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Abstract

We say that a system of differential equations

ẍ(t) = Aẋ(t) + Bx(t) + Cu(t), A, B ∈ Cm×m
, C ∈ Cm×n

,

is rigid if it can be reduced by substitutions

x(t) = Sy(t), u(t) = Uẏ(t) + Vy(t) + Pv(t),

with nonsingular S and P to each system obtained from it by a small enough perturbation of its matrices
A, B, C. We prove that there exists a rigid system for given m and n if and only if m < n(1 + √

5)/2, and
describe all rigid systems.
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1. Introduction

We consider a system of differential equations

ẍ(t) = Aẋ(t) + Bx(t) + Cu(t), A, B ∈ Cm×m, C ∈ Cm×n, (1)

in which x(t) is the unknown vector function, u(t) is a vector function, and ẋ(t) = dx(t)/dt . Any
substitution

x(t) = Sy(t),

u(t) = Uẏ(t) + Vy(t) + Pv(t),

with nonsingular S and P transforms it to the system

ÿ(t) = S−1(AS + CU)ẏ(t) + S−1(BS + CV )y(t) + S−1CPv(t),

which has the form (1) and is given by the matrices

A′ = S−1(AS + CU), B ′ = S−1(BS + CV ), C′ = S−1CP.

In partitioned matrix notation

[C′ B ′ A′] = S−1[C B A]
P V U

0 S 0
0 0 S

 . (2)

Definition 1. By an m × (n, m, m) triple we mean a triple of m × n, m × m, and m × m matrices.
Two such triples (C, B, A) and (C′, B ′, A′) are said to be feedback similar if they satisfy (2) for
some V , U , and nonsingular P and S. (The term “feedback similarity” comes from systems
theory.)

Every transformation of feedback similarity on a triple (C, B, A) can be realized by a sequence
of the following operations:

(i) A simultaneous elementary row operation on C, B, and A, and then the inverse column
operation on B and the inverse column operation on A.

(ii) An elementary column operation on C.
(iii) Adding any constant multiple of a column of C to a column of B or A.

The matrices A, B, and C are written in the block matrix [C B A] in the reverse order to
ensure that all admissible additions of columns are performed from a left block to a right block
as is customary in matrix problems (see, for instance, [5] or [12]).

Related matrix problems are considered by systems theorists [6–8].
The canonical form problem for a matrix triple (C, B, A) up to feedback similarity is hopeless

even if C = 0 since then the pair (B, A) reduces by simultaneous similarity transformations, and
the problem of classifying pairs of matrices up to simultaneous similarity contains both the prob-
lem of classifying any system of linear operators and the problem of classifying representations of
any finite-dimensional algebra [2]. Classification problems that contain the problem of classifying
matrix pairs of up to simultaneous similarity are called wild.

Nevertheless, using Belitskii’s algorithm [1,12] one can reduce any given tripleT = (C, B, A)

by transformations (i)–(iii) to some canonical triple Tcan; this means that Tcan is feedback
similar to T and two triples T and T′ are reduced by Belitskii’s algorithm to the same triple
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Tcan = T′
can, an if and only if T and T′ are feedback similar. (Of course, an explicit description

of all canonical matrices does not exist since the matrix problem is wild.)
A canonical form problem simplifies if the matrices are considered up to arbitrarily small

perturbations (this case is important for applications in which one has matrices that arise from
physical measurements since then their entries are known only approximately). For instance, a
square matrix A reduces to a diagonal matrix D by an arbitrarily small perturbation (making its
eigenvalues pairwise distinct) and similarity transformations. The matrix D is determined by A

up to small perturbations of diagonal entries.
In Lemma 8 we give a normal form of m × (n, m, m) triples for arbitrarily small perturbations

and feedback similarity. A canonical form of such triples if n divides m is obtained in Theorem
10.

By analogy with quiver representations [4, p. 203], we say that a matrix t-tuple A is rigid
with respect to some equivalence relation on the set of t-tuples of the same size if there is a
neighborhood of A consisting of t-tuples that are equivalent to A. For instance, the matrices I ,
[I 0], and [I 0]T are rigid with respect to elementary transformations, but each matrix is not rigid
with respect to similarity transformations.

In Theorem 11 we prove that there exists an m × (n, m, m) triple that is rigid with respect to
feedback similarity if and only if

m <
1 + √

5

2
n. (3)

We also construct such a rigid triple Tmn for each m and n satisfying (3) and prove that each
m × (n, m, m) triple reduces toTmn by an arbitrarily small perturbation and a feedback similarity
transformation (so Tmn can be considered as a canonical triple for arbitrarily small perturbations
and feedback similarity). All triples that reduce to Tmn by feedback similarity transformations
form an open and everywhere dense set in the space of all m × (n, m, m) triples; moreover, this
set consists of all rigid triples of this size.

The mentioned results about triples will be obtained in Section 4.
In Section 3 we consider analogous problems for systems of first-order linear differential

equations. Such a system is given by a matrix pair; the results of Section 3 are used in Section 4.
In Section 2 we prove a technical lemma.

2. Perturbations

The norm of a complex matrix A = [aij ] is the nonnegative real number

‖A‖ =
√∑

|aij |2.
For each m × (n, m, m) triple P = (C, B, A), we denote

‖P‖ := ‖C‖ + ‖B‖ + ‖A‖
and define the block matrix

[P] := [C B A].
We say that a matrix triple T̃ is obtained from T by a sequence of perturbations and feedback

similarity transformations if there is a sequence of triples

T = T1,T2,T3, . . . ,Tl+1 = F̃,
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in which

T2 = S−1
1 [T + �T1]R1, T3 = S−1

2 [T2 + �T2]R2, . . . (4)

(�T1, �T2, . . . are triples), and all Ri have the form (2):

Ri =
Pi Vi Ui

0 Si 0
0 0 Si

 .

Lemma 2. Let ε be any positive number and let a triple T̃ be obtained from a triple T by a
sequence (4) of perturbations and feedback similarity transformations satisfying

‖�T1‖ <
ε

2
, ‖�Ti+1‖ <

ε

2i+1‖S̃i‖‖R̃−1
i ‖ (i = 1, 2, . . . , l),

where
S̃i := S1S2 · · · Si, R̃i := R1R2 · · · Ri.

Then T̃ is feedback similar to some triple T + ∇T, ‖∇T‖ < ε.

Proof. If l = 2, then by (4)

[F̃] = [T3] = S−1
2 [T2 + �T2]R2 = S−1

2 (S−1
1 [T + �T1]R1 + [�T2])R2

= (S1S2)
−1([T] + [�T1] + S1[�T2]R−1

1 )R1R2.

Analogously, for any l

[F̃] = [Tl+1] = S̃−1
l [T + ∇T]R̃l,

where
[∇T] := [�T1] + S̃1[�T2]R̃−1

1 + · · · + S̃l−1[�Tl]R̃−1
l−1.

Then

‖∇T‖ � ‖�T1‖ + ‖S̃1‖ · ‖�T2‖ · ‖R̃−1
1 ‖ + · · · + ‖S̃l−1‖ · ‖�Tl‖ · ‖R̃−1

l−1‖
<

ε

2
+ ε

4
+ · · · + ε

2l
< ε. �

Corollary 3. Let a matrix tripleT reduce to a triple from some setS by a sequence of arbitrarily
small perturbations and feedback similarity transformations. Then T is transformed by some
arbitrarily small perturbation to a triple that is feedback similar to a triple in S.

3. Feedback similarity of matrix pairs

In this preliminary section we consider problems studied in Section 4 in much simpler case:
for systems of first-order linear differential equations

ẋ(t) = Ax(t) + Bu(t), A ∈ Cm×m, B ∈ Cm×n. (5)

Any substitution

x(t) = Sy(t),

u(t) = Uy(t) + Pv(t)
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with nonsingular S and P transforms it to the system

ẏ(t) = S−1(AS + BU)y(t) + S−1BPv(t)

of the form (5), whose matrices A′ and B ′ can be calculated as follows:

[B ′ A′] = S−1[B A]
[
P U

0 S

]
. (6)

In systems theory, (5) is called the standard linear system (without output), A is called the
system matrix, B is called the input matrix, u(t) is the input to the system at time t (it is the way
that the external world affects the system), and x(t) is the state of system at time t (it is the memory
of the net effect of past inputs). The system (5) is said to be controllable if the spectrum of A + BU

can be placed arbitrarily by choice of U , this holds if and only if rank [B AB . . . AmB] = m.

Definition 4. By an m × (n, m) pair we mean a pair of m × n and m × m matrices. Two such pairs
(B, A) and (B ′, A′) are said to be feedback similar if they satisfy (6) for some U and nonsingular
P and S.

Every feedback similarity transformation on (B, A) can be realized by a sequence of the
following operations:

(i′) A simultaneous elementary row operation on both matrices, and then the inverse column
operation on A.

(ii′) An elementary column operation on B.
(iii′) Adding any constant multiple of a column of B to a column of A.

In the next section we will reduce a triple (C, B, A) to canonical form for arbitrarily small
perturbations and feedback similarity using results of this section as follows. First we reduce
its subpair (C, B) to the pair (Ccan, Bcan) defined in (14), which is canonical with respect to
arbitrarily small perturbations and feedback similarity; respectively, (C, B, A) reduces to some
triple (Ccan, Bcan, A

′). Then we reduce A′ to canonical form for arbitrarily small perturbations
and those feedback similarity transformations on (Ccan, Bcan, A

′) that preserve (Ccan, Bcan), these
transformations are described in Theorem 6(b).

In the next lemma we recall a known canonical form of pairs for feedback similarity. In the
case of controllable systems, it is known as the Brunovsky canonical form [3]. It can be deduced
from the canonical form of matrix pencils [7, Proposition 3.3]. A much more general canonical
matrix problem was solved in [11, Section 2].

Denote by 0mn the m × n zero matrix; 0m := 0mm. It is agreed that there exists exactly one
matrix of size 0 × n and there exists exactly one matrix of size n × 0 for every nonnegative integer
n; they give the linear mappings Cn → 0 and 0 → Cn and are considered as zero matrices 00n

and 0n0. For any p-by-q matrix Mpq , we have

Mpq ⊕ 0m0 =
[
Mpq 0

0 0m0

]
=

[
Mpq 0p0
0mq 0m0

]
=

[
Mpq

0mq

]
and

Mpq ⊕ 00n =
[
Mpq 0

0 00n

]
=

[
Mpq 0pn

00q 00n

]
= [

Mpq 0pn

]
.



522 Ma.I. García-Planas et al. / Linear Algebra and its Applications 414 (2006) 517–532

Denote

Jk(λ) :=


λ 0
1 λ

. . .
. . .

0 1 λ

 (k by k),

Frl := [Ir 0r,l−r ], Grl := [0r,l−r Ir ] (0 � r � l); (7)

in particular, F0n = G0n = 00n. The direct sum of matrix t-tuples is denned as follows:

(A1, . . . , At ) ⊕ (B1, . . . , Bt ) := (A1 ⊕ B1, . . . , At ⊕ Bt).

Lemma 5. Every m × (n, m) pair (B, A) is feedback similar to a direct sum of pairs of the form

([1 0 . . . 0]T, Jk(0)), (0k0, Jk(λ)), (001, 00), (8)

This sum is determined by (B, A) uniquely up to permutation of summands.

Proof. Let (B, A) be an m × (n, m) pair. If B = 0, then

(B, A) = (0m0, A) ⊕ (00n, 000) = (0m0, A) ⊕ (001, 000) ⊕ · · · ⊕ (001, 000).

The summand (0m0, A) is feedback similar to a direct sum of pairs of the form (0k0, Jk(λ)).
Suppose B /= 0. Then (B, A) reduces by transformations (i′) and (ii′) to the form([

Ir 0
0 0

]
, C

)
=

([
Ir

0

]
, C

)
⊕ (001, 00) ⊕ · · · ⊕ (001, 00).

The first summand reduces by transformations (iii′) to the form

H(M, N) :=
([

Ir

0

]
,

[
0r 0r,m−r

M N

])
. (9)

If (M, N) is feedback similar to (M ′, N ′), that is,

S[M ′ N ′] = [M N ]
[
P U

0 S

]
, (10)

then [
P U

0 S

] [
Ik 0 0
0 M ′ N ′

]
=

[
Ik 0 0
0 M N

] P UM ′ UN ′
0 P U

0 0 S

 (11)

and so H(M, N) is feedback similar to H(M ′, N ′). Using induction in m + n, we may assume
that (M, N) is feedback similar to a direct sum of pairs Pi of the form (8). Then H(M, N) is
feedback similar to the direct sum of the pairs

H(Pi ) =
([1 0 · · · 0]T, Jk+1(0)) if Pi = ([1 0 · · · 0]T, Jk(0)),

Pi if Pi = (0k0, Jk(λ)),

(I1, 01) if Pi = (001, 00).
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The uniqueness of this decomposition follows, for instance, from [12, Theorem 2.2], in which the
uniqueness of decompositions into indecomposables is proved for all linear matrix problems. �

For each m × (n, m) pair P = (B, A), we define the block matrix

[P] := [B A]. (12)

Consider a category, whose objects are m × (n, m) pairs and each morphism from (B, A) to
(B ′, A′) is a matrix triple (P, U, S) such that

[B A]
[
P U

0 S

]
= S[B ′ A′].

By (6), two pairs are isomorphic in this category if and only if they are feedback similar. The
next theorem gives canonical pairs for arbitrarily small perturbations and feedback similarity and
calculates their endomorphism rings in this category.

Theorem 6. (a) (Canonical pairs) In the space Cm×(n,m) of m × (n, m) matrix pairs, n � 1, all
pairs that are feedback similar to

Fmn :=


(Fmn, 0m) if m � n,([
In

0m−n,n

]
,

[
0nm

Fm−n,m

])
if m > n

(13)

(Fm−n,m if is defined in (7)) form an open and everywhere dense set, which is also the set of all
m × (n, m) pairs that are rigid with respect to feedback similarity.

Alternatively, instead of Fmn one can take

Hmn :=


(Gmn, 0m) if m � n,([
In

0m−n,n

]
,

[
0nm

Hm−n,m

])
if m > n,

(14)

where

Hm−n,m :=
[
I(α−1)n 0 0

0 Gβn 0β

]
, (15)

Gβn is defined in (7), and α and β are nonnegative integers defined as follows:
m = αn + β, 0 < β � n. (16)

(b) (Endomorphisms of canonical pairs) The equality

[Hmn]
[
P U

0 S

]
= S[Hmn], P ∈ Cn×n, S ∈ Cm×m, U ∈ Cn×m (17)

(see (6) and (12)) holds if and only if for some S1 ∈ C(n−β)×(n−β), S3 ∈ Cβ×β, and S2, S4 ∈
C(n−β)×β we have[

P U

0 S

]
= Rα+2(S1, S2, S3, S4), S = Rα+1(S1, S2, S3, S4), (18)
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where

Rγ (S1, S2, S3, S4) :=

n−β︷︸︸︷ β︷︸︸︷ n−β︷︸︸︷ β︷︸︸︷ β︷︸︸︷

S1 S2 0 S4
S3 0 0

. . .
. . .

. . .
. . .

S1 S2 0 S4
S3 0 0

S1 S2 S4
S3 0

S3



(19)

(γ is the number of diagonal blocks S3; unspecified blocks are zero).

In this statement one can replace Hmn by Fmn, which is simpler, but then Rγ (S1, . . . , S4)

must be replaced by

S1 0
S2 S3

0 0
S4 0

. . .
. . .

. . .
. . .

S1 0
S2 S3

0
S4

S3


, (20)

which is not block-triangular.

Proof. (a) Let (B, A) ∈ Cm×(n,m), n � 1. First, we make rank B = min(m, n) by an arbitrarily
small perturbation and reduce B to the form

Fmn = [Im 0] if m � n,[
In

0

]
if m > n,

using transformations (i′) and (ii′). Then we reduce the pair by transformations (iii′) to the form
(Fmn, 0m) if m � n or to the form (9) with r = n if m > n.

If m > n, using induction in m we can assume that (M, N) reduces by an arbitrary small
perturbation to some (M + �M, N + �N) being feedback similar to Fm−n,n, defined in (13).
By (10) and (11),H(M + �M, N + �N) is feedback similar toFmn. Reasoning as in Corollary
3, we can prove that (B, A) is transformed by an arbitrarily small perturbation to a pair that is
feedback similar toFmn. Hence, the setS of pairs that are feedback similar toFmn is everywhere
dense in Cm×(n,m). Since Fmn is rigid, there exists its neighborhood V in Cm×(n,m) such that
V ⊂ S. For any pairP ∈ S, there is a transformation of feedback similarity that transformsFmn

to P; it also transforms V to some neighborhood W of P. Since each pair in V is feedback similar
to Fmn, each pair in W is also feedback similar to Fmn, hence W ⊂ S. Therefore, each pair
P ∈ S possesses a neighborhood that is contained in S, and so the set S is open in Cm×(n,m).

If m > n, then the pairFmn reduces toHmn in (14) by those permutations of rows and columns
that are special cases of transformations (i′) and (ii′).
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(b) Assume first that (17) holds. If m � n, then [Hmn] = [Gmn 0m] = [[0m,n−m Im] 0m],
and so (17) ensures[

P U

0 S

]
=

[∗ ∗
0 S

] [∗
0

]
0 s

 = R2(∗, ∗, S, ∗).

We have (18) since R1(∗, ∗, S, ∗) = S and by (16) α = 0.
Let m > n. Equating the corresponding vertical strips in (17), we obtain[

P

0m−n,n

]
= S

[
In

0m−n,n

]
,

[
U

Hm−n,mS

]
= S

[
0nm

Hm−n,m

]
. (21)

Let us prove that S = Rα+1(S1, S2, S3, S4) for some S1, . . . , S4. Partition S into blocks

S =
 S11 · · · S1,α+1

· · · · · · · · ·
Sα+1,1 · · · Sα+1,α+1

 ,

with n × n, . . . , n × n, β × β diagonal blocks. By the first equality in (21),

P = S11, S21 = · · · = Sα1 = 0, Sα+1,1 = 0. (22)

Since

Hm−n,m =


In 0 0nβ

. . .
...

In 0nβ

0 Gβn 0β

 , Gβn = [0β,n−β Iβ ],

by the second equality in (21) we have

U = [S12 · · · S1α S1,α+1Gβn 0] (23)

and 
S11 · · · S1,α−1 S1α S1,α+1
...

. . .
...

...
...

Sα−1,1 · · · Sα−1,α−1 Sα−1,α Sα−1,α+1
GβnSα1 · · · GβnSα,α−1 GβnSαα GβnSα,α+1



=


S22 · · · S2α S2,α+1Gβn 0
...

. . .
...

...
...

Sα2 · · · Sαα Sα,α+1Gβn 0
Sα+1,2 · · · Sα+1,α Sα+1,α+1Gβn 0

 .

Let us equate the entries of these matrices along each line that is parallel with the main diagonal:

(a) The equalities

S1,α+1 = 0,

S1α = S2,α+1Gβn, S2,α+1 = 0,

S1,α−1 = S2,α = S3,α+1Gβn, S3,α+1 = 0,
...

S13 = S24 = · · · = Sα−2,α = Sα−1,α+1Gβn, Sα−1,α+1 = 0

imply Sij = 0 if j − i � 2.
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(b) The equalities

S12 = S23 = · · · = Sα−1,α = Sα,α+1Gβn, GβnSα,α+1 = 0

imply

S12 = S23 = · · · = Sα−1,α =
[

0 S4
0 0

]
, Sα,α+1 =

[
S4
0

]
for some (n − β) × β matrix S4.

(c) The equalities

S11 = S22 = · · · = Sαα, GβnSαα = Sα+1,α+1Gβn

imply

S11 = S22 = · · · = Sαα =
[
S1 S2
0 S3

]
, S3 := Sα+1,α+1.

(d) The equalities

S21 = S32 = · · · = Sα,α−1, GβnSα,α−1 = Sα+1,α,

S31 = · · · = Sα,α−2, GβnSα,α−2 = Sα+1,α−1,

...

Sα−1,1 = Sα2, GβnSα2 = Sα+1,3,

GβnSα1 = Sα+1,2

and (22) imply Si,j = 0 if i > j .

This proves the first equality in (18). The second equality in (18) follows from (23) and the first
equality in (22).

Conversely, the equalities (18) ensure (17). For example, if α = 1, then (17) takes the form

[
In 0n 0

0 [0 Iβ ] 0β

] 

[
S1 S2
0 S3

] [
0 S4
0 0

]
0

0

[
S1 S2
0 S3

] [
S4
0

]
0 0 S3


=


[
S1 S2
0 S3

] [
S4
0

]
0 S3

 [
In 0n 0

0 [0 Iβ ] 0β

]
. � (24)

Remark 7. The condition n � 1 in Theorem 6(a) is essential: each m × (0, m) pair is transformed
by an arbitrarily small perturbation to a pair that is feedback similar to (0m0, diag(λ1, . . . , λm))

with distinct λ1, . . . , λm determined up to small perturbations.

4. Feedback similarity of triples

The next lemma is proved by using several steps of Belitskii’s algorithm [1,12] and arbitrarily
small perturbations.
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Lemma 8. Every m × (n, m, m) triple (C, B, A), n � 1, is transformed by an arbitrarily small
perturbation to a triple that is feedback similar to

(Gmn,0, 0) if m � n,

K(N) :=
([

In

0m−n,n

]
,

[
0nm

Hm−n,m

]
,

[
0nm

N

])
if m > n,

(25)

where N is some (m − n) × m matrix and Hm−n,m is defined in (15).
Two triples K(N) and K(N ′) are feedback similar if and only if

N ′ = Rα(S1, S2, S3, S4)
−1 · N · Rα+1(S1, S2, S3, S4) (26)

(see (18)) for some S2, S4 ∈ C(n−β)×β and nonsingular matrices S1 ∈ C(n−β)×(n−β) and S3 ∈
Cβ×β .

Proof. Let (C, B, A) be an m × (n, m, m) triple, n � 1. By Theorem 6(a), there is an arbitrarily
small perturbation of (C, B) such that the obtained pair (C + �C, B + �B) is feedback similar
to the pair Hmn in (14), and then (C + �C, B + �B, A) is feedback similar to (25).

Let N , N ′ ∈ C(m−n)×m. Suppose first that K(N) and K(N ′) are feedback similar. By (2),[
In 0 0
0 Hm−n,m N

] P U V

0 S 0
0 0 S

 = S

[
In 0 0
0 Hm−n,m N ′

]
(27)

for some U, V and nonsingular P and S. Then (17) holds, which ensures (18). Equating the last
vertical strips of the matrices in (27) gives[

V

NS

]
= S

[
0nm

N ′

]
,

which defines V and ensures (26).
Conversely, if (26) holds, then by analogy with (24) we have (27) for

P =
[
S1 S2
0 S3

]
, U =

[
0 S4 0 · · · 0
0 0 0 · · · 0

]
, V = UN ′

and S = Rα+1(S1, S2, S3, S4). Hence, K(N) and K(N ′) are feedback similar. �

Remark 9. Instead of Gmn and Hm−n,m in (25), one may take Fmn and Fm−n,m replacing in (26)
the matrix Rγ (S1, . . . , S4) defined in (19) with (20). We prefer (25) since the matrix (19) is upper
block-triangular and we can reduce N to Belitskii’s canonical form [1,12] by transformations (26)
preserving the other blocks of K(N). Examples of this reduction are given in Theorems 10 and
11.

Theorem 10. Each m × (1, m, m) triple (C, B, A), m � 2, reduces by an arbitrarily small per-
turbation to a triple that is feedback similar to


1
0
...

0

 ,


0 · · · 0 0
1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 ,


0 · · · 0 0
∗ · · · ∗ ∗
...

. . .
...

...

∗ · · · ∗ ∗




(the stars denote unspecified entries). This triple is determined by (C, B, A) uniquely up to small
perturbations of the entries denoted by stars.
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In greater generality, each αn × (n, αn, αn) triple (C, B, A), α � 2, reduces by an arbitrarily
small perturbation to a triple that is feedback similar to a triple of the form


In

0
...

0

 ,


0 · · · 0 0
In · · · 0 0
...

. . .
...

...

0 · · · In 0

 ,


0 · · · 0 0

N11 · · · N1,α−1 N1α

...
. . .

...
...

Nα−1,1 · · · Nα−1,α−1 Nα−1,α


 , (28)

in which all blocks are n-by-n,

N11 = diag(λ1, λ2, . . . , λn) (λ1, . . . , λn are distinct),

N12 =


∗ 1 · · · 1
∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗

 (the stars denote unspecified entries)

and the other Nij are arbitrary. The triple (28) is determined by (C, B, A) uniquely up to small
perturbations of λ1, . . . , λn in N11, of the entries denoted by stars in N12, and of the entries in
the other Nij .

Proof. Let (C, B, A) be αn × (n, αn, αn), α � 2. By Lemma 8, (C, B, A) reduces by an arbi-
trarily small perturbation and a feedback similarity transformation to a triple of the form (28), in
which Nij are n-by-n. We can reduce N := [Nij ] by transformations (26) preserving the other
blocks of the triple (28). We have

Rγ (S1, S2, S3, S4) = S3 ⊕ · · · ⊕ S3 (γ summands)

since β = n in (16) and so S1 is 0 × 0 in (19). Hence we can reduce all Nij by simultaneous
similarity transformations

N ′
ij = S3NijS

−1
3 , 1 � i � α − 1, 1 � j � α. (29)

By an arbitrarily small perturbation and some transformation (29) we reduce N11 to a diagonal
matrix with distinct diagonal entries. To preserve N11 we must reduce the other blocks Nij by
transformations (29) with diagonal S3. Using an arbitrarily small perturbation we make nonzero
the (1, 2), . . . , (1, n) entries of the first row of N12 and reduce them to 1 by transformations (29)
with diagonal S3. Each transformation (29) that preserves N11 and the (1, 2), . . . , (1, n) entries
of N12 is the identity transformation, so we can reduce the other entries of Nij only by arbitrarily
small perturbations. �

For every p × (q, p, p) triple (C, B, A), we define the (2p + q) × (p + q, 2p + q, 2p + q)

triple

L(C, B, A) :=
([

Ip+q

0p,p+q

]
,

[
0 0 0

0pq Ip 0p

]
,

[
0 0 0
C B A

])
.

Put

L(i)(C, B, A) := L . . .L︸ ︷︷ ︸
i�times

(C, B, A), i = 0, 1, 2, . . .
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Theorem 11. Let m and n be natural numbers, and let Cm×(n,m,m) denote the space of all m ×
(n, m, m) triples.

(a) If m < n(1 + √
5)/2, then there is exactly one m × (n, m, m) triple of the form L(l)(Fpq,

0p, 0p). All triples that are feedback similar to it form an open and everywhere dense set
in Cm×(n,m,m) which coincides with the set of all m × (n, m, m) triples that are rigid with
respect to feedback similarity.

(b) If m > n(1 + √
5)/2, then all m × (n, m, m) triples are not rigid with respect to feedback

similarity.

Proof. Let m and n be natural numbers, and let (C, B, A) be m × (n, m, m). We say that a triple
T reduces to a triple T′ if T reduces to T′ by an arbitrarily small perturbation and a feedback
similarity transformation.

(a) Suppose first that

m < n(1 + √
5)/2 ≈ 1.618n (30)

and prove by induction on m − n that (C, B, A) reduces to some L(l)(Fpq, 0p, 0p).
The base of induction is trivial: if m � n, then by Lemma 8 (C, B, A) reduces to (Fmn, 0m, 0m).

This triple is rigid for feedback similarity and is feedback similar to each rigid m × (n, m, m)

triple.
Let m > n. Then by (16) and (30) we have α = 1 and β = m − n. According to Lemma 8,

(C, B, A) reduces to some triple

K([C′ B ′ C′]) =
([

In

0βn

]
,

[
0n,n−β 0nβ 0nβ

0β,n−β Iβ 0β

]
,

[
0n,n−β 0nβ 0nβ

C′ B ′ C′
])

= L(C′, B ′, A′),

in which (C′, B ′, A′) is m′ × (n′ × m′ × m′) and

m′ := m − n, n′ := −m + 2n. (31)

By Lemma 8, K([C′ B ′ C′]) is feedback similar to K([C′
1 B ′

1 C′
1]) if and only if there exist

U, V , and nonsingular P and S such that

[C′
1 B ′

1 A′
1] = S−1[C′ B ′ A′]

P U V

0 S 0
0 0 S

 (32)

(the last matrix is R2(P, U, S, V ) defined in (19)). Therefore, L(C′, B ′, A′) is feedback similar
to L(C′

1, B
′
1, A

′
1) if and only if (C′, B ′, A′) is feedback similar to (C′

1, B
′
1, A

′
1).

The numbers m′ and n′ are natural: m′ > 0 since m > n, and n′ = 2n − m > 0 since 1.7n −
m > 0 by (30). Furthermore, m′ < n′(1 + √

5)/2 because by (30)

m1

n1
= m − n

−m + 2n
<

n(1 + √
5)/2 − n

−n(1 + √
5)/2 + 2n

= −1 + √
5

3 − √
5

= 1 + √
5

2
.

Since (m − n) − (m′ − n′) = n′ > 0, the induction hypothesis ensures that (C′, B ′, A′) reduces
to L(l−1)(Fpq, 0p, 0p) for some p, q, and l that are uniquely determined by m′ and n′. Therefore,
(C, B, A) reduces to K([C′B ′C′]) = L(C′, B ′, A′), which reduces to L(l)(Fpq,0p, 0p) that is
uniquely determined by m and n.
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We have proved that allm × (n, m, m) triples reduce to the same tripleL := L(l)(Fpq,0p, 0p),
and so the set S of all triples that are feedback similar to L is everywhere dense. Since L is
rigid with respect to feedback similarity, there exists its neighborhood V that is contained in S.
For any triple T ∈ S, there is a transformation of feedback similarity that transforms L to T;
it also transforms V to some neighborhood W of T. Since each triple in V is feedback similar to
L, each triple in W is also feedback similar to L, hence W ⊂ S. Therefore, each triple T ∈ S
possesses a neighborhood that is contained in S, and so the set S is open.

(b) Let

m � n(1 + √
5)/2. (33)

Since (C, B, A) is fixed, the equality (2) defines the mapping

f : U → Cm×(n,m,m), (S, P, U, V ) �→ (C′, B ′, A′),
where

U := {(S, P, U, V ) ∈ Cm×m × Cn×n × Cn×m × Cn×m| det(S)det(P ) /= 0}.
This mapping is rational since by (2) the entries of C′, B ′, and A′ are polynomials (in entries of
S, P , U , and V ) divided by det(S). Its image is the set of all triples that are feedback similar to
(C, B, A).

Suppose that (C, B, A) is rigid. Then the image of f contains a neighborhood of (C, B, A),
hence Cm×(n,m,m)\ Im(f ) cannot be dense in Cm×(n,m,m) and so dim (U) � dim(Cm×(n,m,m)) by
[9, Section 3, Proposition 1.2]. This means that m2 + n2 + 2mn � mn + 2m2,

(m/n)2 − m/n − 1 � 0, m/n < (1 + √
5)/2,

which contradicts to (33). Therefore, there are no rigid triples of this size. �

For each m × (n, m, m) tripleT = (C, B, A), we define the m × (n + 2m) polynomial matrix

T(x, y) = [C xIm + B yIm + A].
The next lemma is trivial, but it can be useful.

Lemma 12. Two matrix triples T and T′ are feedback similar if and only if the corresponding
polynomial matrices T(x, y) and T′(x, y) are strictly equivalent; this means that

ST′(x, y) = T(x, y)R (34)

for some nonsingular complex matrices S and R.

Proof. Let T = (C, B, A) and T′ = (C′, B ′, A′) be m × (n, m, m).
If T and T′ are feedback similar, then there exists a nonsingular matrix

R =
P U V

0 S 0
0 0 S

 (35)

such that

S[C′ B ′ A′] = [C B A]R.

Since

T(x, y) = [C B A] + x[0 I 0] + y[0 0 I ]
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and

S[0 Im 0] = [0 Im 0]R, S[0 0 Im] = [0 0 Im]R,

we have (34).
Conversely, let (34) hold. This polynomial equality breaks into three scalar equalities:

S[C′ B ′ A′] = [C B A]R,

S[0 Im 0] = [0 Im 0]R, S[0 0 Im] = [0 0 Im]R.

By the last two equalities, the matrix R has the form (35). So by the first equality T and T′ are
feedback similar. �

Remark 13. The authors are grateful to the reviewer for suggestions and the following com-
mentaries: we study the orbits of the action (2) of the product of two groups on the space of
matrix triples, which can be identified with Cm(n+2m). Namely, from the left one has the action
of GL(m; C), and from the right one has the action of the 3 × 3 block upper triangular subgroup of
GL(n + 2m; C) with (2, 3) block is equal to zero. It is known that each orbit under such an action
is a smooth irreducible semi-affine variety V , i.e. its closure is an affine irreducible variety V , and
V = V \W , where W is a strict subvariety of V . Moreover, all singular points of V are contained
in W . The orbits of the maximal dimension d are called the “generic” orbits. Theorem 10 gives the
unique canonical form of a generic orbit. The parameter space of such orbits is m(n + 2m) − d

dimensional. The notion of rigid system is equivalent to the assumption of the existence of orbits
of dimension m(n + 2m). Since such an orbit V is an irreducible semi-affine variety, it follows
that V = Cm(n+2m). Hence there is only one orbit like that as Theorem 11 claims.
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