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A.Imtract--The nml~quadric and thin plate Sldine rsdlal basis methods, together with the triat~e- 
based mlnJtmm~ norm network algorithm sad the modified qusdrstic Shq~ds' method, are applied 
to various sets of data that are sampled dsmmdy along ~ck* in the plmme. The effectiveness of these 
methods on track data has been questioned in the past. We observe that both radial basis methods 
and the minimum norm network method pedormed well on mmootidy varying track data sets, while 
the multiqumdric method with & mmadI value for the parmneter /~  was the only method tlmt was 
effective on rapidly varying track data. 

I. INTRODUCTION 

Suppose we are given a set S - {(zi,Yi) : i -- 1,2, . . .  ,n)  of n distinct points in the plane. Also, 
suppose we are given the value of a function f (z ,  y) at the points in S, i.e., V - { f ( z i ,  Yi) : i - 
I, 2 , . . . ,  n). The points in S are said to be scattered data points since there is no assumption 
that they form (or fie on) a rectangular grid. A procedure for constructing a function F ( z ,  y) 
satisfying 

F(x,,  y,) = y(x,, y,), for all (z,, e s ,  (x) 

is called a scattered data interpolation algorithm. 
Scattered data interpolation algorithms usually are quite different from algorithms used to 

solve gridded data interpolation problems. (;ridded data algorithms typically use tensor product 
methods, while scattered data methods tend to be more ad hoc, more diverse, and generally more 
complicated. 

For most scattered data problems, it is usually assumed that there is a randomness about the 
points in S. However, in this paper, we are concerned with data sets S in which the points lie 
along tracks or paths in the plane, hence the name t r ack  data .  No assumption is made that 
the tracks are along straight lines. One of the distinguishing features of track data is that two 
points which are adjacent to each other along a given track are usually orders of magnitude closer 
together than points on different tracks. Track data may arise because methods for sampling data 
have been severly restrictive. For example, in the Big Sur data set described in Section 3, data 
was generated by taking water temperature measurements from a boat. Also, track data may be 
obtained by digitizing contour plots. This problem is considered in Section 4. 

Four scattered data interpolation methods that performed well in the critical comparison 
of Franke [1,2] are the multiquadric (MQ) method of Hardy [3,4], thin plate spline (TPS) of 
Duchon [5], minimum norm network (MNN) of Nielson [6], and the modified quadratic Shep- 
ards' (QS) method of Franke and Nielson [7]. These methods are discussed in the next section 
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and subsequently applied to several track data samples. With respect to accuracy and visual 
smoothness, MQ and TPS were the most effective of the many methods tested in Franke [1,2], 
while MNN was the most effective of the triangle-based methods. TPS, MNN, and QS performed 
poorly on the Big Sur data, and MQ did well when a small value for the user-defined parameter 
is used. We constructed several other track data test cases in order to determine if the problems 
are caused by the fact that  the 2-D points in S fail on tracks, or because the function values, V, 
vary rapidly. 

2. I N T E R P O L A T I O N  M E T H O D S  

An important class of scattered data interpolation methods is known as india! basis f~nction 
methods. These methods are of the form 

F ( , ,  y) = ~ A , t ( l l (~ ,  ~) - ( , , ,  :~)11). (2) 

For our purposes here, we shall assume ]1. ]1 meam the Euclidean norm. 
Two of the most effective radial basis function methods are multiquadric and thin plate splines. 

The MQ interpolant is given by (2) with 

~(11(~, :~) - (~,, :~,)11) = ~/11(~, :l) - (~,, ~,)112 + R2. (3) 

Coefficients {Xi) are computed by solving the symmetric system of linear equations obtained 
from (1). An important unsolved problem is how to compute the optimal value for R 2. The 
authors' earlier results [8] demonstrate that  the optimal R 2 depends primarily on the set V, and 
it is less dependent on the set S, other than the scale of the domain. Prior to this result, most 
formulas for R ~ depended only on S. It is shown in [8] that  the MQ interpolant is invariant under 
a uniform scaling of the z and y coordinates if R is scaled in the same way. That  is, if F(z ,  y) is 
the MQ interpolant to (zd, yi, fi) using R 2 and G(z, y) is the MQ interpolant to (cz~, eyi, fi) using 
the parameter (cR) 2, then F(z, y) = G(cz, cy). The MQ method is easily seen to be invariant 
under translations and rotations of the data in the zy plane using the same value of R a. The MQ 
interpolant is also a linear operator with respect to the function values V, assuming that  S and 
R a are fixed. Additional information on multiquadric interpolation can be found in [4, 9--12]. 

The TPS interpolant is defined by 

n 3 

F(~, y) = ~ ~,O(U(-, y) - (~,,  Y,)II) + ] ~  ~,  P , ( , ,  Y), (4) 
i----1 /----1 

where 
~'(ll(~, ~) - (x,,  v,)ll) = II(z, :l) - (z, ,  :l,)ll a • in(ll(~, ~) - (ffi,, m)}l) (5) 

and (p~(z,y)) are the monomials 1, z, and y. Coefficients {~i) and {p~) are computed by solving 
the system of linear equations of order n -t- 3 obtained from (1) and 

n 

,~iPk(Z,,Yi) - O, k "- 1,2,3. (6) 
i----1 

REMARK. Using the polynomial terms {pi(z,y)) gives polynomial precision. These terms could 
also be added to the MQ interpolant. As noted in [8], our experience with MQ is that  polynomial 
precision is generally not an improvement, and may degrade the accuracy of the interpolant on 
some data sets. It is generally advisable to add the constant term for stability, and to add the 
linear or quadratic terms if the data can be closely apprc0dnmted by a low degree polynomial. 

A different class of scattered data interpolation methods involves constructing a network of 
triangles in the plane using the points in S as vertices. Such a triangulation is not unique, sad 
one of the most commonly used triangulation algorithms maximizes the minimum angle of the 
triangles. This algorithm is called the Delunay triangulation [13,14]. 
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After constructing the Delunay triangulation, the MNN method computes first order partial 
derivatives at the vertices (zt,yt), which define cubic polynomials over each edge of the trian- 
gulation. The first order partial derivatives are computed by solving a sparse linear system of 
equations so that the network of piecewise cubic polynomials minimizes the following expression 
which is integrated over all edges in the triangulation: 

Because of this minimization, the piecewise cubic network can be considered to be a bivariate 
analog of the univariate cubic spline. In the triangle ~ k ,  the MNN interpolant has the form 

= W,(z, + wj(z ,  y)Qj(z, u) + y), (8) 

where Wi(z, y) is a rational weight function, and Qt(z, y) is a minimum norm interpolant to the 
piecewise cubic network on ~p ,  and cross boundary derivatives on the edge opposite the vertex 
(zt, Yt). The MNN method is a C 1 interpolant defined on the convex hull of S, and it is perhaps 
the most effective of the triangle-based methods tested in [1,2]. 

Because triangle-based methods are defined only for the convex hull of S, it is necessary to 
extrapolate outside the convex hull in order to evaluate the interpolant in the unit square. This 
may be accomplished by a C O extension (see [6] for details). 

The fonrth algorithm used in our comparison is the modified quadratic Shepards' method 
described in Franke and Nielson [7] and Renka [15]. The QS method has the form 

F(z, y) = Wi(z, y)Ld(z, y) (9) ' 

where L~(z, y) is a weighted least squares quadratic fit to the neighboring points of (zi, y~) and 

W'(x,Y)= L j '  

where dt = I[(z, I / ) -  (zi, Yi)}l and T is a positive constant dependent on the number of data points 
and the diameter of the point set S. We used the same weights as those used in Franks [1] for 
our comparisons. We also used the parameters suggested in Renka [15] and found there was no 
improvement. 

3. TRACK DATA AND THE BIG SUR PROBLEM 

There is a limited amount of information available on scattered data interpolation methods 
applied to solving track data problems. However, the effectiveness of the MQ method on track 
data has been questioned by Hardy [4], Foley [16], and Franke [private communication]. Their 
concern apparently stems from results on a data set which has become known as the Bi9 Sir 
data set [16]. It consists of 64 data points lying along five distinct tracks as shown in Figure 1 
scaled to the unit square. 

The Big Sur data consists of water temperature measurements taken in a boat traveling nearly 
perpendicular to the shore off the coast of Big Sur, California. A plot of the surface constructed 
from the MQ interpolant using R 2 = 0.001 on the Big Sur data is shown in Figure 2. 

Note the rather large excursions of the surface between the tracks. In light of the excellent 
success MQ has enjoyed on more randomly scattered data, it was generally assumed that the 
above excursions were produced because MQ was ineffective for solving track data problems. 
The authors examined the Big Sur data set more closely and noticed excursions along tracks 2 
and 3 in Figure 1. These excursions are clearly indicated in Figure 3 in which the data long two 
of the tracks was treated as though the track was a straight line. Therefore, it is not surprising 
that the surfaces exhibited some excursions because of the steep gradients in the data along these 
tracks. 

m Ittsl2-0 
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Figure 1. Big Sur data locations scaled to the unit square. 

Figure 2. MQ interpolant of the Big Sur data,/Z ~ = 0.001. 

The authors were able to obtain a MQ interpolant free from excursions between the tracks by 
choosing R ~ to be much smaller than the value used for the plots in Figure 2. (It is well known 
that decreasing the value of R 2 '~ightens" the surface somewhat because the basis functions 
approach i[(z, y) - (zi, Yl)][.) The new surface is shown in Figure 4 using R 2 = 10 -5. 

The other three methods were not effective on the Big Sur data. The TPS method was 
reasonable for the most part. However, undesirable oscillations occurred in a manner simi__lar to 
the MQ method using R 2 = 0.001 shown in Figure 2. The MNN and QS method exhibited severe 
oscillations in several locations. 

REMARK. In [16], Foley produced a visually pleasing interpolant to the Big Sur data using 
a multi-stage method. Because this method seems to work best when the tracks are roughly 
parallel, multi-stage methods are not discussed in this paper. 

4. G E N E R A T I N G  A SET OF TEST P R O B L E M S  

To study the performance of scattered data aigorithms on track data, we mapped the 64 data 
points from the Big Sur data set into the unit square. To obtain a fair comp~ison the RMS 
errors for the MNN method, we modified two points in Figure 1 so that the unit square was 
contained in the convex hull of S. The point in the lower left of Figure 1 wss changed to (0,0) 
and the point in the upper right was changed to (1, 1). Next, we generated function values at 
these points by evaluating each of Franke's six test functions [1,2]. Interpolants were constructed 
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Figure 3. Piecewise linear interpolant of Big Sur data along tracks 2 and 3. 

Figure 4. MQ interpolant of the Big Sur data, R 2 = 10 - s .  

using the MQ, TPS, MNN, and QS methods. Numerous MQ interpolants were constructed in 
order to determine the effect of the parameter R 2 on the accuracy of the interpolant. 

To determine the impact of track data on these four methods, we computed the RMS error 
for each interpolant. This error was computed by evaluating the interpolant and the underlying 
function on a uniform 33 x 33 grid defined on the unit square. Since the accuracy of the MQ 
method depends on R a, plots of the RMS error as a function of R 2 for each of the six test functions 
and all data sets are shown in Figure 5. The RMS errors from the more randomly scattered data 
sets supplied by Franke (consisting of 25, 33, and 100 points) are shown for comparison. The 
small circles in Figure 5 denote the RMS error for the R ~ computed by the algorithm in [8]. All 
problenm were solved using double precision on a Cray X-MP. 

Tables 1-6 below compare MQ, TPS, MNN, and QS, where the MQ errors are computed using 
the formula proposed by the authors in [8] which depends on the set V, and for the optimum R 2 
as determined from Figure 5. 

A second type of track data was generated by discretizing contour plots of the first test function. 
Many points were computed on the contour curves of the exact test function on the right side of 
Figure 6, and then two out of every three points were discarded at random. (Our experience has 
been that users tend to be overzealous in digitizing contour plots, resulting in far more points 
than are needed to get an accurate reproduction of the contours.) This procedure yielded a set 
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Figure 5. RMS Error as a Function of R 2. 

Figure 6. The MQ interpolant to digitized data from contour plots. 

of  122 da ta  points as shown in Figure 6. The images on the left side of  Figure 6 are of  the 
M Q  interpolant  using R 2 = 0.01. The  RMS errors for the MQ method is 0.0073. The  T P S  
method also yielded a visually pleasing surface whose KMS error is 0.0102. 
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Table 1. RMS (nrrmz for Funct ion 1. 

MQ ( a  2 from [2]) 
MQ (opt R a) 
TPS 
MMN 
Qs 

25 Pts  33 Pts  64 p ts  100 ptm 

0.03.30 0.0270 0.0315 0.0031 

0.0305 0.0264 0.0154 0.0026 

0.0348 0.0421 0.0226 0.0095 

0.0328 0.0437 0.023T 0.0094 

0.0486 0.0478 0.0298 0.0128 

Table 2, RMS error for FUnction 2. 

25 pts  33 Pts 64 pts  100 pts  

MQ (R 2 from [2]) 
MQ (opt R 2) 

TPS  

MMN 

Qs 

0.0230 0.0125 0.0090 0.0033 

0.0228 0.0125 0.0090 0.0003 

0.0235 0.0134 0.0092 0,0044 

0.0242 0.0140 0.0090 0.0043 

0.0314 0.0206 0.0187 0.0055 

Table 3. RMS errors for Funct ion 3. 

25 pts  33 pts  64 p ts  100 pts  

MQ (R :z from [2]) 
MQ (opt R 2) 
TPS 
MMN 
Qs 

0.0098 0.0059 0.0010 0.00011 

0.0046 0.0046 0.0010 0.00005 

0.0137 0.0140 0.0022 0.00092 

0.0172 0.0159 0.0040 0,00200 

0.0133 0.0139 0.0074 0.00194 

Table 4. RMS errors for Punction 4. 

33 

MQ (R 2 from [2]) 

MQ (opt R 2) 

TPS  

MMN 

¢ts 

25 pts  33 pts  64 Pts 100 pts  

0.0012 0.0007 0.00007 0.000004 

0.0002 0.0002 0.00005 0.00000002 

0.0035 0.0071 0.00173 0.00030 

0.0043 0.0056 0.00295 0.00069 

0.0067 0.0068 0.00458 0.00089 

Table 5. RMS ecrors for Function 5. 

25 pts  33 pts  64 p ts  100 pts  

MQ (a  2 from [2]) 
MQ (opt R 2) 

T P S  

MMN 

QS 

0.0041 0.0181 0.0018 0.00021 

0.0040 0.0146 0.0013 0.00003 

0.0065 0.0296 0.0022 0.00217 

0.0069 0.0228 0.0030 0.00229 

0.0126 0.0220 0.0074 0.00361 

Table 6. RMS e~rors for Function 6. 

25 pts  33 pts  64 p ts  100 p ts  

MQ ( / ~  from [2]) 

MQ (opt R 2) 

T P S  

MMN 

Qs 

0.0021 0.0012 0.0003 0.00002 

0.0007 0.0007 0.0003 0.000006 

0.0093 0.0055 0.0044 0.00150 

0.0077 0,0046 0.0041 0.00165 
0.0034 0.0136 0.0034 0.00050 
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5. C O N C L U D I N G  R E M A R K S  

The  MQ and T P S  radial basis methods can yield effective interpolants to track data.  If the 
function values F ( z i ,  y~) come from a smooth function, such as Franke's test  functions, then both 
of these methods generated visually smooth surfaces with relatively small RMS errors. The  MQ 
interpolant generally produced smaller RMS errors than all of the methods. The  MNN method 
also worked well on the smooth track data  sets in Section 4. This was a little surprising because 
the tr iangulation consisted of several long, thin triangles connecting adjacent tracks. The  probable 
reason for the effectiveness of the MNN interpolant is tha t  the first order partial  derivatives were 
computed to solve an appropriate global minimization problem. The QS method was not  very 
effective on most of the smooth track data  sets in certain regions using default parameters.  The  
RMS errors and the visual smoothness of the MQ, TPS,  and MNN interpolants on the smooth 
track da ta  sets were consistent with their behavior on the more uniform data  sets of 25, 33, and 
100 points in Franke [1]. 

For the rapidly varying Big Sur track data  in Section 3, the only method that  yielded effective 
results was the MQ interpolant using a small value for R ~. The TP S  interpolant worked well in 
most regions, but  it had undesirable oscillations in some areas. The MNN and QS methods had 
major  problems with the Big Sur da ta  set. An obvious observation is tha t  track da ta  is not a 
problem for the MQ, TPS,  and MNN methods. The undesirable behavior of these interpolants 
on the Big Sur Data  set is caused by the rapidly varying function values. With a small value 
for R 2, the MQ interpolant can overcome this problem. The generalized MNN method in Nielson 
and Franke [17] which uses exponential tension splines for the network curves may be able to 
effectively handle the Big Sur data  if appropriate tension values are used. 
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