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Monika Kröger,1 Matthias Schiemann,3,4 Dirk H. Busch,3,4 Irene Esposito,5 Roland Lang,3 Christian Peschel,1

and Robert A.J. Oostendorp1,*
13rd Department of Internal Medicine, Klinikum rechts der Isar, Munich 81675, Germany
2Oncology Research Institute, National University of Singapore, Singapore 117456, Republic of Singapore
3Department of Microbiology and Immunology, Technical University Munich, Munich 81675, Germany
4Clinical Cooperation Groups ‘‘Antigen-Specific Immunotherapy’’ and ‘‘Immune-Monitoring’’
5Institute of Pathology
Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
6These authors contributed equally to this work

*Correspondence: oostendorp@lrz.tum.de

DOI 10.1016/j.stem.2009.05.020
SUMMARY

Secreted frizzled-related protein 1 (Sfrp1) is highly
expressed by stromal cells maintaining hematopoi-
etic stem cells (HSCs). Sfrp1 loss in stromal cells
increases production of hematopoietic progenitors,
and in knockout mice, dysregulates hemostasis and
increases Flk2� Cd34� Lin� Sca1+ Kit+ (LSK) cell
numbers in bone marrow. Also, LSK and multipotent
progenitors (MPPs) resided mainly in the G0/G1
phase of cell cycle, with an accompanying decrease
in intracellular b-catenin levels. Gene-expression
studies showed a concomitant decrease Ccnd1 and
Dkk1 in Cd34� LSK cells and increased expression
of Pparg, Hes1, and Runx1 in MPP. Transplantation
experiments showed no intrinsic effect of Sfrp1 loss
on the number of HSCs or their ability to engraft irra-
diated recipients. In contrast, serial transplantations
of wild-type HSCs into Sfrp1�/�mice show a progres-
sive decrease of wild-type LSK and MPP numbers.
Our results demonstrate that Sfrp1 is required to
maintain HSC homeostasis through extrinsic regula-
tion of b-catenin.

INTRODUCTION

Hematopoietic stem cells (HSCs) reside in a heterogeneous

microenvironment (or niche) in which they generate all mature

blood cells. The niche is made up of several different cell types:

hematopoietic cells at different stages of differentiation, vascular

cells, bone-lining cells, as well as neural cells that tightly regulate

the self-renewal capacity and multipotency of HSCs (Morrison

and Spradling, 2008). The microenvironment permits the mainte-

nance of HSCs for the entire lifetime of an organism. Moreover,

the microenvironment is an efficient sensor of cellular stress,

which allows flexible responses to maintain the steady state of
the blood cell system. The precise mechanisms of HSC mainte-

nance are still not fully understood.

Prominent players in the regulation of self-renewal and differ-

entiation are the lipid-modified Wnt-signaling members. The Wnt

family members bind frizzled (Fzd) receptors to activate down-

stream signaling in catenin-dependent canonical and noncanon-

ical pathways. In the canonical pathway, Fzd associates with the

Lrp5/6 receptor, and signals are propagated through catenins to

activate Tcf/Lef transcription complexes. The level of catenins is

regulated through serine and threonine phosphorylation and

marked for degradation by the Skp1/Cul1/beta-TrCP ubiquitin

ligase complex. Activation of catenin-dependent signaling regu-

lates genes involved in cell-cycle regulation and proliferation

such as Ccnd1 and Myc, but also Spp1, Socs2, P2ry14, and

many others (Nygren et al., 2007). In noncanonical signaling,

Fzds associate with either Ryk or Ror receptor tyrosine kinases

to activate calmodulin/Ca2+-, or Rho-dependent responses,

which, in turn, activate Nfat or the Jun-dependent AP-1 complex,

respectively. These pathways regulate a different set of Wnt

targets, such as Pparg and Pcdh8 (Takada et al., 2007). Also,

there is crosstalk between noncanonical and canonical path-

ways, as Ca2+-dependent signals inhibits catenin stability

through Camk2-mediated activation of Nemo-like kinase (Nlk)

and subsequent phosphorylation of catenin (Ishitani et al., 2003).

Knowledge about specificity of Fzds and Wnts for canonical or

noncanonical pathways is limited. To complicate matters, there

is a range of different Wnt-signaling inhibitors, such as Dkk,

Wif or Sfrp, or other Wnt antagonists, such as Kremen, Ctgf,

Cyr61, Sost, and Sostdc1. Paradoxically, some of these directly

stimulate certain Fzds independent of Wnt factors. For instance,

Sfrp1 directly activates Fzd2 (Rodriguez et al., 2005), as well as

Fzd4 and Fzd7 (Dufourcq et al., 2008). Also, Wnt factors have

been suggested to initiate Fzd-independent signaling events.

For instance, Wnt5a activates Fzd-independent signaling

through both Ror (Fukuda et al., 2008) and Ryk (Keeble and

Cooper, 2006).

Definitive HSCs emerge from the AGM region between E10

and E11. During this midgestational transition, a significant
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Figure 1. Increased Number of Wild-Type

Progenitors after Being Cocultured on

Sfrp1 Knockdown and Sfrp1 Knockout

Stroma

(A) The expression of Sfrp1 in EL08-1D2 and

UG26-1B6 cell lines relative to nonsupportive

stroma (UG15-1B7, EL28-1B3, and AM30-3F4)

as measured by real-time PCR. Values were

calculated using 2DCt 3 100% relative to house-

keeping gene Rpl13a.

(B) The relative expression (calculated on 2DCt 3

100% values) of Sfrp1 in the knockdown clone of

UG26-1B6 (shSfrp1) and in control clone of

UG26-1B6 (pLKO.1) relative to Rpl13a.

(C) The number of colonies formed from wild-type (WT) Lin� cells after 2 weeks of coculture on UG26-1B6 shSfrp1 and UG26-1B6 expressing the negative control

pLKO1 vector.

(D) The number of colonies formed from WT Lin� cells cultured with primary WT and Sfrp1�/� stroma, with and without addition of cell-free conditioned medium

(CM) from Sfrp1+/+ (control) primary stroma. Data shown are the mean number ± SD of colonies of three to five independent experiments. *p < 0.05.
upregulation of b-catenin (Ctnnb1) is observed (Orelio and Dzier-

zak, 2003). In addition, overexpression of Ctnnb1 results in

expansion of the HSC pool, but, at the same time, to loss of

myelopoiesis (Kirstetter et al., 2006; Scheller et al., 2006), sug-

gesting that Ctnnb1 regulates self-renewal and inhibits differen-

tiation. Surprisingly, conditional deletion of Ctnnb1 or both

Ctnnb1 and plakoglobin does not affect the repopulating ability

of HSCs (Cobas et al., 2004; Jeannet et al., 2008; Koch et al.,

2008). Taken together, these results suggest that canonical

Wnt signaling may be important in definitive hematopoietic spec-

ification, and that catenin stabilization inhibits differentiation

and/or lineage commitment.

Noncanonical Wnt signaling has also been shown to play a role

in hematopoiesis. Current evidence suggests that this pathway

is important in the establishment of the niche by promoting

trabecular bone formation and enlarging endosteal surfaces

(reviewed by Yin and Li, 2006), as well as regulating cell cycle

of HSCs and more mature progenitors. Wnt5a, the principal non-

canonical stimulator, was shown to maintain HSCs (Murdoch

et al., 2003; Nemeth et al., 2007). Also, the noncanonical inter-

mediate Camk2 is essential for myeloid proliferation (Si and

Collins, 2008). These results show that noncanonical signaling

may be important in the control of HSC behavior. Furthermore,

the decrease of Ctnnb1 after Wnt5a stimulation suggests that

noncanonical signaling is a natural downregulator of canonical

signaling.

In addition to this intrinsic role of Wnt signaling, there is also

a role for extrinsic Wnt regulation. For instance, Wnt3a stimulates

proliferation and inhibits differentiation in cocultures of marrow

cells with stromal cells (Yamane et al., 2001). More interestingly,

recently, it was shown that wild-type HSCs show increased cell

cycling when transplanted into mice transgenic for the canonical

inhibitor Dkk1, while at the same time, the HSC pool is gradually

lost (Fleming et al., 2008). Further extrinsic effects were demon-

strated in experiments where stromal cells deficient in Nlk were

shown to be defective in maintaining hematopoietic progenitors

(Kortenjann et al., 2001).

We have isolated a large panel of stromal cell clones from

which two cell lines, EL08-1D2 and UG26-1B6, maintain both

fetal and adult HSCs (Oostendorp et al., 2002, 2005). Compar-

ison of gene expression in these two cell lines with a panel of

nonsupporting stromal cell lines revealed a number of overrepre-
158 Cell Stem Cell 5, 157–167, August 7, 2009 ª2009 Elsevier Inc.
sented secreted molecules, including Secreted frizzled-related

protein 2 (Sfrp2) (Oostendorp et al., 2005). Here we additionally

identify Secreted frizzled-related protein 1 (Sfrp1), a secreted

37kDa protein that inhibits canonical Wnt signaling (Kawano

and Kypta, 2003) and interacts with Wnts 1, -2, -3a, and -7b,

as a factor upregulated in both supportive stromal cell lines.

Our study shows that Sfrp1 regulates production of clonogenic

cells and long-term HSC maintenance through an extrinsic

signaling mechanism.

RESULTS

Sfrp1 Is Involved in the Maintenance of Hematopoiesis
In Vitro
Sfrp1, one of the secreted-type of Wnt signaling modulators, was

shown to be expressed by bone-lining osteoblast-like cells

(Yokota et al., 2008), to regulate skeletogenesis (Häusler et al.,

2004) and to inhibit trabecular bone formation in adult mice (Bod-

ine et al., 2004). In hematopoietic malignancies, Sfrp1 acts as

a putative tumor suppressor molecule (Huang et al., 2007). We

found that Sfrp1 is upregulated in embryo-derived stromal cells

UG26-1B6 (2.2% of Rpl13a) and EL08-1D2 (31.8% of Rpl13a),

known to support HSCs in non-contact cultures when compared

to cell lines not capable of HSC maintenance (0.6% of Rpl13a in

a 1:1:1 mixture of UG15-1B7, EL28-1B3, and AM30-3F4), (Oos-

tendorp et al., 2002) (Figure 1A). In order to investigate the role

of Sfrp1 in the maintenance of HSCs, we established a stable

knockdown of Sfrp1 of 80% (0.4% of Rpl13a) in the HSC-

supportive UG26-1B6 stromal cell line (Figure 1B), which corre-

lates well to the level expressed by the mix of nonsupportive

stroma cell lines. Irradiated knockdown stromal cells (shSfrp1)

or control cells (pLKO.1) were cocultured with the lineage nega-

tive (Lin�) fraction of total bone marrow (BM) cells from control

mice in a direct-contact manner. Interestingly, Lin� cells cultured

on the shSfrp1 UG26-1B6 generated more colonies compared to

the Lin� cells cultured on the control clone (Figure 1C), suggest-

ing that lack of microenvironmental Sfrp1 promotes hematopoi-

etic progenitor activity in vitro.

Absence of Sfrp1 Alters Hematopoiesis In Vivo
To find out how Sfrp1 affects hematopoiesis, we decided to

study the mice deficient in Sfrp1 (Satoh et al., 2006). The



Cell Stem Cell

Sfrp1 Regulates Early Hematopoiesis
knockout mice were originally generated on the 129 background

and were paired at least 5 generations with 129B6 background.

In contrast to the old Sfrp-deficient mice studied by others

(Bodine et al., 2004), the present study revealed no gross differ-

ences in the extension of the growth plates, but a slight increase

in chondrocytes of 10-week-old Sfrp1�/�mice compared to their

controls (Figure S1). As a first experiment, we investigated the

capacity of primary Sfrp1�/� stroma to maintain hematopoiesis

using cocultures with Lin- negative cells; the results were in full

accordance with the above findings with the knockdown stromal

cell line UG26-1B6 (Figures 1B and 1C). Interestingly, the

increased production of colony-forming cells was completely

abolished when the cultures were supplemented by cell-free

conditioned medium (CM) from wild-type (Sfrp1+/+) stroma, indi-

cating that an Sfrp1-dependent soluble factor was the cause of

the increase in hematopoietic progenitors (Figure 1D). However,

addition of recombinant Sfrp1, in a concentration of 1 mg/ml

every 3 days, to cocultures of WT Lin� cells and primary marrow

stroma did not affect the generation of hematopoietic progeni-

tors (Figure S2). This suggests that either recombinant Sfrp1 is

not biologically active or that Sfrp1 does not directly act on

hematopoietic progenitors. Because of the above results, we

decided to characterize the hematopoiesis of Sfrp1�/� mice in

more detail.

The BM, spleen, and thymus cellularity was unchanged

(Figure 2A), while the peripheral blood (PB) cell number was

significantly increased in Sfrp1�/� mice (Figures 2A and 2B).

Figure 2. Alterations in Steady-State Hema-

topoiesis of Sfrp1�/� Mice

(A) Total cell numbers from bone marrow (BM,

four long bones: two femurs and two tibia per

mouse), spleen, thymus, and peripheral blood

(PB, 103 cells/ml).

(B) Blood cell counts in the PB of control (n = 32)

and Sfrp1�/� (n = 30).

(C) Total number of Cd4/Cd8a+, B220+ and Gr1+

cells in the BM, spleen, thymus, and PB. White

bars represent control animals (n = 7), and black

bars represent the Sfrp1�/� mice (n = 5). Eos,

eosinophiles; Gran, granulocyte; HCT, hematocrit;

Lymph, lymphocyte; Mono, monocyte; PLT,

platelets; RBC, red blood cell WBC, white blood

cell; NS, not significant. All values are shown as

mean ± SEM *p < 0.05.

The numbers of eosinophiles (Eos), red

blood cells (RBC), hematocrit (HCT), and

platelets (PLT) were within normal range

(Figure 2B). The main contribution to the

increased cell number in peripheral blood

comes from increased B220+ B cell

populations (1.4-fold) and Gr1+ cells

(2.1-fold) (Figure 2C). Also notable was a

slight, but significant, increase of B220+

cells in the BM and thymus, as well as

a minor, but significant, decrease of both

T and B lymphocytes in the spleen

(Figure 2C). Taken together, these find-

ings suggest an altered homeostasis of lymphocytes and leuko-

cytes in the absence of Sfrp1.

To find out whether these changes result from alterations in

early hematopoiesis, we analyzed the primitive cell populations

in multiparameter flowcytometry (Figure 3A). Numbers of Lin�,

Sca1+, and Kit+ (LSK) cells were unchanged in Sfrp1�/� mice

(Figure 3B). However, the number of as the more primitive Flk2

and Cd34 double-negative population of LSKs (Cd34-Flk2-

LSK) (Osawa et al., 1996, Christensen and Weissman, 2001;

1.5-fold, p = 0.013 [n = 7]; Figures 3A and 3B) as well as

Cd150+ Cd48- Cd34-Flk2-LSK (Wilson et al., 2008; 1.8-fold,

p = 0.044 [n = 3]; Figure S3), were significantly increased in

Sfrp1�/� mice compared to controls. Further down the hemato-

poietic hierarchy, we found that multipotent progenitors (Lin�,

Sca1�, and Kit+ MPP) were significantly reduced. This, in turn,

suggested that the progenitors that make up the MPP population

(common myeloid progenitors [CMPs], granulocytic progenitors

[GMPs], and megakaryocytic/erythroid progenitors [MEPs])

should be reduced as well; however, we only observed a signifi-

cant reduction (1.4-fold) in the MEP population (Figures 3C and

3D). Additionally, the number of common lymphoid progenitors

(CLPs) in these mice also seemed reduced (1.4-fold), but due

to the intraanimal variance, this difference never reached statis-

tical significance (p = 0.12, n = 8 for both control and Sfrp1�/�

groups) (Figures 3C and 3D). Functionally, the number of

colony-forming cells, such as CFU-GEMM, was unchanged,

but the number of CFU-GM, particularly the large CFU-GM, as
Cell Stem Cell 5, 157–167, August 7, 2009 ª2009 Elsevier Inc. 159
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well as the BFU-E, were significantly decreased (Figure 3E).

Thus, loss of Sfrp1 results in a decreased progenitor cell activity.

Altered Cell-Cycle Regulation in the Absence of Sfrp1
Entry of HSC into the cell cycle is regulated by the microenviron-

ment as well as modified by intrinsic factors. Our results suggest

that absence of Sfrp1 affects the production of both progenitors

and mature hematopoietic cells. In order to understand which

mechanisms underlie these alterations, we studied the cell-cycle

status of LSKs, MPPs, and mature cells in vivo. Animals were

injected with BrdU and were sacrificed 3 hours later. Bone

marrow and blood cells were analyzed for hematopoietic

subpopulations (Figure 4A). We found that in the bone marrow,

the G0/G1 population is increased in both LSK and MPP cells

from Sfrp1�/�mice. Correspondingly, a decrease of the S phase

cells was observed, indicating that in Sfrp1�/� mice, LSKs (p =

0.063) and MPPs (p = 0.012) cycle less (Figure 4B). However,

this cycling behavior changes from early to late hematopoiesis,

as both mature myeloid Gr1+ cells as well as B B220+ cells

show an expanded S phase population in the marrow (Figure 4C).

Figure 3. Alterations in Early Hematopoi-

esis in Sfrp1�/� Mice

(A) Representative FACS plots of BM cells isolated

from control and Sfrp1�/� mice with gates for

primitive HSCs.

(B) MPPs, LSKs, and Cd34-Flk2-LSKs are pre-

sented in absolute numbers (n = 7).

(C) Representative FACS plots of BM cells isolated

from control and Sfrp1�/� mice with gates for

committed progenitors.

(D) CMPs, GMPs, MEPs, and CLPs in absolute

numbers. (n = 8 for control animals and n = 6 for

Sfrp1�/�).

(E) Total number of colonies formed from four long

bones (2 femurs and 2 tibia) (n = 15 for control and

n = 11 for Sfrp1�/� animals). Open bars represent

control and closed bars Sfrp1�/�. All values are

shown as mean ± SEM. *p < 0.05.

The increase in S phase was not noticed in

Cd4+ or Cd8a+ T cells, indicating that

Sfrp1 does not affect cell cycle of T cells

in the marrow (Figure 4C).

Lack of Sfrp1 Alters the Expression
of Signaling Molecules in Early
Hematopoietic Cells
In order to identify the molecular mecha-

nisms underlying altered hematopoiesis

in the absence of Sfrp1, we analyzed the

expression level of several molecules

that could possibly be involved. Intracel-

lular flowcytometric analyses demon-

strated that the number of cells express-

ing high levels of the central canonical

Wnt signaling intermediate Ctnnb1 was

significantly decreased in LSKs, MPPs,

and CLPs of Sfrp1�/� mice compared to

the control animals (Figure 5A and

Figure S4). At the same time, P-Ctnnb1 was significantly

decreased only in LSK cells of Sfrp1�/� compared to the wild-

type controls (Figure 5A and Figure S4). In contrast, the number

of cells expressing Jnk1 (Mapk8), one of the mediators of nonca-

nonical Wnt signaling, was not altered in Sfrp1 knockout animals

(Figure 5B and Figure S4). To address the more critical question

of whether Ctnnb1 accumulates in the nucleus, we performed

single-cell stains. These stains independently confirmed that

Ctnnb1 is present at a lower level in Sfrp1�/� LSKs, MPPs, and

CLPs (Figures 5C and 5D). In LSK and CLP control cells, Ctnnb1

was present in clearly visible membrane-bound forms (Fig-

ure 5C), whereas in cells derived from Sfrp1�/� bone marrow,

membrane-bound Ctnnb1 appeared to be absent, resulting in

a relatively high nuclear to cytoplasmic Ctnnb1 ratio, particularly

in Sfrp1�/� LSK cells (Figure 5E). Thus, the difference in nuclear,

cytoplasmic Ctnnb1 distribution was clearest in LSK cells

(Figure 5E).

To find out how the level and altered distribution of Ctnnb1

affects gene expression, we studied expression levels of ‘‘clas-

sical’’ downstream transcriptional targets of the catenin/Tcf/Lef
160 Cell Stem Cell 5, 157–167, August 7, 2009 ª2009 Elsevier Inc.
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pathway as well as other molecules mediating Wnt signaling:

Lef1, Fzd4, and Pparg. The decreased catenin levels resulted

in a significant reduced expression of both catenin targets: cyclin

D1 (Ccnd1) and the Wnt inhibitor dickkopf 1 (Dkk1) in Cd34-LSK,

but not MPP cells (Figure 5F and Figure S5). The expression of

transcription factor Lef1, which activates target genes in

complex with the nuclear Ctnnb1, was unchanged in Cd34-

LSKs and MPPs of Sfrp1�/� mice (Figure 5F and Figure S5). In

contrast, the expression of Pparg, which is a repressor of Wnt

signaling, was significantly upregulated in MPP (Figure 5F;

Figure S5). On the other hand, Fzd4 expression, which binds

Sfrp1 (Dufourcq et al., 2008) and was previously shown to be

expressed by HSC (Yokota et al., 2008), was unchanged in

Cd34-LSKs, but was significantly decreased in MPPs of

Sfrp1�/� mice compared to the controls (Figure 5F; Figure S5).

Wnt signaling was shown to affect Notch pathway in HSCs

(Duncan et al., 2005), and we found a significant upregulation

of the Notch target gene Hes1 in Cd34-LSKs and MPPs of

Sfrp1�/� mice compared to the controls (Figure 5F and

Figure S5). This finding is in line with previously published results

from transgenic mice overexpressing Dkk1 (Fleming et al., 2008),

another repressor molecule in Wnt signaling. Also, the expres-

sion of Runx1, a downstream mediator of Notch signaling (Burns

et al., 2005), was significantly upregulated in MPPs and not

altered in LSKs of Sfrp1�/� mice (Figure 5F and Figure S5). The

NF-kB modulator Ikbkg was slightly lower expressed in Cd34-

LSK cells from Sfrp1�/� mice, but unchanged in their MPPs

(Figure 5F and Figure S5), suggesting possible crosstalk of

NF-kB and Sfrp1 signals in the earliest hematopoietic cells.

The expression levels of the transcription factor Lmo2 was

unchanged in both populations of Sfrp1 knockout mice

(Figure 5F and Figure S5). Taken together, these results show

that the absence of Sfrp1 alters the expression of both Wnt

and Notch pathway mediators and targets in both MPP and

Cd34-LSK.

Figure 4. Detection of Alterations in Cell-

Cycle Behavior in Hematopoietic Cells

from Sfrp1�/� Mice Using In Vivo BrdU

Treatment

(A) Representative FACS plots showing BrdU

incorporation in primitive and mature hematopoi-

etic cells isolated from control and Sfrp1�/� BM.

(B) Percentage of BrdU-positive cells in G0-G1-,

S-, and G2-M phases of cell cycle in LSK and

MPP of control and Sfrp1�/� mice.

(C) Percentage of BrdU-positive cells in G0-G1-,

S-, and G2-M phases of cell cycle in T�, B�,

and myeloid cells of control and Sfrp1�/� mice

(n = 6). All values are shown as mean ± SEM.

The Sfrp1-Deficient
Microenvironment Shows a Defect
in HSC Maintenance
In order to separate intrinsic from

extrinsic effects caused by Sfrp1 loss,

we first analyzed engraftment of Sfrp1�/�

HSCs transplanted into 129Ly5.1 recipi-

ents. In addition, we performed this

experiment in a limiting dilution fashion,

which would also enable independent functional confirmation

of phenotypical results shown in Figure 3B. These experiments

showed that the number of functional HSCs is unchanged in

Sfrp1�/�mice (Figure 6A). In addition, the pattern of lymphomye-

loid engraftment was unchanged with regard to recipients

receiving control 129B6 cells (Figure 6B and Figure S6), indi-

cating there are no intrinsic defects in the ability of Sfrp1�/� to

engraft myeloid and lymphoid lineages.

In order to assess the extent of the extrinsic effect, we

analyzed engraftment of wild-type Ly5.1 HSC in Sfrp1�/� and

control 129Ly5.1 mice (primary transplants, 1�) (Figure 7A).

Sixteen weeks after transplantation in 1� recipients, we observed

a significant increase of engrafted wild-type cells in BM and PB

of Sfrp1�/�mice (Figure 7B). The number of mature myeloid cells

was increased in spleen and PB of Sfrp1�/� mice compared to

control (Figure 7C). The maintenance of donor LSK and MPP

cells in 1� Sfrp1�/�mice was slightly higher, but not significantly

changed (Figure 7D).

As it was recently shown that mild effects in primary recipients

may, in fact, reflect major and irreversible changes in HSC

behavior and number only observed at later time points (Fleming

et al., 2008; Miyamoto et al., 2007), we also performed secondary

transplantation (2�). In these experiments, we used wild-type

recipients, so that any phenotypical changes would depend

only on the microenvironment of the 1� recipient. In 2� recipients

reconstituted with donor cells from Sfrp1�/� 1� mice, we

observed decreased total as well as HSC engraftment (Figure 7B

and Table S2). Interestingly, we observed a significant increase

in the number of B220-positive B cells in all tissues examined:

BM, spleen, and blood (Figure 7E). In addition, contrary to the

1� Sfrp1-deficient recipients, the number of donor Gr1+ cells

(Figure 7E), as well as LSK and MPP cells, were severely

decreased in 2� transplants (Figure 7F), indicating that in the

primary Sfrp1�/� recipients, the ability of the microenvironment

to maintain LT-HSCs was reduced.
Cell Stem Cell 5, 157–167, August 7, 2009 ª2009 Elsevier Inc. 161
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DISCUSSION

In previous studies, we generated embryo-derived stromal cell

lines capable of supporting HSCs in culture (Oostendorp et al.,

2002). By comparing the expression profiles of these cell lines

with nonsupportive ones, we previously identified upregulation

of Sfrp2 (Oostendorp et al., 2005). In the current study, we iden-

tified an additional member of Sfrp family, Sfrp1, to be overrep-

resented in HSC-supporting stromal cells. Both Sfrp1 and Sfrp2

are known modulators of Wnt signaling. The members of the

Wnt-signaling pathway have emerged as regulators of HSC

self-renewal and proliferation (Murdoch et al., 2003; Reya

et al., 2003; Nemeth et al., 2007; Liang et al., 2003; Luis et al.,

2009). In particular, the Wnt factors play an important role in

the complex interplay of intrinsic signals from HSCs and extrinsic

stimuli from the surrounding stromal microenvironment, also

called the stem cell niche (reviewed in Yin and Li, 2006).

Here, we analyzed the effect of Sfrp1 on hematopoiesis and

found that the downregulation of Sfrp1 in the embryo-derived

Figure 5. Alterations in b-Catenin-Dependent

Signaling in Sfrp1�/� Mice

(A) Intracellular stain of Ctnnb1 and P-Ctnnb1 in LSKs,

MPPs, and CLPs of control and Sfrp1�/� mice (n = 3).

(B) Intracellular stain of Mapk8 in LSKs, MPPs, and CLPs.

(C) Single-cell stains showing the expression of Ctnnb1 in

sorted LSK, MPP, and CLP cells (n = 3).

(D) Quantification of Ctnnb1 stain (total pixel number)

using ImageJ in LSKs (n = 10), MPPs (n = 8), and CLPs

(n = 5).

(E) Ratio of nuclear and cytoplasmic Ctnnb1 expression in

sorted LSKs, MPPs, and CLPs.

(F) Normalized expression of Lef1, Ccnd1, Dkk1, Fzd4,

Pparg, Hes1, Runx1, Ikbkg, and Lmo2 in Cd34-LSKs and

MPPs of control and Sfrp1�/�mice. Results were normal-

ized relative to the combined expression of the three

housekeeping genes Hprt1, Rps21, and Ythdf1. All values

are shown as mean ± SEM in 3 to 5 independent experi-

ments. *p < 0.05.

stromal cell lines UG26-1B6 and EL08-1D2 led

to an increased production of hematopoietic

progenitors in culture. Since previous studies

showed that Sfrp1 is expressed in bone-lining

osteoblast-like cells (Yokota et al., 2008) and

the endosteal surfaces of trabecular bones

function as a niche in hematopoiesis (reviewed

in Yin and Li, 2006), we hypothesized that

Sfrp1 might play an important role in the

extrinsic regulation of hematopoiesis. Hence,

we decided to analyze early hematopoietic cells

and the intrinsic and extrinsic contribution of

Sfrp1 deficiency to hematopoietic regulation.

In the present investigation, we found that

Sfrp1 loss leads to increased peripheral blood

cell numbers, particularly B220+ and granulo-

poietic (Gr1+) cells. This observation suggested

a dysregulation of hematopoiesis, which is in

line with the proposed role of Sfrp1 as an inhib-

itor of B lymphopoiesis (Yokota et al., 2008), but

which was previously not detected in mice overexpressing

another Wnt-antagonist, Dkk1, in osteoblasts (Fleming et al.,

2008), or in mice with conditional deletion of Ctnnb1 (Cobas

et al., 2004). However, severe decreases in blood cell numbers

were noted in studies in which Ctnnb1 was stabilized (Kirstetter

et al., 2006, Scheller et al., 2006). In the latter, it was noted that in

the LSK cells, the number of G0/G1 cells was decreased, sug-

gesting the earliest hematopoietic cells were recruited to enter

the cell cycle, but that the number of HSCs required to maintain

hematopoiesis was, in fact, depleted, perhaps because the cells

did not return to G0 (Scheller et al., 2006). We clearly show that

the general level of Ctnnb1 is decreased in Sfrp1�/� LSKs,

MPPs, and CLPs and that P-Ctnnb1 is decreased in LSK cells.

Others have shown that Sfrp1 treatment increases b-catenin

levels in Lin�Kit+ cells (Yokota et al., 2008). Although these

observations suggest that Sfrp1 may directly inhibit degradation

of Ctnnb1, which is normally associated with stimulation of

canonical Wnt signaling, these findings contrast to the general

designation of Sfrp1 as a canonical Wnt inhibitor.
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Most likely, the balance between canonical and noncanonical

signaling dictates the intracellular level of Ctnnb1. An alternative

explanation for decreased Ctnnb1 levels with Sfrp1 might be

our recent observation that Sfrp1 binds and inhibits Wnt5a

(Matsuyama et al., 2009), an interaction which potentially

increases the level of Ctnnb1 (Topol et al., 2003). Loss of Sfrp1

could, therefore, increase Wnt5a-dependent signaling, thereby

indirectly affecting Ctnnb1 stability. A finding in favor of this

hypothesis is our observation that a central target of the calcium-

dependent noncanonical Wnt pathway, Pparg, is increasingly

expressed in the absence of Sfrp1 in MPPs. Pparg was shown

to suppress Ctnnb1 levels in colon cancer (Girnun et al., 2002)

and during adipogenesis (Moldes et al., 2003), most probably

through a proteasome-dependent mechanism (Sharma et al.,

2004). More importantly, Pparg is transcriptionally repressed

by noncanonical Wnt signaling through the calcium-dependent

Camk2-Tak1-Tab2-Nlk in bone marrow mesenchymal progeni-

tors (Takada et al., 2007). These findings suggest that, at least

in MPP, in the absence of Sfrp1, the noncanonical calcium-

dependent Wnt pathway is upregulated. Considering the

complex interplay of Wnt agonists and antagonists within the

microenviroenment, the identification of the precise mechanism

by which Sfrp1 may be stimulating Ctnnb1 signaling will be diffi-

cult and lies beyond the scope of the present paper.

We found that Ccnd1, a ‘‘classical’’ transcriptional target of

canonical Wnt signaling, was decreased in Cd34-LSK cells.

Hence, our finding that Sfrp1 deficiency affected cell cycling

was not surprising. However, it was unanticipated that the

effects of Sfrp1 on early hematopoietic cells (LSKs and MPPs)

Figure 6. No Intrinsic Defect in the Engraftment of Sfrp1�/� HSC

(A) Limiting dilution analysis of engrafted cells in the PB of mice transplanted

with 150,000, 50,000, or 20,000 control or Sfrp1�/� donor cells. Shown are

the number of positive animals per total transplanted as well as the frequency

and 95% confidence interval of this frequency determined using the L-Calc

software.

(B) The pattern of myeloid and lymphoid engraftment in mice transplanted with

50,000 donor cells. Values are shown as mean ± SEM.
appeared to favor retention in G0/G1, whereas S phase entry

was increased in more mature B220+ and Gr1+ cells. This

suggests that early and mature cells are, in fact, regulated

through different Sfrp1-modulated signaling pathways. Whereas

the decreased cycling activity of LSKs and MPPs can be attrib-

uted by decreased canonical signaling as well as with increased

Pparg (Altiok et al., 1997), the increase on cycling in mature cells

is not explained by this mechanism. Previously, the haploinsuffi-

ciency of the noncanonical intermediate Wnt5a in adult mice was

shown to lead to increased peripheral blood cell numbers, espe-

cially B220+ and Gr1+ cells (Liang et al., 2003). This observation

shows similarities with our observations in Sfrp1�/� mice.

Hence, the alterations of cell cycling in more mature populations

could be explained by deficient noncanonical signaling with little

contribution of catenin-dependent canonical signaling.

Our results also imply a possible involvement of Sfrp1-depen-

dent signaling events in the regulation of non-Wnt pathways. It

was reported that Wnt and Notch signaling may collaborate to

regulate self-renewal of HSCs (Duncan et al., 2005). Indeed,

our results show that Sfrp1 deficiency causes an upregulation

of the Notch target Hes1 in both Cd34-LSKs and MPPs. Since

Hes1 overexpression induces quiescence (Yu et al., 2006), this

observation suggests collaborating Notch signals could be

involved in the observed cell-cycle changes seen in early hema-

topoietic cells. Unexpectedly, we also saw changes in the

expression of Ikbkg, an NF-kB modulator involved in B cell devel-

opment, and Runx1, which is important in hematopoietic speci-

fication and lineage maturation, but does not appear to affect

HSC behavior (Ichikawa et al., 2004). The latter was surprising:

though Runx1 and Lef1 are both regulated by Groucho family

members (Levanon et al., 1998), it was previously unknown

that Runx1 transcription was regulated through the Wnt

pathway. We clearly observe a slightly decreased expression

of Runx1 in Cd34-LSKs and an increase of Runx1 in MPPs, indi-

cating a tightly developmentally regulated program for Runx1

expression from Cd34-LSK to MPP cells, which, in part, depends

on Sfrp1.

Our transplantation experiments revealed that there are no

intrinsic defects in HSCs caused by Sfrp1 deficiency. The

kinetics of lymphomyeloid lineage engraftment were, in fact,

the same in control and Sfrp1�/� HSC donors. However, we

found a severe loss of maintenance of wild-type HSCs in

Sfrp1�/� recipients, suggesting extrinsic Sfrp1-dependence of

lymphomyeloid engraftment. This finding is puzzling with regard

to its similarity with the results of transgenic mice overexpressing

Dkk1 in osteoblasts (Fleming et al., 2008). In both models, initial

engraftment in primary recipients is increased, with a significant

drop in engraftment in 2� recipients, suggesting that engrafted

HSCs are in cycle in both models. Our coculture experiments

suggest that progenitors are indeed recruited into cell cycle

more on Sfrp1 knockdown cell lines or Sfrp1-deficient primary

marrow stromal. Most likely, differences between steady-state

hematopoiesis and hematopoietic repopulation are, in fact, not

comparable. During the regenerative response after myeloabla-

tion, the microenvironment undergoes significant remodeling

(Slayton et al., 2007). Also, there is a rapid upregulation of

Wnt10b in both stromal and hematopoietic cells, with a concom-

itant stabilization of Ctnnb1 and upregulation of Myc and Axin2

(Congdon et al., 2008). Since downregulation of canonical
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Figure 7. Extrinsic Regulation of Wild-Type

HSC Engraftment in the Sfrp1�/�Microenvi-

ronment

(A) Serial transplantation flow chart. The wild-type

BM cells were injected into Sfrp1�/� or wild-type

(Sfrp1+/+) recipient mice (1� transplants). Sixteen

weeks post-transplantation, BM was isolated

and 1 3 106 BM cells were transplanted into

wild-type recipients (2� transplants). Transplanta-

tions were carried out as three independent exper-

iments each.

(B) The engraftment levels in the BM, spleen, and

PB of 1� (control [n = 9] and Sfrp1�/� mice [n =

5]) and 2� (cells from 1� BM into n = 9 [1� recipient,

control] or n = 13 [1� recipient: Sfrp1�/�]).

(C) Absolute numbers of engrafted T (Cd4+ and/or

Cd8a+ cells), B (B220+ cells), and myeloid (Cd11b+

and/or Gr1+) cells in the BM (cells per four long

bones), spleen, and peripheral blood (PB, cells

per ml) of primary recipients.

(D) Absolute numbers of engrafted LSKs and

MPPs in the BM (four long bones) of primary recip-

ients.

(E) Absolute numbers of engrafted T, B, and

myeloid cells in the BM (per four long bones),

spleen, and PB (per ml) of secondary recipients.

(F) Absolute numbers of engrafted LSKs and

MPPs in the BM of secondary recipients (per four

long bones). All values are shown as mean ±

SEM. *p < 0.05.
signaling is what the Dkk1-transgenic and Sfrp1-deficient

models have in common, it appears that canonical Wnt signaling

is the main driving force in hematopoietic regeneration after

myeloablative insult.

In conclusion, our study shows the value of studying stromal

cell lines to uncover factors involved in extrinsic regulation of

HSCs. The present study demonstrates that microenvironmental

Sfrp1 affects both catenin-dependent canonical and Pparg-

dependent noncanonical Wnt signaling to regulate cell cycling

and gene expression in HSCs and lineage-committed MPPs.

Our observations show that Sfrp1 does not have major intrinsic

roles in lymphomyeloid engraftment and that loss of Sfrp1

severely impairs HSC maintenance in an extrinsically regulated

manner.

EXPERIMENTAL PROCEDURES

Mice

Sfrp1�/� mice were bred on a 129 3 C57BL/6.J (129B6) background (Satoh

et al., 2006). Age- and sex-matched 129B6, C57BL/6.Pep3b.Ptprc (Ly5.1),

and (129 3 Ly5.1) F1 (129Ly5.1) mice were used as controls in all experiments.

Mice were kept in microisolators under SPF conditions according to FELASA

recommendations.

Cell Lines

The embryo-derived stromal cell lines EL08-1D2, UG26-1B6, UG15-1B7,

AM20-1B4, EL28-1B3, and AM30-3F4 were cultured as described previously

(Oostendorp et al., 2002). Stable knockdown cells for Sfrp1 were made using
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lentiviral shRNAmir (Open Biosystems, Huntsville, AL, USA), followed by puro-

mycin-selection. Puromycin was removed from the medium 3 days prior to the

experiments.

Tissue Samples

Blood samples were taken retro-orbitally with 0.8 mm capillaries (Neolab, Hei-

delberg, Germany) and collected in 1.2 ml heparinised tubes (Sarstedt AG,

Nümbrecht, Germany). Blood cells were counted on a Scil Vet ABC (Scil

Animal Care, Viernheim, Germany). Bone marrow cells were flushed from

femurs and tibias with HF2+ buffer (Hank’s balanced salt solution, supple-

mented with 2% FCS, 10 mM HEPES buffer, and antibiotics). Spleen and

thymus were passed through 70 mm nylon Cell Strainer (BD Biosciences,

Erembodegem, Belgium). WBCs were counted after erylysis with ammonium

chloride solution (Stemcell Technologies, Vancouver, Canada). Viable cell

were counted using Trypan Blue (Invitrogen) in a Neubauer hemocytometer.

FACS Analysis

Cell suspensions were stained with antibodies in HF2+ buffer for 15 min on ice

in the dark. Hematopoietic populations were separated with the following anti-

bodies: biotinylated Gr-1; phycoerythrin (PE)-labeled Cd4, Cd8, and Cd117

(Kit); PE-Cy5-labeled B220; fluorescein isothiocyanate (FITC)-labeled Cd34

and Cd48; Pacific-Blue-labeled Cd16/32 (FcgR), Alyophycocyanin (APC)-

labeled Cd117 and IL7R; and PE-Cy7-labeled anti Ly-6A/E (Sca1) were all

obtained from eBiosciences (San Diego, CA, USA) and PE-labeled Cd150

from BioLegend (San Diego, CA, USA). Lineage stains were performed with

biotinylated lineage cocktail (Miltenyi Biotec, Bergisch Gladbach, Germany),

supplemented with biotin-labeled CD3 and IL-7R antibodies (eBiosciences).

Blood samples were analyzed with following antibodies: biotinylated Gr-1

(eBioscience) labeled with PECy5 streptavidin (Caltag), Cd4 – PECy5 (BD Phar-

Mingen), Cd8a – PECy5 (eBioscience), or B220 – PECy5 (BD PharMingen). In
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transplantation experiments, Cd45.2 – FITC (BD) and Cd45.1 – PE (BD Phar-

Mingen) antibodies were used additionally.

FACS analyses were performed on a Coulter EPICS XL (Beckman Coulter

GMBH, Krefeld, Germany) or CyAn ADP Lx P8 (Beckman Coulter) flow cytom-

eters. FACS data were analyzed using FlowJo 8.8.3 software (Tree Star, Inc.

Ashland, OR, USA).

Cell populations were sorted on MoFlo (Cytomation-Beckman Coulter)

supplied with Summit 4.3 software (Beckman Coulter).

Hematopoietic Colony Assays

For colony forming assay, BM cells (2.5 3 104) or cocultures initiated with 1 3

104 of Lin� cells were cultivated in methylcellulose (MethoCult GF M3434,

Stemcell Technologies, Vancouver, Canada) on 3.5 mm dishes for ten days

at 37�C, 5% CO2. Colonies formed were counted under a microscope.

The stromal cells used for cocultures were irradiated with 30 Gy (UG26-1B6)

and 15 Gy (primary stroma) by a Mevatron KD2 (Siemens, Munich, Germany).

In the rescue experiments, half of the medium was replaced on each third

day with conditioned medium (CM) and harvested, and 0.22 mm was filtered

from confluent-grown Sfrp1+/+ primary BM stroma.

Human recombinant SFRP1 (R&D Systems, Minneapolis, USA) was added

at a concentration of 1 mg/ml when used to evaluate its effect.

Cell-Cycle Analysis

For analysis of cell cycle, animals were intraperitoneally injected with 1 mg of

BrdU. After 3 hr, BM cells were flushed and stained with surface markers prior

to BrdU detection with a BrdU labeling kit as described by the manufacturer

(BD Biosciences).

Transplantation Assay

The Cd45 congenic system (Cd45.1 and Cd45.2) was used to distinguish

donor from recipient cells. Ten- to twelve-week-old lethally irradiated recipient

mice received donor cells via the tail vein on the same day. In primary trans-

plantations (1�), 2 3 105 BM cells were used and in secondary transplants

(2�), 1 3 106.

For the limiting dilution assay, 1.5 3 105, 5 3 104 or 2 3 104 BM cells from WT

or Sfrp1�/� mice were injected with 2 3 105 (129Ly5.1) competitor cells into

WT recipients. Mice with engraftment over 1% of myeloid and 1% lymphoid

lineages are defined as positive mice.

Transplanted mice received 1 mg/ml neomycin sulfate (Sigma) and

500 units/ml Polymyxin B (Sigma) in the drinking water. At week 16 weeks

post-transplantation, mice were sacrificed, and BM, spleen, and blood cells

were analyzed.

Intracellular Stains

For intracellular staining, three million BM cells were stained for surface

markers prior to fixation and permeabilization with BD Cytofix/Cytoperm Fixa-

tion/Permeabilization Solution Kit (BD Biosciences). In brief, cells were fixed

and permeabilized in Cytofix/Cytoperm buffer for 20–25 min at room temper-

ature in the dark. After fixation and permeabilization, cells were washed with

Perm/Wash buffer and incubated with primary antibody diluted in the staining

buffer overnight at 4�C. Antibodies used are as follows: rabbit anti-Ctnnb1,

rabbit anti-Ser33/Thr41 P-Ctnnb1 (both from Cell Signaling Technology,

Boston, USA), rabbit anti-Jnk/Mapk8 (Santa Cruz Biotechnology, Heidelberg,

Germany), and control preimmune rabbit immunoglobulin (Jackson Immuno-

Research, Newmarket, Suffolk, UK), followed by FITC-labeled anti-rabbit anti-

bodies (Jackson ImmunoResearch). Stained cells were analyzed on CyAn ADP

Lx P8 (Beckman Coulter) flow cytometer.

Immunocytofluorescence Staining

For the single-cell staining assay, 200 sorted LSK, MPP, and CLP were spotted

on poly-L-lysine-coated glass slides. After a short incubation on ice, cells were

fixed with 4% PFA. Fixed cells were incubated in 10% FCS, 0.1% Triton-X in

PBS at room temperature for 1 hr and stained overnight with anti-Ctnnb1,

L54E2 Alexa Fluor 488-conjugated Mouse antibody (Cell Signaling). The cell

nuclei were counterstained with DAPI (4,6-diamino-2-phenylindole, dihydro-

chloride) (Invitrogen) and mounted in Prolong Gold Antifade Reagent. Staining

was assessed using a 1003 magnification on a Leica DM RBE fluorescent

microscope (Leica, Wetzlar, Germany). The fluorescence intensity of each indi-
vidual cell was quantified with ImageJ (NIH, Bethesda, USA) software. The

nuclear expression was quantified in the area corresponding to the DAPI-posi-

tive area. The cytoplasmic expression was quantified in the cell compartment

after subtraction of the ‘‘nuclear’’ area.

Gene Expression Analysis

mRNA was isolated from sorted cells by using the Dynabeads mRNA DIRECT

Micro Kit (Invitrogen) as described by the manufacturer. cDNA was amplified

using Omniscript RT kit (QIAGEN GmbH, Hilden, Germany) as described by

the manufacturer. The following Quantitative PCRs were performed using

the Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City,

USA), according to the manufacturer’s instructions, and analyzed on a Applied

Biosystems 7900HT (Applied Biosystems). Gene expression is presented as

a relative value (2DCt 3 100%) compared to the expression levels of house-

keeping genes Rpl13a, Rps21, Hprt1, and Ytdhf1. Primer sequences are

shown in Table S1.

Statistics

Unpaired Student’s t test was used for the statistical analyses using the InStat

statistical package (GraphPad Software, Inc., La Jolla, CA, USA). The limiting

dilution experiment was evaluated using the L-Calc software package (Stem-

cell Technologies).

SUPPLEMENTAL DATA

Supplemental Data include two tables and six figures and can be found with

this article online at http://www.cell.com/cell-stem-cell/supplemental/S1934-

5909(09)00229-X.
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