier transformation for the case n = 2
and reproduced the result of the worldsheet theory. We observed that the n = 2 amplitudes in the
coordinate and momentum space essentially coincide. Assuming that this is a general property,
we speculate about the structure of the reflection amplitude for states containing n long strings
having a common worldsheet with the topology of a disk. We argue that such an amplitude again
decomposes into elementary processes, reflections of long strings and scattering of any number
k � n of short open strings.

2. Long folded strings in worldsheet theory

The worldsheet theory is described by a free boson X and a Liouville field φ. The field X is
regarded as time, so it has the opposite signature. As was done in [21], it is convenient to consider
a family of theories in which both φ and X couple to the worldsheet curvature. Their background
charges are Q = b + 1/b and Q̃ = ib − i/b respectively, so that matter central charge is critical,

cmatter = 2 + 6
(
Q2 + Q̃2) = 26.

We will be mostly interested in the case b = 1, but will keep b as arbitrary until the final stage in
order to avoid singularities which are peculiar to b = 1.

Local bulk operators

T ±
k ∼ e(Q±ik)φ−i(Q̃+k)X

of marginal dimension correspond to on-shell tachyon modes with energy k. They are right or
left-moving waves depending on the sign choice. Similarly, local boundary operators

U±
k ∼ e(

Q
2 ±ik)φ−i(

Q̃
2 +k)X

correspond to physical open string modes with energy k. In this paper we focus on the open
strings ending on FZZT-branes.

The action for φ has a potential μe2bφ which scatters every incoming (right-moving) tachyon
back to φ = −∞. As a consequence, the operators T +

k and T −
k are proportional to each other.

A similar relation holds also for the open string operators U+
k and U−

k , but the relation becomes
more complicated because the end-points of the open strings also feel the boundary potential
μBebφ . We label the branes by s, in terms of which μB can be expressed as

μB(s) =
√

μ

2
cosh(2πbs).
| sinπb |
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We consider FZZT-branes with very large s. If one throws in an open string ending on such
branes, its endpoints first reach the boundary potential wall at φ ∼ −2πs − 1

2b
logμ, which is

much before the bulk potential wall at φ ∼ − 1
2b

logμ. When the endpoints are caught by the
potential, the string starts to stretch and its tip continues to move towards the strong coupling
region until it uses up all its kinetic energy. The tip of such a string can probe the bulk Liouville
wall if it initially has a sufficiently large energy, k ∼ 2s. This is how a long folded string is
realized in two-dimensional string theory [1].

2.1. Classical analysis

The classical motion of an open string is described by the action

S =
∫

dτ dσ

4π

{
(∂τ φ)2 − (∂σ φ)2 − (∂τX)2 + (∂σ X)2 − μπe2bφ

}
(2.1)−

∫
dτ

{
μB(s+)ebφ(σ+,τ ) + μB(s−)ebφ(σ−,τ )

}
,

defined on a strip σ ∈ [σ−, σ+], τ ∈ R. The classical argument is known to be valid for small b.
We focus on the solutions parametrized by γ ,

(2.2)X = τ, 4μπe2bφ = {coshbγ coshbτ + sinhbγ coshbσ }−2,

which solve the bulk equation of motion as well as the Virasoro constraint T±± = 0. These
solutions were first presented in the context of long folded strings in [1]. The tip of the folded
string is at σ = 0, and φ reaches maximum at σ = τ = 0.

The boundary conditions on fields, ∂σ X = ∂σ φ ± 2πbμB(s±)ebφ = 0, are satisfied if

(2.3)sinh2 bγ sinh2 bσ± = cosh2(2πbs±).

These relations allow us to express (k, s±) as functions of (γ, σ±). For very large s± and a
finite γ , σ± roughly equals 2πs± up to sign. Long folded open strings correspond to the choice
σ− < 0 < σ+. The (spacetime) energy k of such a string is given by

(2.4)2πk = (σ+ − σ−)/2π ∼ s+ + s−.

See Fig. 1 for an example of a long folded string. The other two choices, 0 < σ− < σ+ or σ− <

σ+ < 0, both lead to “short” strings which do not develop long folded worldsheets. The role of
short strings is important in understanding the interactions of folded long strings.

2.1.1. Reflection amplitude
In the tree approximation, the phase for reflection amplitude of a long folded string is given by

the classical value of the action (2.1) on the strip. Let us give a rough evaluation of it for the so-
lution presented above, assuming that γ is reasonably large. The worldsheet strip is decomposed
into four regions according to the behavior of φ(τ,σ ):

(A): τ > |σ |, φ ∼ φ0 − τ,

(B): σ > |τ |, φ ∼ φ0 − σ,

(C): σ < −|τ |, φ ∼ φ0 + σ,

(2.5)(D): τ < −|σ |, φ ∼ φ0 + τ,
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Fig. 1. (Left) A classical long folded string for μ = b = 1, γ = 10, σ± = ±500. Some equal-φ lines are drawn on the
base σ–τ plane. (Right) The string worldsheet is divided into four regions according to the behavior of φ.

where φ0 = −γ − 1
2b

log(
μπ
4 ) is a constant. See the right part of Fig. 1. The bulk and boundary

potential terms in the action can be neglected in the limit of large s±. The contributions to the
classical action from the kinetic terms of φ and X cancel in the regions (A) and (D), whereas
they add up in the regions (B) and (C). The classical action is therefore roughly proportional to
the areas of the regions (B) and (C):

(2.6)Scl ∼ − 1

2π

(
σ 2+ + σ 2−

) ∼ −2π
(
s2+ + s2−

)
.

2.2. Quantum theory

We consider the following physical (on-shell) boundary operators

U+
k = b

1
2 Γ (−2ikb)ν

Q
2 +ikce(

Q
2 +ik)φ−i(

Q̃
2 +k)X,

(2.7)U−
k = b− 1

2 Γ (2ik/b)ν
Q
2 −ikce(

Q
2 −ik)φ−i(

Q̃
2 +k)X,

corresponding to right- or left-moving open string excitations. Here c is the reparametrization
ghost and we have introduced

ν ≡ {
μπγ

(
b2)}1/2b

, γ (x) ≡ Γ (x)

Γ (1 − x)
.

The operators U+
k and U−

k are proportional to each other,

s
[
U+

k

]s′ = d(k, s, s′) ·s [
U−

k

]s′
,

where one should remember that the properties of boundary operators depend also on the two
D-branes. The proportionality constant d(k, s, s′) is essentially given by the Liouville boundary
reflection coefficient dL(β, s, s′) [16]:

d(k, s, s′) = bν2ik Γ (−2ikb)
dL

(
Q + ik, s, s′

)

Γ (2ik/b) 2
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= S
(

2ik + 1

b

)
S
(

Q

2
− i(k + s + s′)

)
S
(

Q

2
− i(k + s − s′)

)

(2.8)× S
(

Q

2
− i(k − s + s′)

)
S
(

Q

2
− i(k − s − s′)

)
.

The function S(x) is introduced and used in [16]. Some of its properties are collected in
Appendix A.

We will consider Maldacena’s limit [1] in which all boundary parameters have the form

s = L + δs

with L assumed to be very large, while δs is kept finite. The FZZT-branes of our interest are all
labeled by such s. A folded long open string is described by a pair of vertex operators U+

k and
U−

−k with

k ∼ 2L.

We also consider short open strings carrying finite energy k, as they will appear as intermediate
particles in the scattering of long folded strings. The reflection amplitude of a single open string
is given by d(k, s, s′). Using the asymptotics of S(x) one finds

d(k, s, s′)
∣∣
(k,s,s′)∼(0,L,L)

= e−4πiLk+O(L0),

(2.9)d(k, s, s′)
∣∣
(k,s,s′)∼(2L,L,L)

= e−2πi(s2+s′2)+2πiLQ̃+O(L0),

for short and long open strings respectively. To the leading order in L, the second formula agrees
with the classical result (2.6) for long folded strings. The full expression for the reflection ampli-
tude at b = 1 is

(2.10)d(k, s, s′)±1
∣∣
(k,s,s′)∼(±2L,L,L)

= e−2πi(s2+s′2)− iπ
4 +if (π(s+s′∓k)),

where the function f (x) is defined as2

(2.11)f (x) = 1

π

x∫
−∞

dζ

(
ζ

tanh ζ
+ ζ

)
,

see Appendix A for details.

2.3. Three-point amplitude

In order to compute the four-point function we need the expression of the three-point function
in the Maldacena limit. It gives the amplitude of a long folded string emitting or absorbing a short
open string. To the lowest order, the computation boils down to that of three-point function of
boundary operators Bβ ≡ eβφ in Liouville theory on a disk. The corresponding structure constant
has been worked out by [24] but the general formula is quite complicated. It actually simplifies
in Maldacena’s limit when the conservation of energy, k1 + k2 + k3 = −Q̃/2, is taken into ac-
count. We evaluate this structure constant as a common solution of the shift relations derived in

2 The function f (x) is related to the odd function g(x) from Appendix A of [1] by f (x) = 1
2 πx2 + π

12 − g(x).
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Appendix B,3〈s3
[
U−

k1−ib/2

]s1
[
U−

k2

]s2
[
U−

k3

]s3
〉 + 〈s3

[
U−

k1

]s1±ib/2[
U−

k2−ib/2

]s2
[
U−

k3

]s3
〉

(2.12)= νuQπ2b
1
2 · d(k1, s3, s1 ± b/2)−1d(k2, s1, s2)

−1d(k3, s2, s3)
−1

sin(2πik1b) sin(2πik2b)

and 〈s3
[
U+

k1+i/2b

]s1
[
U+

k2

]s2
[
U+

k3

]s3
〉 + 〈

s3
[
U+

k1

]s1±i/2b[
U+

k2+i/2b

]s2
[
U+

k3

]s3
〉

(2.13)= νuQπ2b− 1
2 d(k1, s3, s1 ± i/2b)d(k2, s1, s2)d(k3, s2, s3)

sin(2πik1/b) sin(2πik2/b)
.

Let us first solve the relation (2.12) in Maldacena’s limit taking {k1, k2, k3} ∼ {2L,0,−2L}.
The term on the right-hand side scales as

r.h.s. ∼ e4πiL(s′
1−s2+k2+ib−1).

One of the two terms on the l.h.s. has to scale in the same way, and the other has to be subdomi-
nant or comparable. By inspection one finds,

s1 = s′
1 + ib

2
⇒ l.h.s.1 � l.h.s.2 ∼ r.h.s.,

s1 = s′
1 − ib

2
⇒ l.h.s.1 ∼ l.h.s.2 ∼ r.h.s.

So (2.12) reduces to a two-term relation for s1 = s′
1 + ib

2 and is easily solved. The solution, when
transformed into the amplitude of U+

k , reads

(2.14)
〈
s3

[
U+

k1

]s1
[
U+

k2

]s2
[
U+

k3

]s3
〉∣∣

(k1,k2,k3)∼(2L,0,−2L)
= 4iπ2νQb

1
2

e2πb(k1+s2) − e2πb(−k3+s1)
.

By a little more work it can be shown that this solution satisfies all nonequivalent recursion
relations which follow from (2.12). It is also easy to see that (2.14) satisfies the homogeneous
version of the recursion relation (2.13), i.e., the equation with the r.h.s. set to zero.

The second recursion relation (2.13) can be analyzed in the same way, and one can find a
solution which in terms of U−

k reads

(2.15)
〈
s3

[
U−

k1

]s1
[
U−

k2

]s2
[
U−

k3

]s3
〉∣∣

(k1,k2,k3)∼(2L,0,−2L)
= −4iπ2νQb− 1

2

e
2π
b

(k1+s2) − e
2π
b

(−k3+s1)
.

This solution is easily seen to satisfy the homogeneous version of (2.12). The correct three-point
amplitude in Maldacena’s limit is thus given by the sum of the two expressions (2.14), (2.15).

2.3.1. The two-point amplitude
To make a precise comparison between the results of worldsheet computations and matrix

quantum mechanics, we need a precise form of the disk two-point amplitude. It turns out slightly
different from the reflection coefficient (2.8) for the operators U±

k by a k-dependent function.
Computing the two-point amplitude from the first principle is rather difficult; the CFT correlator

3 A variant of these relations has been previously derived by V. Petkova [25].
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is divergent due to the zero-mode integrals of the fields X and φ, and it has to be divided by
the infinite volume of the residual global conformal group that fixes the disk with two boundary
insertions. A simple way to avoid these infinities is to differentiate with respect to the boundary
cosmological constant to make it a disk three-point amplitude, where the additional boundary
operator has the energy −Q̃/2.

We recall that the three-point amplitude with k2 = −Q̃/2 can be expressed in terms of the
two-point function, see, e.g., Appendix D of [22]. This relation can be extended for complex
momenta by solving the recursion relations (2.12), (2.13) for k1 = k = −k3, k2 = −Q̃/2. The
result is

(2.16)
〈
s3

[
U+

k

]s1
[
U−

−k

]s2[cBb]s3
〉 = − πνQ

sin(2πik/b)
· d(k, s1, s2) − d(k, s1, s3)

μB(s2) − μB(s3)
.

This is indeed a derivative with respect to μB when s2 = s3. We integrate it with respect to
μB assuming that the naive integration is allowed only when the operators satisfy Seiberg’s
bound [26]

ε · Imk > 0 for Uε
k .

The resulting two-point amplitude becomes non-analytic,

(2.17)
〈
s2

[
U+

k

]s1
[
U−

−k

]s2
〉 = sgn(Im k)

πνQd(k, s1, s2)

sin(2πik/b)
.

2.4. Boundary ground ring

Similar recursion relations among higher point disk amplitudes can be derived by making use
of the boundary ground ring. The ring is generated by the operators a±,

a+ = −ν− 1
2b

{
bc − b

2
(∂φ + ∂X)

}
e− 1

2b
(φ−X),

(2.18)a− = −ν− b
2

{
bc − 1

2b
(∂φ − ∂X)

}
e− b

2 (φ+X),

where b, c are the reparametrization ghost and antighost fields. Note that, since they are con-
structed from Liouville degenerate operators, a± can only join two branes whose s labels differ
by a certain amount. The operator products of a± with boundary tachyons satisfy the following
formulae

(2.19)−U−
k a− = a−U−

k = U−
k− ib

2
, −U+

k a+ = a+U+
k = U+

k+ i
2b

.

The ring relation (a+a− = a−a+ = 1 at b = 1) is realized on physical open string operators in
much the same way as for the bulk ground ring, except that a± also shifts the label of the brane.
The above formulae are simple and independent of the labels of branes, whereas the coefficient
of the OPE a±U∓

k becomes a little complicated and can be obtained from (2.19) by reflection,

s[a−]s′[
U+

k

]s′′ =s
[
U+

k− ib
2

]s′′ · d(k, s′, s′′)
d(k − ib

2 , s, s′′)
.
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By inserting an a± in a disk amplitude and using the fact that ∂a± is BRST-exact, one can
derive a shift relation among disk amplitudes. As an example, consider the difference of four-
point amplitudes〈

U±
k0

(
U±

k1
a±

)
U±

k2
U±

k3

〉 − 〈
U±

k0
U±

k1

(
a±U±

k2

)
U±

k3

〉
.

Since this can be written as an integral of an amplitude containing ∂a±, it vanishes by BRST
invariance up to contributions from the boundary of moduli space of disks with marked points.
As was discussed originally in [23], see also [22], such boundary contributions are summarized
by the higher operator products

a−U+
k1

U+
k2

= b
1
2 π

sin(2πibk1)
U+

k1+k2− i
2b

,

U+
k1

a−U+
k2

= b
1
2 π sin(2πib(k1 + k2))

sin(2πibk1) sin(2πibk2)
U+

k1+k2− i
2b

,

U+
k1

U+
k2

a− = − b
1
2 π

sin(2πibk2)
U+

k1+k2− i
2b

,

a+U−
k1

U−
k2

= − b− 1
2 π

sin(2πik1/b)
U−

k1+k2+ ib
2
,

U−
k1

a+U−
k2

= − b− 1
2 π sin(2πi(k1 + k2)/b)

sin(2πik1/b) sin(2πik2/b)
U−

k1+k2+ ib
2
,

(2.20)U−
k1

U−
k2

a+ = b− 1
2 π

sin(2πik2/b)
U−

k1+k2+ ib
2
.

Using them, the four-point amplitude can be shown to satisfy the recursion relation,4〈
U±

k0
U±

k1

(
a±U±

k2

)
U±

k3

〉 − 〈
U±

k0

(
U±

k1
a±

)
U±

k2
U±

k3

〉
(2.21)= 〈(

U±
k0

U±
k1

a±
)
U±

k2
U±

k3

〉 − 〈
U±

k0

(
U±

k1
a±U±

k2

)
U±

k3

〉 − 〈
U±

k0
U±

k1

(
a±U±

k2
U±

k3

)〉
,

where the operator products in the parentheses are given by (2.19) and (2.20).
Although the formulae for the operator products were derived in [22,23] in the theory with-

out Liouville interaction, we assume they remain valid after it is turned on. The interaction will,
however, make higher operator products a±Un → U (n � 3) non-vanishing as well. The de-
termination of higher point amplitudes along this path will therefore become more and more
difficult.

2.5. Four-point amplitude (scattering of two long strings)

We will evaluate the amplitude describing the scattering of two long strings,〈
s3

[
U−

k0

]s0
[
U+

k1

]s1
[
U−

k2

]s2
[
U+

k3

]s3
〉; (k0, k1, k2, k3) ∼ (−2L,2L,−2L,2L),

as the common solution of the two recursion relations (2.21). Both relations (2.21) have inhomo-
geneous terms on the right-hand side. As was the case with three-point amplitude, we can find the

4 In our convention for disk amplitudes 〈U1 · · ·Un〉, the first, the second, and the last operators are unintegrated and
the rest are integrated (with the factor of c removed).
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Fig. 2. Terms in disk four-point amplitudes. The four figures on the left correspond to physically uninteresting processes
and are discarded. The two on the right describe the terms which are reproduced from MQM analysis.

solution by working with those inhomogeneous terms one by one and then combining the results
together in a manner consistent with the symmetry. Consequently, the four point amplitude will
consist of a number of terms.

Some of the terms read,〈
s3

[
U−

k0

]s0
[
U+

k1

]s1
[
U−

k2

]s2
[
U+

k3

]s3
〉

= 16π3νQ d(k3, s2, s3)

d(k0, s3, s0)

d(k0 + k1 + Q̃
2 , s3, s1) sin 2πib(k0 + k1 + Q̃

2 )

(e2πb(k1+s3) − e2πb(−k0+s1))(e
2π
b

(k3+s1) − e
2π
b

(−k2+s3))

+ 16π3νQ d(k3, s2, s3)

d(k2, s1, s2)

d(k1 + k2 + Q̃
2 , s0, s2) sin 2πib(k1 + k2 + Q̃

2 )

(e2πb(k1+s2) − e2πb(−k2+s0))(e
2π
b

(k3+s0) − e
2π
b

(−k0+s2))

+ 16π3νQ d(k1, s0, s1)

d(k2, s1, s2)

d(k2 + k3 + Q̃
2 , s1, s3) sin 2πib(k2 + k3 + Q̃

2 )

(e2πb(k3+s1) − e2πb(−k2+s3))(e
2π
b

(k1+s3) − e
2π
b

(−k0+s1))

+ 16π3νQ d(k1, s0, s1)

d(k0, s3, s0)

d(k3 + k0 + Q̃
2 , s2, s0) sin 2πib(k3 + k0 + Q̃

2 )

(e2πb(k3+s0) − e2πb(−k0+s2))(e
2π
b

(k1+s2) − e
2π
b

(−k2+s0))

(2.22)+ · · · .
From their dependence on the reflection amplitude d , they seem to describe the processes in
which a short open string is exchanged between the incoming leg of one long string and the
outgoing leg of the other, as described by the left four of Fig. 2. These terms will therefore
be physically uninteresting and discarded. Indeed, we will see these terms are not reproduced
from MQM. Moreover, in Maldacena’s limit these terms are subdominant and infinitely rapidly
oscillating as compared to the terms which are reproduced from the MQM.

The physically interesting terms, Fig. 2 right, are obtained from the recursion relations with
the number of inhomogeneous terms reduced,

d(k1, s0, s
′
1)

d(k − ib , s , s )

〈
s3

[
U+

k0

]s0
[
U+

k1− ib
2

]s1
[
U+

k2

]s2
[
U+

k3

]s3
〉

1 2 0 1
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+ d(k2, s1, s2)

d(k2 − ib
2 , s′

1, s2)

〈
s3

[
U+

k0

]s0
[
U+

k1

]s′
1
[
U+

k2− ib
2

]s2
[
U+

k0

]s3
〉

(2.23)= − 8π3νQbe−2πbk1

e2πb(k3+s1) − e2πb(−k2+s3)
+ 8π3νQbe2πbk2

e2πb(k1+s3) − e2πb(−k0+s1)

and a similar equation involving i/2b shifts. We found that they are solved for b = 1 by〈
s3

[
U−

k0

]s0
[
U+

k1

]s1
[
U−

k2

]s2
[
U+

k3

]s3
〉

= 16iπ3ν2e−2πk2 × d(k1, s0, s1)d(k3, s2, s3) − d(k0, s3, s0)
−1d(k2, s1, s2)

−1

(e2π(k1+s2) − e2π(−k2+s0))(e2π(k3+s1) − e2π(−k2+s3))

(2.24)

= 4iπ3ν2e−π(k1+k3) × d(k1, s0, s1)d(k3, s2, s3) − d(k0, s3, s0)
−1d(k2, s1, s2)

−1

sinhπ(k1 + k2 − s0 + s2) sinh(k2 + k3 + s1 − s3)
.

A remarkable property of (2.24) is that it has a certain symmetry under the exchange of ka

and sa . To see this, let us introduce four positive “winding” parameters y0, y1, y2, y3 such that

(2.25)k0 = −(y3 + y0), k1 = y0 + y1, k2 = −(y1 + y2), k3 = y2 + y3.

Then the conservation of momenta is satisfied automatically. The parameters yi are determined
up to a common translation

(2.26)y0,2 → y0,2 + a, y1,3 → y1,3 − a.

By inserting them into (2.24) one finds that in Maldacena’s limit the non-trivial part of the am-
plitude depends only on the differences ŷi = yi − si :〈

s3
[
U−

k0

]s0
[
U+

k1

]s1
[
U−

k2

]s2
[
U+

k3

]s3
〉

= 4π3ν2
3∏

j=0

e
−2πis2

j −π(sj +yj )

(2.27)× eif (−πŷ0+πŷ1)+if (−πŷ2−πŷ3) − e−if (πŷ3−πŷ0)+if (−πŷ1−πŷ2)

sinhπ(ŷ2 − ŷ0) sinhπ(ŷ1 − ŷ3)
.

In other words, the four-point amplitude is almost symmetric under si −L ↔ L−yi . The change
of sign can be understand as follows: increasing the energy makes the tip of the folded string go
further while increasing the boundary parameter has the opposite effect. The parameter y is in
some loose sense T-dual to the original time variable; such a duality transformation is discussed
for the AdS disk amplitudes in [27].

3. Long folded strings in matrix quantum mechanics

3.1. Asymptotic states and chiral formalism of MQM

The dual matrix description of the 2D string theory in the linear dilaton background is given
by a dimensional reduction of a 2D YM theory to one dimension, known also as matrix quantum
mechanics [12]. The theory involves one gauge field A = {Aj

i } and one scalar field X = {Xj
i },

both Hermitian N × N matrices. It is formally defined by the action

(3.1)S =
∫

dt tr

[
P∇AX − 1(

P2 − X2)],

2
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Fig. 3. The lowest representations allowed in MQM.

where ∇AX = ∂tX − i[A,X] is the covariant time derivative. The action (3.1) can be considered
as an effective action describing the states near a local maximum of a confining potential for
the scalar field. In this approximation a generic potential can be replaced by inverse Gaussian
potential and a large cutoff parameter Λ. The number of colors N should be tuned appropriately
with the cutoff Λ before taking the large N limit.

The Hilbert space of MQM decomposes as a direct sum

(3.2)H =H0 +
∞∑

n=1

Hn,

where H0 is the singlet sector and the sector Hn is obtained by adding n Wilson lines in the
adjoint representation. The sector Hn can be further decomposed into a direct sum of irreducible
representations of U(N) whose Young tableaux contain n boxes and n ‘anti-boxes’. The Young
tableaux for the allowed representations with n = 1,2 are represented in Fig. 3.

In the singlet sector, n = 0, the action (3.1) describes a system of N non-relativistic free fermi-
ons in the upside-down quadratic potential [12]. The ground state of the system is characterized
by the Fermi level EF = −μ. The cutoff Λ then gives the energy (with minus sign) of the N th
level below the surface of the Fermi sea. In the large N limit, the non-singlet sectors can be de-
scribed in terms of impurities in the Fermi sea. The non-singlet excitations of MQM have been
studied in [3,28,29]. Let D be an allowed irreducible representation of SU(N). Then the radial
part of the Hamiltonian contains a term with Calogero type interaction between the eigenvalues,

(3.3)H(D) = −1

2

N∑
j=1

(
∂2

∂x2
j

+ x2
j

)
+ 1

2

N∑
j �=k

D(Ek
j )D(E

j
k )

(xj − xk)2
,

where D(Ek
j ) is a realization of the N × N matrix (Ek

j )ml = δm
j δk

l .

In the adjoint representation, n = 1, the wave function is an N × N traceless matrix. By an
SU(N) rotation it can be diagonalized as

Ψ
j
i (X) = δ

j
i ψi(X),

with
∑

i ψi = 0. Then the radial part of the Schrödinger equation closes on the components
ψ1, . . . ,ψN :

(3.4)H adjψi = −
N∑ 1

2

(
∂2
i + x2

i

)
ψi +

N∑ (ψi − ψj)

(xi − xj )2
.

j=1 j (�=i)
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The solution of this equation in the large N limit gives the wavefunction of one quasiparticle.
Once we know the solution of the wave equation in the adjoint, which was found in [17],

we can try to explore the higher sectors. To the leading order in 1/μ, the sector Hn describes n

non-interacting quasiparticles. The statistics of the quasiparticles is determined by choice of the
irreducible representation. Our analysis of the Calogero type wave equation (see Appendix E)
shows that the Hamiltonian indeed decomposes into a sum of terms (3.4) associated with the n

quasiparticles, and a two-body interaction Hamiltonian, which is of order 1/μ.
Instead of trying to solve the wave equation, in this paper we will follow an alternative ap-

proach, the chiral quantization of MQM [4], which proved to be very efficient in the singlet
sector. Since the potential is unbounded, any observable can be formulated in terms of scattering
amplitudes between asymptotic states that characterize the system at the infinite past and in the
infinite future. Usually the scattering matrix relating the incoming and the outgoing asymptotic
states is extracted from the asymptotics of the solution of the Schrödinger equation. In the case
of quadratic potential it happens that the S-matrix can be constructed directly, without passing
through the evaluation of the wave function. This is possible due to the important property of the
MQM that the asymptotic in- and out-states depend on the light cone variables

(3.5)X+ = X + P√
2

, X− = X − P√
2

.

For example, the operators

(3.6)T +
E = tr XiE+ , T −

E = tr X−iE−
describe the left- and right-moving tachyons with energy E [30]. The time evolution of the as-
ymptotic states is governed by the Hamiltonian

(3.7)H = −1

2
tr(X+X− + X−X+),

and the general solution of the corresponding Schrödinger equation is

(3.8)Φ±(X±, t) = e∓ 1
2 N2tΦ±(

e∓tX±
)
.

Thus any homogeneous function is an eigenstate of the Hamiltonian (3.7).
The outgoing and the incoming states are related by matrix Fourier transformation

(3.9)Φ+(X+) =
∫

dX− e−i tr X+X−Φ−(X−),

which represents the scattering operator in the chiral basis.
The wave functions in the sector Hn transform according to the nth power of the adjoint

representation,

(3.10)Φ±(
ΩX±Ω†) = Ad(Ω)⊗nΦ±(X±), Ω ∈ SU(N).

For any n, Ad(Ω)⊗n decomposes into a direct sum of irreducible representations. The projection
to any given irreducible representation is obtained by applying the corresponding Young sym-
metrizer. The scattering amplitude between the states Φ− and Φ+ is given by the inner product

(3.11)
(
Φ+,Φ−) =

∫
dX+ dX− ei tr X+X− tr(n) Φ+(X+)Φ−(X−),

where tr(n) denotes the trace in the nth tensor product.
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With this description of the non-singlet sectors we can represent any state as a polynomial of
the matrix fields X+ or X− multiplying a singlet wave function. Below we will see that similarly
to the closed strings, the long folded strings are represented in MQM by creation and annihilation
operators made of the matrix elements of X+ and X−. Thus the eigenfunction representing a state
with n folded strings and m tachyons is

(3.12)
[
Φ±(E1, . . . ,En;E′

1, . . . ,E
′
m)

]l1,...,ln
j1,...,jn

=
n∏

a=1

[
X

±iE±
a±
]la
ja

m∏
b=1

tr X
±iE′

b± Φ±
0 (X±),

where Φ±
0 is the ground state wave function.5

The scattering amplitude for such states is given by the inner product of an incoming and an
outgoing state of the form (3.12) divided by the inner product of the left and right ground states.
It is therefore useful to introduce for each pair of functions F+(X−),F−(X+) the expectation
value

(3.13)〈μ|F+F−|μ〉 := (Φ+
0 F+,F−Φ−

0 )

(Φ+
0 ,Φ−

0 )
.

In this way all observables in the non-singlet sector of MQM can be obtained as multi trace cor-
relators of an effective two-matrix model with non-confining potential tr X+X−. The observables
in this “non-compact” matrix model can be evaluated by an appropriate regularization. It happens
that some of the results obtained for the usual, “compact” matrix models, can be applied here.

The U(N) symmetry allows to reduce the original N2 degrees of freedom to the N eigenval-
ues x±

1 · · ·x±
N of the matrices X+ or X−. The evaluation of the scattering amplitude is achieved

in two steps [18]. The first step consists in integrating out the angular degrees of freedom in the
matrix integration measure

(3.14)dX± = dΩ± dx±
1 · · ·dx±

N �2(x±),

where �(x±) = ∏
i<j (x

±
i − x±

j ) is the Vandermonde determinant. The angular integral in the
inner product (3.11) is then of the form

(3.15)In

(
X+,X−

) =
∫

SU(N)

dΩ Ad(Ω)⊗neiX+ΩX−Ω†
.

The second step is to take the large N limit and express the result in terms of the collective
field, the phase space eigenvalue density ρ(x+, x−). In the well-studied singlet sector, n = 0,
the integral (3.15) is the Harish-Chandra–Itzykson–Zuber integral [32]. In this simplest case the
transition amplitudes

S
(
E+

1 , . . . ,E+
m;E−

1 , . . . ,E−
n

) = 〈μ|
m∏

a=1

tr X
iE+

a+
n∏

b=1

tr X
iE−

b− |μ〉

5 Such states form a complete, but not orthogonal set. An orthonormal basis of eigenstates is labeled by the irreducible
representations of SU(N). The construction of such a basis was considered, in the case of MQM with “upside-up”
Gaussian potential, in [31]. The eigenstates from the two sets are linearly related. The advantage of the first set of states
is that the N limit is easier to construct, as well as the direct interpretation of these states in terms of the worldsheet
theory.
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then can be formulated in terms of the scalar product in the Fermi sea vacuum [4]. In the general
case the integral (3.15) was evaluated by Shatashvili [33]. In the case n = 1 a formula suitable for
taking the large N limit was guessed by Morozov [34] and proved later by Eynard and collabora-
tors [19,35]. More general integrals and other gauge groups were studied in [36,37]. Taking the
large N expansion of these exact results is a delicate task. In this aspect, the paper [20] proved
to be very useful for our problem.

3.2. The reflection amplitude in the adjoint sector (n = 1)

The sector with n = 1 contains only one non-trivial representation, the adjoint. One can think
of this sector as the Fermi sea in presence of an impurity, or quasiparticle. In terms of the string
theory, the adjoint sector describes incoming and outgoing asymptotic states containing one
folded string. In absence of tachyons the inner product in this sector gives the reflection am-
plitude of the quasiparticle associated with the tip of the folded string [18]. In the compactified
Euclidean theory this sector describes states with one vortex and one anti-vortex. The eigenfunc-
tion describing a folded string with energy E is of the form

(3.16)
[
Φ±(E)

]l
j

=
([

X±iE±
]l
j
− 1

N
tr
(
X±iE±

)
δl
j

)
Φ±

0 (X±),

where Φ±
0 is the ground state wave function. To the leading order in the large N limit one can

replace SU(N) by U(N) and neglect the term subtracting the trace. More general wave functions,[
X±iE±

]l
j

tr X±iE1± tr X±iE2± · · · tr X±iEm± Φ±
0 (X±),

describe a folded string in presence of m tachyons. We will focus on the states of the form (3.16).
For such states the scattering matrix reduces to the reflection factor for one adjoint particle, which
is given by the normalized inner product

(3.17)R1(E+,E−) = 〈μ| tr
(
XiE++ XiE−−

)|μ〉.
Evaluating the integral over the angles by the Morozov–Eynard formula, we obtain an ex-

pression depending only on the eigenvalues of the matrices X+ and X−. In the large N limit
the result can be expressed in terms of the joint eigenvalue density ρ(x+, x−) for the ground
state. The Morozov–Eynard formula takes most simple form [19] when expressed in terms of the
resolvents

(3.18)W±
(
ξ±) := 1

ξ± + X±
.

The operators creating eigenstates with given energy (3.16) are related to the operators (3.18) by
the integral transformation

(3.19)X−iE = i

π
sinhπE

∞∫
0

dξ

ξ + X
ξ−iE.

The inverse transformation is

(3.20)
1

ξ + X
= − i

2ξ

∫
C

dE

sinhπE
ξiEX−iE,
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where the integration contour C is parallel to the real axes and passing between the poles at
E = 0 and E = i of the integrand. It is most natural to choose C = R + 1

2 i, which we will do in
the following.

We therefore first evaluate the normalized inner product for the resolvents (3.18),

(3.21)G1
(
ξ+, ξ−) := 〈μ| tr

[
W+

(
ξ+)

W−
(
ξ−)]|μ〉,

and then apply the integral transformation (3.19) to obtain the reflection amplitude in the E-
space. The expectation value (3.21) is the basic single-trace mixed correlator in the effective
two-matrix model we mentioned before. The result, obtained in [18], is surprisingly simple:

G1
(
ξ+, ξ−) = e−iS(ξ+,ξ−),

(3.22)S
(
ξ+, ξ−) =

∫
dx+ dx−

2π

ρ(x+, x−)

(ξ+ + x+)(ξ− + x−)
,

where ρ(x+, x−) is the semiclassical eigenvalue density of the fermionic liquid. This integral
is logarithmically divergent and needs a regularization. We introduce a cutoff Λ̃ � μ as the
depth of the Fermi sea explored by the average.6 We assume that Λ̃ � Λ, so that we still can
use the spectral density for the upside-down harmonic oscillator. The part of the Fermi sea that
corresponds to the interval of energies −μ < E < −Λ̃ is described by the density function

(3.23)ρ
(
x+, x−) = θ

(
x+x− − μ

)
θ
(
Λ̃ − x+x−)

.

The result of the integration with this density depends only on the product ξ+ξ−:

(3.24)S
(
ξ+, ξ−) = f (T − t) − f (−t),

where we denoted

(3.25)T = 1

2
log

Λ̃

μ
, t = 1

2
log

ξ+ξ−

μ

and the function f is the same as in (2.11). Applying the integral transformation (3.19) to both
arguments of G1(ξ

+, ξ−), we get

R1(E+,E−) = − sinh(πE+) sinh(πE−)

π2

(3.26)×
∞∫

0

dξ+ dξ−(
ξ+)iE+(

ξ−)iE−G1
(
ξ+, ξ−)

.

At this point we change the variables as ξ± = √
μet±τ . The integral over τ produces a delta

function imposing the energy conservation,

(3.27)R1(E+,E−) =R1(E+)δ(E+ − E−).

The reflection factor for one quasiparticle is given by the remaining integral in t :

(3.28)R1(E) = − 2

π
sinh2 πEμ−iE+1

∞∫
−∞

dt e2t (−iE+1)−if (T −t)+if (−t).

6 This means that we consider non-singlet excitations that transform according to a smaller group SU(Ñ) ⊂ U(N) with

Ñ ∼ Λ̃ log Λ̃.
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In the limit T → ∞ we can use the approximation f (T − t) = (T − t)2/π and then write the
exponent, using (A.12), as 2t − if (t) − 2i(E − T/π)t + iπ/6. The integral is evaluated using
the last equation (A.8). The final result for the reflection factor is

(3.29)R1(E) = 2Λe−iα sinh2 πEμ−iEe−iT 2/πe−2Eπ+if (T −πE).

We see that the reflection factor depends on the shifted energy ε̂ = E − T/π , where the
constant T = 1

2 log Λ̃/μ is in fact the logarithmic energy gap between the singlet and the adjoint
sector discovered in [28]. We therefore subtract, as in [1], this constant from the energy and
introduce the shifted energy variables

(3.30)ε = E − 1

2π
ln Λ̃, ε̂ = ε + 1

2π
lnμ = E − T/π,

where ε̂ is assumed finite. Then we can approximate sinhπE ≈ 1
2eπE and the scattering phase

takes the form

R1(E) = 1

2
Λe−iαμ−iEe−iT 2/πeif (−πε̂)

(3.31)= −1

2
Λ̃e−iπ/4e−i log2 Λ̃/4π × eiπε2−if (πε̂).

Let us compare this expression with the two-point function in the worldsheet theory with
s = s′ = M and k ∼ M ,

(3.32)
〈
U+

k U−
−k

〉 = πν2

sinh 2π |k|d
(|k|) = π2ν22e−2πke−iπ/4e−4πiM2

eif (2πM−πk).

Remarkably, the two expressions coincide (up to a constant phase, which can be absorbed in the
normalization of the wave functions) upon the identification

(3.33)k = E, s = s′ = T/2π, ν2 = πμ.

Therefore the cutoff Λ̃, the depth of the Fermi sea felt by the collective excitation, is related to
the boundary cosmological constant in the worldsheet theory:

(3.34)Λ̃ = μ2
B.

The remaining factor can be absorbed into the normalization of the boundary operators U±
±k .

Note that the reflection factor (3.31) is given, up to a complex conjugation and a numerical
factor, by the same function as the mixed correlator (3.21):

(3.35)R1(E) = Λ̃1−iEG1
(
ξ+, ξ−)

, ξ+ξ− = Λ̃e−πE = μe−πε̂ .

3.3. The reflection amplitude in the sector n = 2

Now we will evaluate the reflection amplitudes for the states (3.12) with n = 2, in the lead-
ing and in the subleading order. The scattering matrix is not diagonal for such states. It gets
diagonalized in the basis of the irreducible representations with n = 2, which we describe below.

In the sector H2 there are four irreducible representations (denoted as A2, Ā2,B2 and C2
in [29]). Their Young tableaux are shown in Fig. 3. For general n, the representations Bn and
Cn are defined by tensors with n upper and n lower indices, respectively totally symmetric and
totally antisymmetric under permutations of the upper and lower indices, associated with boxes



260 J.-E. Bourgine et al. / Nuclear Physics B 795 (2008) 243–276
and anti-boxes. The representations An are totally symmetric in boxes and totally antisymmetric
in anti-boxes, and similarly for Ān. The zero weight states in the sector with n = 2 are of the
form

Ψ
jl
ik = P

jl
ik ψik,

where P
jl
ik is a standard tensor associated with the corresponding Young symmetrizer. In the four

irreducible representations, A2, Ā2,B2 and C2, it is given respectively by δ
{j
[i δ

l}
k], δ

[j
{i δ

l]
k}, δ

{j
{i δ

l}
k}

and δ
[j
[i δ

l]
k], where [·,·] denotes antisymmetrization and {·,·} denotes symmetrization. In order to

extract the irreducible part, one needs further to impose the tracelessness condition for any pair
of upper and lower indices, but this can be skipped in the two leading orders in the large N limit.

Now let us return to the states (3.12) with n = 2. As in the case n = 1, it is advantageous first
to evaluate the inner product of the wave functions in the coordinate space

(3.36)Φ̃±
j1,j2;k1,k2

(
ξ±

1 , ξ±
2

) = [
W±

(
ξ±

1

)]k1
j1

[
W±

(
ξ±

2

)]
j2k2

Φ±
0 .

The inner product is expressed in terms of mixed two-trace correlator

G1,1
(
ξ+

1 , ξ−
1 ; ξ+

2 , ξ−
2

) = 〈μ| tr
[
W+

(
ξ+

1

)
W−

(
ξ−

1

)]
tr
[
W+

(
ξ+

2

)
W−

(
ξ−

2

)]|μ〉
and the mixed one-trace correlator

G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

) = 〈μ| tr
[
W+

(
ξ+

1

)
W−

(
ξ−

1

)
W+

(
ξ+

2

)
W−

(
ξ−

2

)]|μ〉.
The projections to the four irreps in the sector n = 2 are obtained by (anti)symmetrization:

〈μ|Φ̃+Φ̃−|μ〉A2 = G1,1
(
ξ+

1 , ξ−
1 ; ξ+

2 , ξ−
2

) − {
ξ−

1 ↔ ξ−
2

} = 〈μ|Φ̃+Φ̃−|μ〉Ā2
,

〈μ|Φ̃+Φ̃−|μ〉B2 = G1,1
(
ξ+

1 , ξ−
1 ; ξ+

2 , ξ−
2

) + G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

) + {
ξ−

1 ↔ ξ−
2

}
,

(3.37)〈μ|Φ̃+Φ̃−|μ〉C2 = G1,1
(
ξ+

1 , ξ−
1 ; ξ+

2 , ξ−
2

) − G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

) + {
ξ−

1 ↔ ξ−
2

}
.

Each term on the r.h.s. can be expanded in 1/μ. To the leading order μ2 only the first term
contributes, where it factorizes to

G1,1
(
ξ+

1 , ξ−
1 ; ξ+

2 , ξ−
2

) = G1
(
ξ+

1 , ξ−
1

)
G1

(
ξ+

2 , ξ−
2

) + O
(
μ0).

The integral transformation (3.19) gives

(3.38)R
(0)
2

(
E+

1 ,E+
2 ,E−

1 ,E−
2

) = δ
(
E+

1 − E−
1

)
δ
(
E+

2 − E−
2

)
R1

(
E+

1

)
R1

(
E+

2

)
.

To this order the inner product are given by the (anti)symmetrized product of two expectation
values (3.21), associated with each trace. This is the approximation of dilute gas of quasiparticles.

The subleading term is given by G2(ξ
+
1 , ξ+

2 , ξ−
1 , ξ−

2 ). Here we will focus on this amplitude
and leave the next order μ0, which is given by the connected correlator of the product of two
traces, for future work. The mixed one-trace correlators Gn in the effective two-matrix model
can be expressed through the lowest one-trace correlator G1 by the general formula derived
in [20]. In the case n = 2 it states

(3.39)G2
(
ξ+

1 , ξ+
2 , ξ−

1 , ξ−
2

) = i
G1(ξ

+
1 , ξ−

1 )G1(ξ
+
2 , ξ−

2 ) − G1(ξ
+
1 , ξ−

2 )G1(ξ
+
2 , ξ−

1 )

(ξ+
1 − ξ+

2 )(ξ−
1 − ξ−

2 )
.
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A simpler derivation of this formula, due to L. Cantini, can be found in Orantin’s thesis [38]. The
advantage of this derivation, which we give in Appendix C, is that it can be applied also for our
non-compact effective two-matrix model.

The next step is to perform the integral transformation (3.19) to each of the arguments. The
calculation, this time non-trivial, is presented in Appendix B. The result contains a δ-function for
the energy conservation, so we define the subleading n = 2 reflection amplitude R2 by

(3.40)R
(1)
2

(
E+

1 ,E+
2 ,E−

1 ,E−
2

) = δ
(
E+

1 + E+
2 − E−

1 − E−
2

)
R2

(
E+

1 ,E+
2 ;E−

1 ,E−
2

)
.

For energies E±
j = ε±

j + 1
2π

ln Λ̃, with ε±
j finite,

R2
(
E+

1 ,E+
2 ,E−

1 ,E−
2

) = − 2

Λ̃
επ(E+

1 +E+
2 )R1(E

+
1 )R1(E

+
2 ) −R1(E

−
1 )R1(E

−
2 )

sinhπ(E+
1 − E−

1 ) sinhπ(E+
1 − E−

2 )

(3.41)= − 2

μ
eπ(ε̂+

1 +ε̂+
2 )R1(E

+
1 )R1(E

+
2 ) −R1(E

−
1 )R1(E

−
2 )

sinhπ(ε̂+
1 − ε̂−

1 ) sinhπ(ε̂+
1 − ε̂−

2 )
.

The n = 2 reflection amplitude, given in the first two orders by (3.38) and (3.40), obviously
satisfies the unitarity condition

R1
(
E+

1

)
R1

(
E+

2

)
R2

(
E−

1 ,E−
2 ,E+

1 ,E+
2

)
(3.42)=R2

(
E+

1 ,E+
2 ;E−

1 ,E−
2

)
R1

(
E−

1

)
R1

(
E−

2

)
.

Let us compare the subleading reflection amplitude (3.41) with the 4-point disk amplitude in the
Maldacena limit (2.24), evaluated in the worldsheet theory. If we identify

k0 = −E−
1 , k1 = E+

1 , k2 = −E−
2 , k3 = E+

2 ,

(3.43)s0 = s1 = s2 = s3 = T/2π, ν2 = πμ,

then the two amplitudes are indeed equal to each other, up to a factor of 2. This factor can be
absorbed in the normalization of the functional measure in the worldsheet calculation. After
fixing the normalization of the boundary operators and the functional measure, there are no more
ambiguities left.

If we express the energies in terms of the shifted winding parameters yi defined by (2.25),

(3.44)E−
1 = y3 + y0, E+

1 = y0 + y1, E−
2 = y1 + y2, E+

2 = y2 + y3,

then we observe that the reflection amplitude in the E-space has again the same functional form
as in the ξ -space,

(3.45)R2
(
E+

1 ,E−
1 ,E+

2 ,E−
2

) = −2iΛ̃2−i(E+
1 +E+

2 )G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

)
with

ξ−
1 = Λ̃1/2e− 1

2 πy0 , ξ+
1 = Λ̃1/2e− 1

2 πy1 ,

(3.46)ξ−
2 = Λ̃1/2e− 1

2 πy2 , ξ+
2 = Λ̃1/2e− 1

2 πy3 .
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Fig. 4. A planar set of arcs on the disk with 2j points along the boundary, labeled by ξ+
1 , ξ−

1 , . . . , ξ+
j

, ξ−
j

, an d its dual
tree graph. On the figure j = 8. The arcs split the disk into j + 1 windows. The non-trivial weights of the windows in
the figure are C2(ξ+

7 , ξ−
8 , ξ+

8 , ξ−
7 ), C3(ξ+

1 , ξ−
3 , ξ+

4 , ξ−
6 , ξ+

7 , ξ−
8 ), C3(ξ+

1 , ξ−
3 , ξ+

3 , ξ−
2 , ξ+

2 , ξ−
1 ), C2(ξ+

4 , ξ−
6 , ξ+

6 , ξ−
4 ),

C2(ξ+
6 , ξ−

4 , ξ+
5 , ξ−

5 ).

3.4. The reflection amplitude for n > 2

Using the loop equations for the two-matrix model one can evaluate all mixed one-trace cor-
relators

Gn

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

) := 〈μ| tr
[
W+

(
ξ+

1

)
W−

(
ξ−

1

) · · ·W+
(
ξ+
k

)
W−

(
ξ−
n

)]|μ〉.
These correlators satisfy the recurrence equations found in [20], see Appendix C. The unique
solution of the recurrence equations is given by the “Bethe Ansatz like” formula of [20] as a sum
of products of G1 with rational coefficients:

Gn

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

)
(3.47)=

∑
σ∈S̄n

Cσ

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

)
G1

(
ξ+

1 , ξ−
σ1

) · · ·G1
(
ξ+
n , ξ−

σn

)
.

The sum goes in the set S̄n of planar permutations of n elements. A planar permutation σ

can be defined as follows. Consider a disk with 2n marked points on the boundary, labeled
by ξ−

1 , ξ+
1 , . . . , ξ−

n , ξ+
n . Drow a set of arcs (oriented lines) connecting the points ξ+

i with ξ−
σi

,
i = 1, . . . , n. The permutation σ ∈ Sn is planar if the arcs can be drown without intersections, as
shown in Fig. 4. We call such a configuration of arcs “rainbow diagram”.

It is shown in [20] that the coefficient Cσ is equal to a product of weights associated with the
n+ 1 windows on the rainbow diagram. These weights are determined from the following recur-
rence relation, which stems from the loop equations (C.6). Denote by Cj(ξ

+
1 , ξ−

1 , . . . , ξ+
j , ξ−

j )

the weight of the window with 2j points ξ+
1 , ξ−

1 , . . . , ξ+
j , ξ−

j along its boundary, labelled fol-
lowing the orientation of the lines. This function is invariant under cyclic permutations of the 2j

points. Then the weight Cn is expressed through C1, . . . ,Cn−1 as
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Cn

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

)
(3.48)= i

n∑
j=1

Cj(ξ
+
1 , ξ−

1 , . . . , ξ+
j , ξ−

j )Cn−j (ξ
+
j+1, ξ

−
j+1, . . . , ξ

+
n , ξ−

n )

(ξ+
n − ξ+

1 )(ξ−
n − ξ−

j )
,

where by definition C1(ξ
+, ξ−) = 1 [20].

In order to evaluate the amplitude in the E space, we have to perform the integral trans-
formation (3.19) of the r.h.s. of (3.47). We believe, although we are not able to supply the
proof now, that the relations (3.35) and (3.45) hold in fact for any n. If we introduce the wind-
ing parameters y1, . . . , y2n−1, y2n ≡ y0, determined up to a common translation y2i → y2i + a,
y2i−1 → y2i−1 − a, and express the energies as

(3.49)E+
i = y2i−2 + y2i−1, E−

i = y2i−1 + y2i ,

we conjecture that for any n

(3.50)Rn

(
E+

1 ,E−
1 , . . . ,E+

n ,E−
n

) = Λ̃n−i(E+
1 +···+E+

n )Gn

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

)
,

where

(3.51)ξ+
i = Λ̃1/2e− 1

2 πy2i−2 , ξ−
i = Λ̃1/2e− 1

2 πy2i−1 (i = 1, . . . , n).

The energies Ei and the winding parameters yi are logarithmically divergent with the cutoff Λ̃.
In terms of the finite shifted energies ε̂±

i the above relations reads

ε̂+
i = ŷ2i−2 + ŷ2i−1, ε̂−

i = ŷ2i−1 + ŷ2i ,

(3.52)ξ+
i = μ1/2e− 1

2 πŷ2i−2 , ξ−
i = μ1/2e− 1

2 πŷ2i−1 (i = 1, . . . , n).

From the perspective of the worldsheet theory, each term in the solution (3.47) is the contri-
bution of a particular scattering process involving n long strings sharing a common worldsheet.
The arcs in the rainbow diagram on Fig. 4 correspond to the tips of the n long strings. The factor-
ization of the amplitude means that the interaction occurs only in the far past (t ∼ − logμB ) or
in the future (t ∼ logμB ). For − logμB � t � logμB the n long strings evolve independently,
contributing a product of reflection factors R1. Furthermore, the recurrence relation (3.48) for
the coefficients Cj means that each such coefficient can be written as a sum of products of C2.
Therefore the interaction of the long strings can be decomposed into exchanges of short strings
as those illustrated in Fig. 2.

4. Discussion

In this paper we studied the simplest scattering processes of long folded strings in the two-
dimensional string theory. We used the description of the long strings in terms of an FZZT brane
with μB � √

μ, as suggested in [1]. We evaluated the four-point disk amplitude in Maldacena’s
limit of large momenta and large boundary parameters. We observed that the amplitude depends
only on the chiral combinations ŷi = yi − si , where sa are the Liouville boundary parameters and
ya the “winding parameters”, associated with the four segments of the boundary (a = 1,2,3,4).
Furthermore we observed a symmetry with respect to the Fourier transformation in the time
direction. Our result suggests that, to the leading order, the long strings interact via exchange of
short open strings that happens in the asymptotically free region φ � − logμ.
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On the side of MQM the scattering amplitudes are expressed in terms of the mixed trace
correlators in an effective non-compact two-matrix model with interaction i tr X+X−. However
the worldsheet interpretation of the correlation functions is not the same as in the matrix model
description of rational c < 1 string theories. In our case the spectral parameter ξ± is related
by Fourier transformation to the energy of the boundary tachyon, while the boundary condition
for the Liouville field is determined by a regularization parameter Λ̃, the depth of the Fermi
sea. This is because the boundary is associated to the gauge field A, while the fields X± create
the asymptotic open string states. Since we are modelling a Lorentzian theory, the worldsheet
description does not have a statistical interpretation as a sum over surfaces with positive weights.

We evaluated the subleading amplitude for any number n of long strings using the results
for the single-trace mixed correlator in the two-matrix model [20]. We obtained the result in the
coordinate space, while the worldsheet calculation gives it in the space of energies. We performed
explicitly the Fourier transformation for the cases n = 1 and n = 2 where we reproduced the
result of the worldsheet theory up to factors that can be absorbed into the normalization of the
boundary tachyons and the integration measure.

We found that the Fourier transformed amplitude takes essentially the same form as that in
the coordinate space, after being expressed in terms of the 2n dual coordinates yi associated with
the boundaries of the disk. We were able to establish this symmetry only for the cases n = 1 and
n = 2, but we believe that it is a general property of the disk n-point amplitude in Maldacena’s
limit.

Eventually we are interested taking the limit with a large number of FZZT branes, which
would help us, as suggested in [1], to find a matrix model description of the Lorentzian black
hole. The results reported in this paper suggest that the effective two-matrix model that stems
from the chiral quantization of MQM is the right tool to achieve this limit. In this paper we
studied the interactions of long folded strings due to exchange of short open strings, which are
described by the single-trace mixed correlators in the effective two-matrix model. We did not
consider the interactions due to the exchange of closed strings. Such interactions are described
by multi-trace mixed correlators in the effective two-matrix model.

Acknowledgements

We thank S. Alexandrov and N. Orantin for valuable discussions. This work has been par-
tially supported by the European Union through ENRAGE network (contract MRTN-CT-2004-
005616), ANR programs GIMP (contract ANR-05-BLAN-0029-01). Part of this work was done
during the “Integrability, Gauge Fields and Strings” focused research group at the Banff Interna-
tional Research Station.

Appendix A. Properties of the functions S(z) and f (x)

We give here a short summary of the properties of the double sine function S(z) used in [16]
and the function f (x) introduced (for b = 1) in [1]. The double sine is related to the double
gamma function introduced by Barnes [39]. The function eb(x) = eif (πx) is also known as non-
compact quantum dilogarithm [40].



J.-E. Bourgine et al. / Nuclear Physics B 795 (2008) 243–276 265
A.1. The double sine function S(z)

• Integral representation: [16]

(A.1)log S(Q/2 − ix) = i

2

∞∫
0

(
sin 2tx

sinhbt sinhb−1t
− 2x

t

)
dt

t
, Q = b + 1/b.

• Functional relations:

(A.2)
S(z + b)

S(z)
= 2 sinπbz,

S(z + 1/b)

S(z)
= 2 sin

πz

b
.

• Poles and zeroes:

poles at z = n1b + n2/b, n1, n2 � 0,

zeroes at z = n1b + n2/b, n1, n2 � 1.

• Asymptotics at infinity (for Reb > 0):

(A.3)S(x) ∼ exp

(
∓iπ/2

{(
x − 1

2
Q

)2

− 1
12

(
b2 + b−2

)})
(Imx → ±∞).

A.2. The function f (x)

• Definition:

(A.4)eif (x) = eix2/2π+iπ(b2+b−2)/24

S(Q/2 − ix/π)
.

• Integral representation:

(A.5)f (x) = − i

4

∫
R+i0

dt

t

e−2itx/π

sinh tb sinh t/b
.

• Functional equations:

f (x) + f (−x) = x2

π
+ π(b2 + b−2)

12
,

eif (x+iπb) = eif (x)

1 + eiπb2
e2bx

,

(A.6)eif (x+iπ/b) = eif (x)

1 + eiπ/b2
e2x/b

.

• Asymptotics at infinity (for b > 0):

(A.7)f (x) →
{

0, �x → −∞,

x2/π + π(b2 + b−2)/12, �x → +∞.

• Fourier transform [41,42]
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∫
R

dt

π
e−Qteif (−t)e2itx/π = e−iαeQxe−if (x),

∫
R

dt

π
e−Qte−if (−t)e2itx/π = eiαe−Qxeif (−x),

∫
R

dt

π
eQteif (t)e2itx/π = e−iαe−Qxe−if (−x),

(A.8)
∫
R

dt

π
eQte−if (t)e2izt/π = eiαeQxeif (x),

where α = π
1+Q2

12 − π
Q2

4 .

A.3. The limit b → 1

• Integral representation:
Evaluating the derivative

(A.9)
d

dx
log S(1 − ix)

∣∣
b=1 = i

∞∫
0

dt

[
cos 2tx

sinh2 t
− 1

t2

]
= −iπx

tanhπx
,

we find another integral representation of the double sine for b = 1:

(A.10)iπ log S(1 − ix)
∣∣
b=1 = π

x∫
0

dx′ πx′

tanhπx′ =
πx∫
0

dζ
ζ

tanh ζ
.

Then (A.4) reproduces the function f (x) as defined in [18]:

(A.11)f (x) = 1

π

x∫
−∞

dζ

(
ζ

tanh ζ
+ ζ

)
.

• Functional equations:

(A.12)f (x) + f (−x) = x2

π
+ π

6
,

(A.13)eif (x−iπ) = (
1 − e2x

)
eif (x).

• Boundary reflection coefficient d(k, s, s′)|b=1:

d(k, s, s′) b=1= S(1 + 2ik)S
(
1 − i(k + s + s′)

)
S
(
1 − i(k + s − s′)

)
(A.14)× S

(
1 − i(k − s + s′)

)
S
(
1 − i(k − s − s′)

)
,

(A.15)d(k, s, s′)±1
∣∣
(k,s,s′)∼(±2M,M,M)

= e−2πi(s2+s′2)− iπ
4 +if (πs+πs′∓πk).
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Appendix B. Equation for the boundary Liouville three point function

Here we derive a shift equation for the three-point function of boundary operators Bβ ≡ eβφ

in Liouville theory on a disk. We denote the relevant structure constant by C
β1,β2,β3
s1,s2,s3 :〈

Bβ1(x1)Bβ2(x2)Bβ3(x3)
〉
s1,s2,s3

= Cβ1,β2,β3
s1,s2,s3

∏
{ijk}

|xi − xj |hk−hi−hj .

Our notation is such that Bβ1 joins the branes s3 and s1, Bβ2 joins s1 and s2 and so on. The shift
equation follows from the bootstrap constraints of four-point functions containing one bound-
ary degenerate operator B−b/2 or B−1/2b . Note that the two branes joined by B−b/2 have to
satisfy [16]

s − s′ = ±ib/2 or s + s′ = ±ib/2,

and similarly for those joined by B−1/2b .
To recall where the constraints arise from, let us consider a four-point function,〈

Bβ1(x1)B−b/2(x)Bβ2(x2)Bβ3(x3)
〉
s′
1,s1,s2,s3

.

Using the analytic solutions of Virasoro Ward identity with the knowledge of the operator
product expansions involving B−b/2, one can derive linear relations among C

β1∓b/2,β2,β3
s1,s2,s3 and

C
β1,β2∓b/2,β3
s′
1,s2,s3

. One of them reads, after replacing βi by Q
2 − iki ,

− Γ (1 − 2ibk1)

Γ (α − 2ibk1)
C

Q
2 −ik1− b

2 ,
Q
2 −ik2,

Q
2 −ik3

s1,s2,s3 + Γ (1 + 2ibk2 − α)

Γ (2ibk2)
C

Q
2 −ik1,

Q
2 −ik2− b

2 ,
Q
2 −ik3

s′
1,s2,s3

= Γ (1 + 2ibk1)Γ (1 + 2ibk2 − α)

Γ (1 + 2ibk1 + 2ibk2 − α)Γ (α)

dL(
Q
2 − ik1, s3, s

′
1)

dL(
Q
2 − ik1 + b

2 , s3, s1)
C

Q
2 −ik1+ b

2 ,
Q
2 −ik2,

Q
2 −ik3

s1,s2,s3 .

Here α ≡ 1
2 + ib(k1 + k2 + k3), and dL is defined in (2.8). See [24] and [43] for more detail.

A similar relation is obtained from the four-point function containing B−1/2b . This kind of shift
relations among correlators is often powerful enough to determine the structure constants in
Liouville theory.

We translate the above relations on Liouville correlators into a shift relation among the disk
amplitudes of three U−

k or three U−
k in two-dimensional string theory. The conservation of energy

requires k1 + k2 + k3 = −Q̃/2 or α = 0 in the above. We will suppress the corresponding delta
function when writing down the formulae for amplitudes. The divergence of Γ (α) in the right-
hand side is canceled by the bulk divergence [24] of C

β1,β2,β3
s1,s2,s3 at β1 + β2 + β3 = 2Q:

Cβ1,β2,β3
s1,s2,s3

∼ dL(β1, s3, s1)dL(β2, s1, s2)dL(β3, s2, s3)

2Q − β1 − β2 − β3
.

So we obtain (2.12) and (2.13).

Appendix C. Derivation of the correlator G2 (3.39)

To evaluate the correlator G2 we use the identity, following from the translation invariance of
the matrix measure,

(C.1)
∫

dX+ dX− tr
(∇+W 2+W 2−W 1+W 1−

)
Φ+

0 Φ−
0 ei trX+X− = 0.
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Here ∇± = ∂X± is the operator of matrix derivative, Φ+
0 (X+) and Φ−

0 (X−) are the wave func-
tions of the left and right ground states in the singlet sector and Wa± (a = 1,2) denote resol-
vents (3.18) with spectral parameters ξ±

a :

Wa± ≡ W±
(
ξ±
a

) = 1

ξ±
a + X±

.

We commute the operator of derivative to the right using that it acts on the resolvents as [∇±]kj ·
[Wa±]k′

j ′ = −[Wa±]k
j ′ [Wa±]k′

j . As a result we obtain the identity

〈μ| − trW 2+ tr
(
W 2+W 2−W 1+W 1−

) − tr
(
W 2+W 2−W 1+

)
tr
(
W 1+W 1−

)|μ〉
(C.2)+ 〈μ| tr

(
W 2+W 2−W 1+W 1−

(
iX− + ∇+ lnΦ+

0

))|μ〉 = 0.

In a similar way, replacing the trace in (C.1) with tr(∇+W 2−W 1+W 1−W 2+), we obtain another iden-
tity,

〈μ| − tr
(
W 2−W 1+

)
tr
(
W 1+W 1−W 2+

) − tr
(
W 2−W 1+W 1−W 2+

)
tr
(
W 2+

)|μ〉
(C.3)+〈μ| tr

(
W 2−W 1+W 1−W 2+

(
iX− + ∇+ lnΦ+

0

))|μ〉 = 0.

Now we subtract (C.3) from (C.2) and use that [W 2+,∇+ lnΦ+
0 ] = 0. As a result we have an

identity that does not involve the ground state wave function:

〈μ| tr
(
W 1+W 2−

)
tr
(
W 2+W 1+W 1−

) − tr
(
W 1+W 2+W 2−

)
tr
(
W 1+W 1−

)|μ〉
(C.4)+ i〈μ| tr

(
W 2+W 2−W 1+W 1−X−

) − tr
(
X−W 2−W 1+W 1−W 2+

)|μ〉 = 0.

Applying the identities

W 1±W 2± = −W 1± − W 2±
ξ±

1 − ξ±
2

, X±Wa± = 1 − ξ±Wa±

we write (C.4) as

〈μ| tr(W 1+W 2−) tr(W 2+W 1−) − tr(W 1+W 1−) tr(W 2+W 2−)

ξ+
1 − ξ+

2

|μ〉

− i〈μ| tr(W 1+W 2− − W 2+W 2− − W 1+W 1− + W 2+W 1−)

ξ+
1 − ξ+

2

|μ〉

(C.5)− i〈μ| tr
(
W 1+W 1−W 2+W 2−

)(
ξ+

1 − ξ+
2

)|μ〉 = 0.

In the leading order in the 1/μ expansion we can use the factorization of the normalized expec-
tation values, 〈μ| trA trB|μ〉 = 〈μ| trA|μ〉〈μ| trB|μ〉. Setting

G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

) = 〈μ| tr
(
W 1+W 1−W 2+W 2−

)|μ〉,
G1

(
ξ+, ξ−) = 〈μ| tr(W+W−)|μ〉 − i,

we retrieve (3.39):

G2
(
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2

) = i
G1(ξ

+
1 , ξ−

1 )G1(ξ
+
2 , ξ−

2 ) − G1(ξ
+
1 , ξ−

2 )G1(ξ
+
2 , ξ−

1 )

(ξ+
2 − ξ+

1 )(ξ−
2 − ξ−

1 )
.
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Proceeding in the same way one obtains a recursive formula for the one-trace correlator Gn [20]

Gn

(
ξ+

1 , ξ−
1 , . . . , ξ+

n , ξ−
n

)
= i

k−1∑
j=1

Gj(ξ
+
1 , ξ−

1 , . . . , ξ+
j , ξ−

j )Gk−j (ξ
+
j+1, ξ

−
j+1, . . . , ξ

+
k , ξ−

n )

(ξ−
n − ξ−

j )(ξ+
k − ξ+

1 )

(C.6)− i

n−1∑
j=1

Gj(ξ
+
1 , ξ−

1 , . . . , ξ+
j , ξ−

k )Gn−j (ξ
+
j+1, ξ

−
j+1, . . . , ξ

+
k , ξ−

j )

(ξ−
k − ξ−

j )(ξ+
n − ξ+

1 )
.

Appendix D. Evaluation of the integral for R2(E
+
1 ,E+

2 ,E−
1 ,E−

2 )

In order to evaluate the disk scattering amplitude in the space of energies, we need to perform
the integral transformation (3.19) with respect to all four variables of the amplitude (3.39):

R2
(
E+

1 ,E+
2 ,E−

1 ,E−
2

)
= 1

π4
sinhπE+

1 sinhπE+
2 sinhπE−

1 sinhπE−
2

×
∞∫

0

dξ+
1 dξ+

2 dξ−
1 dξ−

2

(
ξ+

1

)−iE+
1
(
ξ+

2

)−iE+
2
(
ξ−

1

)−iE−
1
(
ξ−

2

)−iE−
2

(D.1)× G2
(
ξ+

1 , ξ+
2 , ξ−

1 , ξ−
2

)
.

We will use the fact that the integral transform of the two factors G1 in the expression (3.39)
for R2 is already known. We express the r.h.s. of (D.1) in terms of

(D.2)R1
(
E+,E−) = δ

(
E+ − E−)

R1
(
E+)

by applying the inverse transformation (3.20):

(D.3)G1
(
ξ+, ξ−) = − 1

4ξ+ξ−

∫
R+i/2

dE+

sinhπE+ ξ iE+
+

dE−

sinhπE− ξ iE−
− R1

(
E+,E−)

.

As a result, the original integral takes the form

(D.4)R2 =
∫

R+i/2

∏
±

[
dp±

1 dp±
2 K

(
E±

1 ,E±
2 ;p±

1 ,p±
2

)]
R1

(
p+

1 ,p−
1

)
R1

(
p+

2 ,p−
2

)
,

where the kernel K(E1,E2;y1, y2) is given by the integral

(D.5)K(E1,E2;p1,p2) = A

2π2

∞∫
0

dξ1 dξ2

ξ1ξ2

detjk ξ
i(pk−Ej )

j

ξ1 − ξ2
.

The factor

(D.6)A =
∏

j=1,2

sinhπEj

sinhπpj
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can be put equal to 1, as we will see later. To evaluate the kernel, change the variables as ξ1 =
eτ+t , ξ2 = eτ−t ,

A−1K(E1,E2;p1,p2)

= i

π2

∞∫
−∞

dτ dt eiτ(p1+p2−E1−E2)eit (E2−E1)
sin(p2 − p1)t

eτ sinh t

= 2

π
iδ(E1 + E2 − p1 − p2 + i)

∞∫
−∞

dt
cos(E1 − E2)t sin(p1 − p2)t

sinh t

(D.7)= 2iδ(E1 + E2 − p1 − p2 + i)
sinhπ(p1 − p2)

coshπ(E1 − E2) + coshπ(p1 − p2)
.

After substituting (D.7) and (D.2) in the integral (D.4), three of the integrations are compensated
by δ-functions, the remaining δ-function imposes the conservation of the total energy:

(D.8)R2
(
E+

1 ,E+
2 ,E−

1 ,E−
2

) = δ
(
E+

1 + E+
2 − E−

1 − E−
2

)
R2.

It is convenient to introduce the independent variables E,�± and ε′ by

E±
1 = E + �±, E±

2 = E − �±,

(D.9)p1 = E + ε′ + 1

2
i, p2 = E − ε′ + 1

2
i,

ε′ being the integration variable. It is clear that in the Maldacena limit

(D.10)E = 1

2π
lnΛ + ε

with ε,�± finite, the factor (D.6) can be replaced by 1. Then we can write the remaining integral
as

(D.11)R2 = 4i

∞∫
−∞

dε′ sinh2 2πε′R1(E + ε′ + 1
2 i)R1(E − ε′ + 1

2 i)

(cosh 2π�+ + cosh 2πε′)(cosh 2π�− + cosh 2πε′)
.

We are going to evaluate the integral (D.11) as a contour integral. According to (3.31) the inte-
grand behaves at ε′ → ±∞ as exp(−iπε′2). This leads to the choice of a 8-like contour shown
in Fig. 5. We will show later that the integral integration along the imaginary axis is zero, so that
the integral (D.11) is given by the sum of the residues trapped inside the 8-shaped contour. The
integrand contains two kinds of poles. First, there are the (simple) poles of the kernel at

ε′ = ±�− +
(

n + 1

2

)
i, ±�+ +

(
n + 1

2

)
i, n ∈ Z.

Second, there are the poles of the factors R1(E ± ε′ + 1
2 i) at

ε′ = ∓ε̂ ±
(

n + 1

2

)
i, n ∈ Z+,

where by ε̂ we denoted the shifted energy ε̂ = ε + 1
2π

lnμ = E − 1
2π

ln(Λ/μ). The order of these
poles grow linearly with n.
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Fig. 5. The 8-like contour in the ε′-plane and the pattern of the poles.

We will assume that ε̂ < 0. Then the second kind of poles remain outside the integration
contour and the only contribution will come from the poles of the kernel. Let us sum up the
contributions of the poles along the lines �ε = ±�−. Assume for definiteness that �− > 0.
Then we have to sum up the residues at

(D.12)ε′ = ±�− ∓
(

n + 1

2

)
i, n ∈ Z+.

The residues of the kernel are the same for all poles:

(D.13)ResK = i
sinh 2π�−

2π(cosh 2π�+ − cosh 2π�−)
.

The factor R1R1 in the integrand is evaluated at the nth pole using the shifting property

(D.14)R1(E + ni) = μ−n
(
1 − e−2πε̂

)−nR1(E) = (
μ − e−2πε

)−nR1(E).

The sum over the poles yields a factor∑
n∈Z+

R1(E + �− − ni)R1
(
E − �− + (n + 1)i

)

= R1(E + �−)R1(E − �−)

μ(1 − e−2π(ε̂−�−))

∞∑
n=0

(
1 − e−2π(ε̂+�−)

1 − e−2π(ε̂−�−)

)n

(D.15)= −e2πε R1(E + �−)R1(E − �−)

2 sinh 2π�−
.

Taking into account the contribution of both series of poles (D.12) we get

(D.16)R2
∣∣
poles�− = −2e2πε R1(E + �−)R1(E − �−)

cosh 2π�+ − cosh 2π�−
.

Similarly we evaluate the contribution of the poles with �ε = ±�+. Returning to the original
variables E±

j we write the final result as

(D.17)R2 = − 2

Λ
eπ(E+

1 +E+
2 )R1(E

+
1 )R1(E

+
2 ) −R1(E

−
1 )R1(E

−
2 )

sinhπ(E+ − E−) sinhπ(E+ − E−)
.

1 1 1 2
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In terms of the renormalized energies (3.30), ε̂±
j = E±

j − 1
2π

ln(Λ/μ) the result reads

(D.18)R2 = − 2

μ
eπ(ε̂+

1 +ε̂+
2 )R1(E

+
1 )R1(E

+
2 ) −R1(E

−
1 )R1(E

−
2 )

sinhπ(ε̂+
1 − ε̂−

1 ) sinhπ(ε̂+
1 − ε̂−

2 )
.

This expression can be safely analytically continued for ε̂ > 0. Note that the scattering ampli-
tude (D.18) is of order 1/μ compared to the leading order, as it should.

We still need to show that the integral over the imaginary axis, ε′ = iq , vanishes. The integral
in question is

I =
∞∫

−∞
dq F(q),

(D.19)F(q) = 4i
sin2 2πqR1(E + iq + 1

2 i)R1(E − iq + 1
2 i)

(cosh 2π�+ + cos 2πq)(cosh 2π�− + cos 2πq)
.

We split the interval into segments of length 1 and use the quasi-periodicity of the integrand:

I =
∑
n∈Z

1/2∫
−1/2

dq F(q + n) =
1/2∫

−1/2

dq
∑
n∈Z

einφ(q)F (q),

(D.20)eiφ(q) = e2πε̂ − e2πiq

e2πε̂ − e−2πiq
.

The sum of the unitary numbers gives e2πε̂δ(q), so that indeed I ∼ F(0) = 0.

Appendix E. Calogero Hamiltonian for general representations

In this appendix, we derive the explicit form of the Calogero Hamiltonian for arbitrary repre-
sentation. In particular, we focus on the second part of the Hamiltonian (E.1) which is important
in the continuum limit,

(E.1)H1 = 1

2

N∑
j �=k

D(Ek
j )D(E

j
k )

(xj − xk)2
.

In general, the wave function associated with the Young diagram whose box (respectively anti-
box) part is described by Y1 (respectively Y2) is obtained by applying the Young symmetrizer
associated with Y1 to the upper indices and the Young symmetrizer associated with Y2 to the
lower indices and satisfies the traceless condition for any pair of the upper and lower indices.
More explicitly, if we write

(E.2)πY =
∑
σ∈Sn

π(Y,σ )σ

as the Young symmetrizer for the Young diagram Y , the state associated with the representation
Y1, Y2 can be written in terms of the adjoint wave functions as,

(E.3)Ψ
j1···jn

k1···kn
(X) =

∑
σ,τ∈Sn

π(Y1, σ )π(Y2, τ )f1(X)
jσ(1)

kτ(1)
· · ·fn(X)

jσ(n)

kτ(n)
− · · · .
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Here, again, · · · represents the terms which are needed to keep the traceless condition for
Ψ

j1···jn

k1···kn
(X).

For a general representation (E.3) we need to identify the index sets j1, . . . , jn with k1, . . . , kn.
In order to keep track of the original index structure, it will be useful to represent the state vector
in the form

N∑
jn,kn

Ψ
j1···jn

k1···kn
(X)|j1 · · · jn〉〈k1, . . . , kn|

(E.4)→
N∑
jn

wj1···jn(x)|j1 · · · jn〉〈j1, . . . , jn|,

(E.5)wj1···jn(x) = Ψ
j1···jn

j1···jn
(x).

The element of the permutation on the upper (respectively lower) indices can be applied to the
ket (respectively bra) state as,

(E.6)−→σ |j1 · · · jn〉〈j1, . . . , jn| = |jσ(1) · · · jσ(n)〉〈j1, . . . , jn|,
(E.7)←−σ |j1 · · · jn〉〈j1, . . . , jn| = |j1, . . . , jn〉〈jσ(1) · · · jσ(n)|.

Via such operators, one can define the projection into the irreducible representations by the Young
symmetrizer as (E.3).

We are going to calculate the action of the Hamiltonian to the state of the representation
(Y1, Y2),

(E.8)Ψ
Y1
Y2

(x) =
∑

σ,τ∈Sn

π(Y1, σ )π(Y2, τ )

N∑
j1,...,jn

wj1,...,jn(x) · −→σ ←−τ |j1, . . . , jn〉〈j1 · · · jn|.

The operator D(Ejk) in the interaction Hamiltonian H1 takes the form

(E.9)D(Ejk) =
n∑

a=1

(−→
E

(a)
jk − ←−

E
(a)
jk

)
,

where

−→
E

(a)
jk |l1 · · · ln〉〈m1, . . . ,mn| = δk,la |l1, . . . , j, . . . , ln〉〈m1, . . . ,mn|,

(E.10)
←−
E

(a)
jk |m1, . . . ,mn〉〈l1 · · · ln| = δj,la |m1, . . . ,mn〉〈l1, . . . , k, . . . , ln|.

It is easy to check that7

(E.11)−→σ · −→
E

(a)
jk = −→

E
(σ−1·b)
jk

−→σ , ←−σ ←−
E

(a)
jk = ←−

E
(σ−1·a)
jk

←−σ

and

(E.12)[−→σ ,H1] = [←−σ ,H1] = 0.

7 We note that the operators ←−σ and
←−
E

(a)
jk

act on the state from the rightmost operator. Namely
←−σ ←−τ |l1 · · · ln〉〈k1, . . . , kn| = |l1 · · · ln〉〈kστ(1), . . . , kστ(n)|.
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Therefore the action of H to Ψ
Y1
Y2

(x) can be written as,

H1Ψ
Y1
Y2

(x) =
∑

σ,τ∈Sn

π(Y1, σ )π(Y2, τ )−→σ ←−τ H1w(x),

(E.13)w(x) =
N∑

j1,...,jn

wj1,...,jn(x)|j1, . . . , jn〉〈j1 · · · jn|.

When we evaluate the action of H1 to the state w(x), it is useful to split it into the four parts,

(E.14)H1 = ĥ1 + ĥ2 + ĥ3 + ĥ4,

(E.15)ĥ1 = 1

2

N∑
j �=k

n∑
a=1

−→
E

(a)
jk

−→
E

(a)
kj + ←−

E
(a)
jk

←−
E

(a)
kj

(xj − xk)2
,

(E.16)ĥ2 = −
N∑

j �=k

n∑
a=1

−→
E

(a)
jk

←−
E

(a)
kj

(xj − xk)2
,

(E.17)ĥ3 = 1

2

N∑
j �=k

n∑
a �=b

−→
E

(a)
jk

−→
E

(b)
kj + ←−

E
(a)
jk

←−
E

(b)
kj

(xj − xk)2
,

(E.18)ĥ4 = −
N∑

j �=k

n∑
a �=b

−→
E

(a)
jk

←−
E

(b)
kj

(xj − xk)2
.

The action of ĥ1, . . . , ĥ4 to w(x) can be evaluated as

(E.19)ĥ1w(x) =
n∑
a

vja (x)w(x), vj (x) =
N∑

k( �=j)

1

(xk − xj )2
,

(E.20)ĥ2w(x) = −
N∑

j1,...,jn

(
n∑
a

N∑
j

δ(j �= ja)

(xj − xja )
2
wj1,...,j,...,jn

)
· |j1 · · · jn〉〈j1 · · · jn|,

(E.21)ĥ3w(x) = 1

2

N∑
l1,...,cn

n∑
a �=b

δ(ja �= jb)
wj1,...,j,...,jn

(xja − xjb
)2

(−−−→
(ab) + ←−−−

(ab)
) · |j1 · · · jn〉〈j1 · · · jn|,

(E.22)ĥ4w(x) = −
n∑

a �=b

N∑
j1,...,jn

wj1,...,ja,...,jb,...,jn

(xjb
− xja )

2

←−−−
(ab)|j1 · · · jn〉〈j1 · · · jn|.

Here (ab) represents the transposition and δ(a �= b) = 1 − δab . After the (anti)symmetrization
by Young symmetrizer, the action of H1 becomes,

(E.23)H1 = H(free) + V,

(E.24)
(
H(free)w

)
j1,...,jn

=
n∑
a

(
v(ja)wj1,...,jn −

N∑ δ(j �= ja)

(xj − xja )
2
wj1,...,j,...,jn

)
,

j
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(V w)j1,...,jn = 1

2

L∑
a �=b

δ(ja �= jb)

(xja − xjb
)2

(
qL
ab + qR

ab

)
wj1,...,ja,...,jb,...,jn

(E.25)−
n∑

a �=b

δ(ja �= jb)q
R
ab

wj1,...,jb,...,jb,...,jn

(xln − xlm)2
.

Here q
L,R
ab is the eigenvalues of

−−−→
(ab),

←−−−
(ab) after the projection by Young symmetrizer. It depends

on the location of a, b in the Young tableau Y1, Y2.
The piece H(free) is a direct sum of H1 for the adjoint representation for the indices j1, . . . , jn.

It represents n non-interacting quasiparticles. In particular, this part depends only on the number
of boxes |Y1| = |Y2| = n.

On the other hand, V represents the interaction between the quasiparticles. It depends on the
representations (Y1, Y2) and is somehow complicated. The interaction simplified for An, Bn and
Cn representations. The interaction V among the tips of the folded string becomes,

(E.26)AL: V = 0,

(E.27)BL: (V w)i1,...,iL =
L∑

n�=m

δ(in �= im)

(xin − xim)2
(wi1,...,cL

− wi1,...,im,...,im,...,iL),

(E.28)CL: (V w)i1,...,iL = −
L∑

n�=m

δ(in �= im)

(xin − xim)2
wi1,...,iL .
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