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It was proved by H. Whitney in 1933 that a Serre fibration of compact metric spaces
admits a global section provided every fiber is homeomorphic to the unit interval [0,1].
An extension of the Whitney’s theorem to the case when all fibers are homeomorphic to
some fixed compact two-dimensional manifold was proved by the authors (Brodsky et al.
(2008) [2]). The main result of this paper proves the existence of local sections in a Serre
fibration with all fibers homeomorphic to some fixed compact three-dimensional manifold.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The following problem is one of the central problems in geometric topology [3]. Let p : E → B be a Serre fibration of
separable metric spaces. Assume that the space B is locally n-connected and all fibers of p are homeomorphic to some fixed
n-dimensional manifold Mn . Is p a locally trivial fibration?

In case n = 1 an affirmative answer to this problem follows from results of H. Whitney [12].

Conjecture (Shchepin). A Serre fibration with a locally arcwise connected metric base is locally trivial if every fiber of this fibration is
homeomorphic to some fixed manifold Mn of dimension n � 4.

In dimension n = 1 the Shchepin’s conjecture is proved even for non-compact fibers [9]. Shchepin proved that positive
solution of this conjecture in dimension n implies positive solutions of both CE-problem and homeomorphism group prob-
lem in dimension n [10,3]. Since CE-problem was solved in a negative way by A.N. Dranishnikov, there are dimensional
restrictions in Shchepin’s conjecture.

Under the assumption of the base B of the Serre fibration p : E → B being finite dimensional the Shchepin’s conjecture
is proved in dimensions n = 2 [7] and n = 3 [6]. An interesting result is obtained by S. Ferry proving that p is a Hurewicz
fibration [5].
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The first step toward proving the Shchepin’s conjecture in dimension n = 2 over infinite dimensional base is made
in [1,2] where existence of local and global sections of the fibration is proved provided the base space is an ANR. The
following theorem is the main result of this paper.

Theorem 3.3. Let p : E → B be a Serre fibration of LC2-compacta with all fibers homeomorphic to some fixed compact three-
dimensional manifold. If B ∈ ANR, then any section of p over closed subset A ⊂ B can be extended to a section of p over some
neighborhood of A.

Our strategy of constructing a section of a Serre fibration is as follows (definitions are given in Section 2). We consider
the inverse (multivalued) mapping p−1 and find its compact submapping admitting continuous approximations. Then we
take very close continuous approximation and use it to find again a compact submapping with small diameters of fibers
admitting continuous approximations. When we continue this process we get a sequence of compact submappings with
diameters of fibers tending to zero. This sequence will converge to the desired singlevalued submapping of p−1 (section
of p).

The major difference of the proof in this paper from the one in [2] comes from the fact that any open subset of Euclidean
plane is aspheric (all homotopy groups vanish in dimensions � 2) which is far from being true in Euclidean 3-space. In order
to apply our technique to 3-dimensional manifolds we introduce a new property called hereditarily coconnected asphericity.

2. Preliminaries on spaces and multivalued mappings

Let us recall some definitions and introduce our notations. All spaces will be separable metrizable. We equip the product
X × Y with the metric

distX×Y
(
(x, y), (x′, y′)

) = distX (x, x′) + distY (y, y′).
By O (x, ε) we denote the open ε-neighborhood of the point x.

A multivalued mapping F : A → Y is called submapping (or selection) of multivalued mapping G : X → Y if A is a subspace
of X and F (x) ⊂ G(x) for every x ∈ A. The gauge of a multivalued mapping F : X → Y is defined as cal(F ) = sup{diam F (x) |
x ∈ X}. The graph of multivalued mapping F : X → Y is the subset ΓF = {(x, y) ∈ X × Y | y ∈ F (x)} of the product X × Y . For
arbitrary subset U ⊂ X × Y denote by U (x) the subset prY (U ∩ ({x}× Y )) of Y . Then for the graph ΓF we have ΓF (x) = F (x).

A multivalued mapping G : X → Y is called complete if there exists a Gδ-set S ⊂ X × Y containing the graph ΓG such that
all sets {x} × G(x) are closed in S . Notice that any compact-valued mapping is complete. A multivalued mapping F : X → Y
is called upper semicontinuous if for any open set U ⊂ Y the set {x ∈ X | F (x) ⊂ U } is open in X . A compact mapping is an
upper semicontinuous multivalued mapping with compact images of points.

Let Z be a space. A sequence {Zk} (finite or infinite) of subspaces

Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Z

is called a filtration of Z . The number of elements of the filtration is called length of the filtration. Given a filtration {Zk}
of Z , its subfiltration {Z ′

k} is a filtration of Z such that Z ′
k ⊂ Zk for every k. A sequence of multivalued mappings {Fk : X → Y }

is called a filtration of multivalued mapping F : X → Y if for any x ∈ X the sequence {Fk(x)} is a filtration of F (x). We say that
a filtration of multivalued mappings Gi : X → Y is compact if every mapping Gi is compact.

A pair of spaces V ⊂ U is called n-aspheric if every continuous mapping of the n-sphere into V is homotopic to a
constant mapping in U . We assume that −1-asphericity of the pair V ⊂ U means exactly that U is non-empty. A pair of
compacta K ⊂ K ′ is called approximately n-aspheric if for some embedding of K ′ into ANR-space for any neighborhood U
of the set K ′ there is a neighborhood V of the set K such that the pair V ⊂ U is n-aspheric. A compact space K is called
approximately aspheric if the pair K ⊂ K is approximately n-aspheric for every n � 2.

A pair of spaces V ⊂ U is called polyhedrally n-connected if for any finite n-dimensional polyhedron M and its closed
subpolyhedron A any mapping of A in V can be extended to a map of M into U .

Definition 2.1. We say that a subset A of a space Z is coconnected if the complement Z \ A is connected.
A pair V ⊂ U of proper subsets of a space Z is called coconnected if Z \ U lies in a connected component of Z \ V .

Definition 2.2. We call a space Z hereditarily coconnectedly aspheric if any non-separating compactum K ⊂ Z is approximately
aspheric.

A space Z is said to be locally hereditarily coconnectedly aspheric if any point z ∈ Z has a hereditarily coconnectedly
aspheric neighborhood.

Remark 2.3. An important example of hereditarily coconnectedly aspheric space is Euclidean 3-space [3, Lemma 2.4]. There-
fore, any 3-dimensional manifold is locally hereditarily coconnectedly aspheric.

Now we consider different properties of pairs of spaces and define the corresponding local properties for spaces and
multivalued maps. We follow definitions and notations from [4].
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Definition 2.4. An ordering α of the subsets of a space Y is proper provided:

(a) If W αV , then W ⊂ V ;
(b) If W ⊂ V , and V αR , then W αR;
(c) If W αV , and V ⊂ R , then W αR .

We are going to use the following proper orderings:

(1) V αU means U is non-empty and V ⊂ U ;
(2) V αU means the pair V ⊂ U is k-aspheric for every k � n;
(3) V αU means the pair V ⊂ U is polyhedrally n-connected;
(4) V αU means the pair V ⊂ U is coconnected;
(5) V αU means V is hereditarily coconnectedly aspheric and V ⊂ U .

Definition 2.5. Let α be a proper ordering. A space Y is locally of type α if, whenever y ∈ Y and V is a neighborhood of y,
then there is a neighborhood W of y such that W αV .

Let us introduce terminology for spaces which are locally of type α for the examples of proper orderings α described
above:

(1) any space is locally of type α;
(2) X is locally of type α means X is locally n-connected (notation: X ∈ LCn);
(3) X is locally of type α means X is locally polyhedrally n-connected;
(4) X is locally of type α means X is locally coconnected;
(5) X is locally of type α means X is locally hereditarily coconnectedly aspheric.

We use the word “equi” for local properties of multivalued maps.

Definition 2.6. Let α be a proper ordering. A multivalued mapping F : X → Y is equi locally of type α if for any points x ∈ X
and y ∈ F (x) and for any neighborhood V of y in Y there exist neighborhoods W of y in Y and U of x in X such that
(W ∩ F (x′))α(V ∩ F (x′)) provided x′ ∈ U .

Let us introduce terminology for multivalued mappings which are equi locally of type α for the examples of proper
orderings α described above:

(1) F is equi locally of type α means F is lower semicontinuous;
(2) F is locally of type α means F is equi locally n-connected (briefly, F is equi-LCn);
(3) F is locally of type α means F is equi locally polyhedrally n-connected;
(4) F is locally of type α means F is equi locally coconnected;
(5) F is locally of type α means F is equi locally hereditarily coconnectedly aspheric.

Since −1-asphericity of a pair V ⊂ U means U is non-empty, then equi local n-connectedness of a multivalued map
implies its lower semicontinuity.

The following lemma is easy to prove [2, Lemma 2.7].

Lemma 2.7. Any equi-LCn multivalued mapping is equi locally polyhedrally (n + 1)-connected.

Corollary 2.8. Any LCn space X is locally polyhedrally (n + 1)-connected.

Proof. Consider a multivalued mapping from the one-point space onto X and apply Lemma 2.7. �
The following lemma is easy to prove. We will use it with different properties α in Section 3.

Lemma 2.9. Let α be a proper ordering. Suppose that a multivalued mapping F : X → Y is equi locally of type α and contains a
compact submapping Ψ : A → Y defined on a compact subspace A of X. Then for any ε > 0 there exists a positive number δ such that
for every point (x, y) ∈ O (ΓΨ , δ) ⊂ X × Y we have (O (y, δ) ∩ F (x))α(O (y, ε) ∩ F (x)).

A filtration {Fi} of multivalued maps is called equi locally connected if for any i the mapping Fi is equi locally i-connected.
A filtration of multivalued maps {Fi} is called polyhedrally connected if every pair Fi−1(x) ⊂ Fi(x) is polyhedrally i-connected.
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A filtration of compact mappings {Fm : X → Y } is called approximately connected if for any point x ∈ X and for any k the
pair Fk(x) ⊂ Fk+1(x) is approximately k-aspheric.

The following lemma is a weak form of Compact Filtration lemma from [11].

Lemma 2.10. Any polyhedrally connected equi locally connected finite filtration of complete mappings of a compact space contains a
compact approximately connected subfiltration of the same length.

Definition 2.11. A multivalued mapping F : X → Y admits continuous approximations if every neighborhood of the graph ΓF

in X × Y contains a graph of some single-valued continuous map f : X → Y .

Theorem 2.12. ([2, Theorem 3.14]) Suppose that a compact multivalued mapping of separable metric ANRs F : X → Y admits a com-
pact approximately connected filtration of infinite length. Then for any compact space K ⊂ X every neighborhood of the graph ΓF (K )

contains the graph of a single-valued and continuous mapping f : K → Y .

If a pair G0 ⊂ G1 of proper subsets of a space Z is coconnected, then we can define an operation of G1-coconnectification
on subsets of G0 as follows: For a subset F0 ⊂ G0 its G1-coconnectification is the union of F0 and all components of Z \ F0
which do not intersect Z \ G1. Clearly, the G1-coconnectification of F0 is the minimal subset F1 ⊂ G1 containing F0 such
that Z \ F1 is connected and contains Z \ G1.

Lemma 2.13. Suppose that Z is a locally 0-connected space and G0 ⊂ G1 is a coconnected pair of proper subsets of Z . Let F0 be a
subset of G0 . If F0 is closed in Z then the G1-coconnectification F1 of F0 is also closed in Z .

Proof. Suppose that {zn} is a sequence of points in F1 converging to a point z ∈ Z \ F1. If infinitely many points zn belong
to F0, then z ∈ F0 by closedness of F0. So, we assume that zn /∈ F0 for all n. Then for any n the points z and zn belong
to different connected components of Z \ F0. Use local 0-connectedness of Z to find a path wn from z to zn such that
the diameter of wn tends to 0 as n → ∞. Since each path wn must intersect F0, the point z is a limit point of F0.
Contradiction. �

If a multivalued mapping F : X → Y contains proper submappings G0 and G1 such that for any x ∈ X the pair G0(x) ⊂
G1(x) is coconnected in F (x), then for any submapping F0 ⊂ G0 we define a G1-coconnectification of F0 as a multivalued
mapping taking a point x ∈ X to the G1(x)-coconnectification of F0(x).

Lemma 2.14. Suppose that equi-LC0 multivalued mapping F : X → Y contains proper submappings G0 ⊂ G1 such that G1 is compact
and for any x ∈ X the pair G0(x) ⊂ G1(x) is coconnected in F (x). Then for any compact submapping F0 ⊂ G0 its G1-coconnectification
F1 is a compact submapping of G1 .

Proof. Since the G1(x)-coconnectification of the set F0(x) is closed in F (x) by Lemma 2.13 and is contained in G1(x), the
set F1(x) is compact.

Let us prove that F1 is upper semicontinuous. Suppose to the contrary that for some point x ∈ X and for some ε > 0 there
is a sequence of points {xi}∞i=1 in X converging to x such that F1(xi) 	⊂ O (F1(x), ε) for all i. That means we can fix points
yi ∈ F1(xi) \ O (F1(x), ε) for all i. Since G1 is a compact map and yi ∈ G1(xi) for all i, there is a limit point y ∈ G1(x) for the
sequence {yi}∞i=1. Without loss of generality we assume that the sequence {yi}∞i=1 converges to y. Since yi /∈ O (F1(x), ε),
we have yi /∈ F1(x). Fix a point z ∈ F (x) \ G1(x). The points y and z belong to connected set F (x) \ F1(x) which is open
in F (x) and therefore is locally path connected (since F (x) ∈ LC0). Hence, there exists a path s : [0,1] → F (x) \ F1(x) such
that s(0) = y and s(1) = z. Since F is lower semicontinuous and G1 is upper semicontinuous, there is a sequence of points
{zi ∈ F (xi) \ G1(xi)}∞i=M , converging to z.

Using equi-LC0 property of the mapping F we can choose a sequence of maps {si : [0,1] → F (xi)}∞i=M′ such that
si(0) = yi , si(1) = zi and the paths si converge to the path s uniformly (this follows from general results on continuous
selections [8], although an elementary proof exists which is straightforward but too technical). Since the path s does not
intersect F0(x) and F0 is upper semicontinuous, for all but finitely many i the path si does not intersect F0(xi). It means
that the points yi and zi belong to the same connected component of the set F (xi)\ F0(xi), which contradicts to the choices
of yi and zi . �
Definition 2.15. The mapping f : X → Y is said to be topologically regular provided that if ε > 0 and y ∈ Y , then there is a
positive number δ such that dist(y, y′) < δ, y′ ∈ Y , implies that there is a homeomorphism of f −1(y) onto f −1(y′) which
moves no point as much as ε (i.e. an ε-homeomorphism).

Note that since the Poincaré conjecture is true, any Serre fibration of LC2-compacta with all fibers homeomorphic to
some fixed compact three-dimensional manifold is topologically regular [6].
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Lemma 2.16. If p : E → B is a topologically regular mapping of compacta with all fibers homeomorphic to some fixed compact three-
dimensional manifold, then the multivalued mapping p−1 : B → E is

• equi locally hereditarily coconnectedly aspheric,
• equi locally coconnected,
• equi locally polyhedrally 2-connected.

Proof. Fix a point q ∈ E and ε > 0. We will find δ > 0 such that for any point x ∈ p(O (q, δ)) there exist subsets D3 and O 3

of the fiber p−1(x) such that

O (q, δ) ∩ p−1(x) ⊂ D3 ⊂ O 3 ⊂ O (q, ε) ∩ p−1(x)

where D3 is homeomorphic to closed 3-ball and O 3 is homeomorphic to R
3. Then the first property of p−1 follows from the

fact that O 3 is hereditarily coconnectedly aspheric (see Remark 2.3). The last two properties follow from coconnectedness
of the pair D3 ⊂ O 3 and contractibility of D3 respectively.

Take a neighborhood O 3
q of the point q in the fiber p−1(p(q)) such that O 3

q is homeomorphic to R
3 and is contained

in O (q, ε/2). Note that if h is ε/2-homeomorphism of O 3
q , then h(O 3

q) is contained in O (q, ε). Let D3
q be a neighborhood

of q in p−1(p(q)) homeomorphic to closed 3-ball. Take a positive number σ < ε such that O (q, σ ) ∩ p−1(p(q)) is contained
in D3

q . Choose a positive number δ < σ/2 such that for any point x ∈ O (p(q), δ) there exists σ/2-homeomorphism of

the fiber p−1(p(q)) onto p−1(x). Now take a point x ∈ p(O (q, δ)) and fix σ/2-homeomorphism h of the fiber p−1(p(q))

onto p−1(x). By the choice of σ , the set h(D3
q) contains O (q, σ /2) ∩ p−1(x). Therefore, we have

O (q, δ) ∩ p−1(x) ⊂ h
(

D3
q

) ⊂ h
(

O 3
q

) ⊂ O (q, ε) ∩ p−1(x). �
3. Fibrations with 3-manifold fibers

Lemma 3.1. Let F : X → Y be equi locally hereditarily coconnectedly aspheric, equi locally coconnected, equi-LC 1 compact-valued
mapping of a space X to a Banach space Y . Assume that F is a submapping of an equi-LC0 compact map Φ : X → Y such that
F (x) 	= Φ(x) only if F (x) = pt in which case Φ(x) \ F (x) is connected. Suppose that a compact submapping Ψ : A → Y of F is
defined on a compactum A ⊂ X and admits continuous approximations. Then for any ε > 0 there exists a neighborhood OA of A and
a compact submapping Ψ ′ : OA → Y of F |OA such that ΓΨ ′ ⊂ O (ΓΨ , ε), Ψ ′ admits a compact approximately connected filtration of
infinite length, and calΨ ′ < ε.

Proof. Fix a positive number ε. Apply Lemma 2.9 to the maps F and Ψ with α being equi local hereditary coconnected
asphericity to get a positive number ε3 < ε. Apply Lemma 2.9 again with α being equi local coconnectedness to get a
positive number ε2 < ε3/2. By Lemma 2.7 the mapping F is equi locally polyhedrally 2-connected. Subsequently applying
Lemma 2.9 with α being equi local polyhedral n-connectedness for n = 2,1,0, we find positive numbers ε1, ε0, and δ

such that δ < ε0 < ε1 < ε2 and for every point (x, y) ∈ O (ΓΨ , δ) the pair (O (y, ε1) ∩ F (x), O (y, ε2) ∩ F (x)) is polyhedrally
2-connected, the pair (O (y, ε0) ∩ F (x), O (y, ε1) ∩ F (x)) is polyhedrally 1-connected, and the intersection O (y, ε0) ∩ F (x) is
not empty. Notice that for every point (x, y) ∈ O (ΓΨ , δ) we also have the pair (O (y, ε2) ∩ F (x), O (y, ε3/2) ∩ F (x)) being
coconnected and the set O (y, ε3) ∩ F (x) being hereditarily coconnectedly aspheric.

Let f : A → Y be a continuous single-valued mapping whose graph is contained in O (ΓΨ , δ). Let f ′ : O A → Y be a
continuous extension of the mapping f over some neighborhood O A such that the graph of f ′ is contained in O (ΓΨ , δ).
Now we can define a polyhedrally connected filtration G0 ⊂ G1 ⊂ G2 : O A → Y of the mapping F |O A by the equality

Gi(x) = O
(

f ′(x), εi
) ∩ F (x).

Since the set
⋃

x∈O A{{x} × O ( f ′(x), εi)} is open in the product O A × Y and the mapping F is complete, then Gi is also
complete. Clearly, the set GΓ

2 (x) is contained in O (ΓΨ ,2ε2). Now, applying Lemma 2.10 to the filtration G0 ⊂ G1 ⊂ G2, we
obtain a compact approximately connected subfiltration F0 ⊂ F1 ⊂ F2 : O A → Y . Define a map G3 : O A → Y by the equality

G3(x) = O
(

f ′(x), ε3/2
) ∩ Φ(x).

Compactness of G3 follows from compactness of Φ . By the choice of ε2 the pair G2(x) ⊂ G3(x) is coconnected in Φ(x)
when Φ(x) = F (x), otherwise G2(x) = F (x) = pt and the pair G2(x) ⊂ G3(x) is coconnected in Φ(x) because Φ(x) \ F (x) is
connected. By Lemma 2.14 we find a coconnectification F3 of F2 (with respect to Φ) inside G3. Notice that F3 is also a
coconnectification of F2 with respect to F . By the choice of ε3, F3 is a compact submapping of F having approximately
aspheric point-images. Therefore, the infinite filtration F0 ⊂ F1 ⊂ F3 ⊂ F3 ⊂ F3 ⊂ · · · is approximately connected and we can
put Ψ ′ = F3. �
Theorem 3.2. Let F : X → Y be equi locally hereditarily coconnectedly aspheric, equi locally coconnected, equi-LC 1 compact-valued
mapping of locally compact ANR-space X to Banach space Y . Assume that F is a submapping of an equi-LC0 compact map Φ : X → Y
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such that F (x) 	= Φ(x) only if F (x) = pt in which case Φ(x) \ F (x) is connected. Suppose that a compact submapping Ψ : A → Y
of F |A is defined on a compactum A ⊂ X and admits continuous approximations. Then for any ε > 0 there exist a neighborhood OA
of A and a single-valued continuous selection s : OA → Y of F |OA such that Γs ⊂ O (ΓΨ , ε).

Proof. Fix ε > 0. By Lemma 3.1 there are a neighborhood U1 of A in X and a compact submapping Ψ1 : U1 → Y of F |U1

such that ΓΨ1 ⊂ O (ΓΨ , ε), Ψ1 admits a compact approximately connected filtration of infinite length, and cal Ψ1 < ε. Since
X is locally compact and A is compact, there exists a compact neighborhood OA of A such that OA ⊂ U1. By Theorem 2.12
the mapping Ψ1|OA admits continuous approximations. Take ε1 < ε such that the neighborhood U1 = O (ΓΨ1 (OA), ε1) lies in
O (ΓΨ , ε).

Now by induction with the use of Lemma 3.1, we construct a sequence of neighborhoods U1 ⊃ U2 ⊃ U3 ⊃ · · · of the
compactum OA, a sequence of compact submappings {Ψk : Uk → Y }∞k=1 of the mapping F , and a sequence of neighborhoods
Uk = O (ΓΨk (OA), εk) such that for every k � 2 we have cal Ψk < εk−1/2 < ε/2k , and Uk is contained in Uk−1. It is not difficult
to choose the neighborhood Uk of the graph ΓΨk in such a way that for every point x ∈ Uk the set Uk(x) has diameter less
than 3/2k .

Then for any m � k � 1 and for any point x ∈ OA we have Ψm(x) ⊂ O (Ψk(x),3/2k); this implies the fact that the sequence
of compacta {Ψk(x)}∞k=1 is Cauchy (in Hausdorff metric). Since Ψk(x) ⊂ F (x) for all k and every x ∈ OA, there exists a limit
s(x) ∈ F (x) of this sequence (recall that F (x) is compact). The mapping s : OA → Y is single-valued by the condition calΨk <

1/2k and is upper semicontinuous (and, therefore, is continuous) by the upper semicontinuity of all the mappings Ψk . Thus
s is a selection of the mapping F . �
Theorem 3.3. Let p : E → B be a Serre fibration of LC2-compacta with all fibers homeomorphic to some fixed compact three-
dimensional manifold. If B ∈ ANR, then any section of p over closed subset A ⊂ B can be extended to a section of p over some
neighborhood of A.

Proof. Note that the Serre fibration p is topologically regular [6].
Let s : A → E be a section of p over A. Embed E into Hilbert space l2 and consider a compact-valued mapping F : B → l2

defined as follows:

F (b) =
{

s(b), if b ∈ A,

p−1(b), if x ∈ B \ A.

We may consider F as a submapping of equi-LC0 compact map p−1 : B → l2. It follows from Lemma 2.16 that the mapping F
is equi locally hereditarily coconnectedly aspheric, equi locally coconnected, and equi-LC1. We can apply Theorem 3.2 to the
mapping F and its submapping s to find a single-valued continuous selection s̃ : OA → l2 of F |OA . Since the restriction F |A

is single-valued and equal to s, we have s̃|A = s. Clearly, s̃ defines a section of the fibration p over OA extending s. �
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