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Abstract

For a prime pX7 the pth roots of certain modular units are shown to generate the second

layer of the extension of function fields cut out by the universal Galois deformation of the

representation on p-division points of a universal elliptic curve. It follows that certain Galois

representations obtained by specializing the modular invariant to a rational number have large

image.

r 2004 Elsevier Inc. All rights reserved.

The Galois representation at issue in this note arises from the interplay between
two universal constructions: universal Galois deformations on the one hand and
universal elliptic curves on the other. Fix a prime pX7; let j be transcendental over
Q; and consider an elliptic curve E over QðjÞ with invariant j: The natural action of

GalðQðjÞ=QðjÞÞ on the group E½p� of p-division points of E affords a representation

%pE : GalðQðjÞ=QðjÞÞ-SLð2; FpÞ; and the universal deformation of %pE is an

epimorphism pE : GalðQðjÞ=QðjÞÞ-SLð2;Zp½½X ��Þ: More precisely, pE is universal

for deformations of %pE which are trivial on the inertia subgroups of

GalðQðjÞ=Qðj;E½p�ÞÞ at all places of Qðj;E½p�Þ not lying over the place j ¼ N

of QðjÞ: In any case, let eQQ be the cyclotomic extension of Q generated by all roots of
unity of p-power order. Then pE descends to an epimorphism

rE : GalðQðjÞ=eQQðjÞÞ-SLð2;Zp½½X ��Þ;
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and by restricting rE to decomposition subgroups of GalðQðjÞ=eQQðjÞÞ we can
associate a representation

rA : GalðQ=eQQÞ-SLð2;Zp½½X ��Þ

to any elliptic curve A over Q with jðAÞa0; 1728: The recipe is as follows (cf. [5,6]):
Given A; choose E to have good reduction at j ¼ jðAÞ and to specialize to A at this

place. Also choose a place u of QðjÞ over j ¼ jðAÞ: The restriction of rE to the

decomposition subgroup of GalðQðjÞ=eQQðjÞÞ at u is trivial on the inertia subgroup and

so may be viewed as a representation of the quotient group GalðQ=eQQÞ; this is rA:
We are concerned with the possible surjectivity of rA: It is easy to see that the

question of surjectivity depends only on the j-invariant of A; and it is also known
that there are infinitely many numbers j0AQ\f0; 1728g such that rA is surjective if
jðAÞ ¼ j0: This follows from an application of the Hilbert irreducibility theorem
along the lines of Serre [10, pp. 148–149] (a reference which should have been
included in [5]). But as remarked in [5], an appeal to the Hilbert irreducibility
theorem does not provide even one explicit value of j0 for which surjectivity holds.
The present note is intended to fill the gap. Let

%rA : GalðQ=eQQÞ-SLð2; FpÞ

be the reduction of rA modulo the maximal ideal ðp;XÞ of SLð2;Zp½½X ��Þ; and write

vp for the standard p-adic valuation on Q; so that vpðpÞ ¼ 1:

Theorem 1. If %rA is surjective and vpðjðAÞÞ ¼ �1 then rA is surjective.

The proof of Theorem 1 rests on the work of Kubert–Lang [3]. To explain the
connection we return to rE but pass immediately to the associated projective
representation

r : GalðQðjÞ=eQQðjÞÞ-PSLð2;Zp½½X ��Þ;

which is independent of E: For integers nX1; let Ln denote the fixed field of the

kernel of the reduction of r modulo ðp;X Þn: If we identify j with the usual elliptic
modular function then L1 is naturally identified with the modular function field overeQQ of congruence level p; while L2 is identified with the modular function field of a
certain noncongruence subgroup of SLð2;ZÞ: Furthermore L2=L1 is an abelian
extension of exponent p and hence a Kummer extension, thus generated by pth roots
of elements fAL	

1 : In fact since L2=L1 is unramified outside the cusps we see that the

divisor of any such f has the form ðf Þ ¼ DN þ pD; where D is an arbitrary divisor
and DN is a divisor supported on the cusps. Now the simplest candidates for
functions f with ðf Þ of the required form are those for which D ¼ 0; and using [3] we
shall prove that the simplest candidates suffice: L2 is generated over L1 by pth roots
of modular units. The particular group of modular units which enters here is
identified precisely in Theorem 2 of Section 1.
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The relevance of all of this to Theorem 1 is that a result of Boston [2] reduces the

surjectivity of rA to the surjectivity of rA modulo ðp;XÞ2: In fact it suffices to verify
the surjectivity of the associated projective representation, so we would like to see
that the degree of the field extension L2=L1 is preserved under specialization at
j ¼ jðAÞ:Here is where our Kummer-theoretic description of this extension comes in:
The surjectivity of rA is now reduced to the injectivity of the specialization map on
the group of modular units in Theorem 2, or rather on the quotient of this group by
the subgroup of pth powers of modulo units. Finally, to see that the desired
injectivity does in fact hold we use the theory of the Tate curve [11]. Here too the
method is inspired by Kubert–Lang; cf. [3, Theorem 2.1, p. 182].

The main point of Theorem 1 is that it provides the ‘‘explicit example[s]’’ of

surjectivity sought in [5]. For instance take p ¼ 11 and let A be the curve y2 þ y ¼
x3 � x2: Then %rA is surjective [9, p. 309] and jðAÞ ¼ �212=11; whence rA is surjective
also. It should be added that another problem posed in [5], namely to derive the
results of that paper within the framework of Galois deformation theory, has been
solved by Boeckle [1] in a vastly more general context. On the other hand, the third
problem mentioned in [5] (openness of the image of rA when A does not have
complex multiplication) still awaits resolution.

1. The Siegel units

As usual, GðpÞ denotes the principal congruence subgroup of SLð2;ZÞ of level p:

Also I is the 2	 2 identity matrix and GðpÞ7 ¼ f7IgGðpÞ: The compositum of all
modular function fields associated to subgroups of finite index in SLð2;ZÞ will be
denoted M; and the modular function field associated to a particular such subgroup

G will be denoted MG; however the modular function field MGðpÞ ¼ MGðpÞ7 will be
denoted simply K: Put G ¼ PSLð2; FpÞ: Given gAG; we define sðgÞAGalðK=CðjÞÞ by
the formula

sðgÞðf Þ ¼ f 3g�1 ðfAKÞ;

where gASLð2;ZÞ is any coset representative for the preimage of g under the natural

identification SLð2;ZÞ=GðpÞ7DG: Strictly speaking, in an expression like f 3g�1 the
symbol g actually stands for the fractional linear transformation defined by g: In any
case, the map g/sðgÞ identifies G with GalðK=CðjÞÞ and thus enables us to regard
modules for the latter group as modules for the former. This comment applies in
particular to the group U of modular units for GðpÞ: By definition, U is the subgroup

of K	 consisting of all fAK	 which are holomorphic and nowhere zero on the upper
half-plane, and according to the remark just made we may view U and U=Up as
modules over Z½G� and Fp½G� respectively.

The information about U that we need here will simply be quoted from [3], but
to encapsulate it in a statement suited to our application requires some

additional notation. Put R ¼ F2p\fð0; 0Þg and let M be the Z-module consisting of
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functions m : R-Z such that mð�rÞ ¼ mðrÞ: We make M into a Z½G�-module by
declaring that

ðgmÞðrÞ ¼ mðrg̃Þ;

where r is viewed as a row vector ðr1; r2Þ and g̃ASLð2; FpÞ denotes either of the two

preimages of gAG: We also write Q for the submodule of M defined by the
‘‘quadratic relations’’ of Kubert and Lang. Thus Q consists of all mAM such thatX

rAR

mðrÞnðrÞ � 0 ðmod pÞ

whenever nAM reduces mod p to the function R-Fp defined by a homogeneous

polynomial of degree two over Fp: Note that Q is also characterized by the vanishing

in Fp of the three sums
P

%mðrÞr21;
P

%mðrÞr22; and
P

%mðrÞr1r2; where %m denotes the

reduction of m modulo p: (The vanishing of these sums does follow from the
congruences

P
mðrÞnðrÞ � 0; because every function R-Fp defined by a homo-

geneous polynomial of degree two can be lifted to an even function R-Z and thus to
an element nAM:) Clearly Q*pM:

The reason for introducing the module Q is that it provides a description of U in
terms of the ‘‘Siegel functions’’ ga [3, p. 29]. Indeed given rAR; write fr for any

function of the form g12
a with aAp�1Z2 and r equal to the residue class of pa modulo

pZ2: Then for mAM the symbolic mth power

f m ¼
Y
rAR

f mðrÞ
r

is invariant under GðpÞ—hence belongs to U—if and only if mAQ [3, Theorem 5.2,
p. 76]. Without specifying the functions fr more precisely we cannot quite claim that
the assignment m/f m gives a map Q-U ; because if a is replaced by some other

element of its coset modulo Z2 then ga is multiplied by a pth root of unity, whence f m

is defined only up to a pth root of unity also. However since Up contains the constant
functions, the coset of f m modulo Up is uniquely determined, whence the formula

Yðm þ pQÞ ¼ f mUp

does define a homomorphism Y : Q=pQ-U=Up: We are now in a position to
summarize the key inputs needed from [3]:

Proposition 0. View Q=pQ and U=Up as modules over Fp½G� and hence in particular as

vector spaces over Fp: Then Y is an Fp½G�-module homomorphism and is surjective with

kernel of dimension one.

Proof. The surjectivity follows from [3, Theorem 1.3, p. 83] because the map u/u12

is an automorphism of U=Up: The fact that Y intertwines the action of G on Q=pQ

and U=Up follows from [3, Formula K1, p. 27]. To see that the kernel of Y is
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one-dimensional it suffices in view of the surjectivity to compare the dimensions of
domain and range. The dimension of Q=pQ over Fp coincides with the rank of Q as a

free Z-module and hence with the rank of M; namely ðp2 � 1Þ=2: On the other hand,
the dimension of U=Up is jCðpÞj=2� 1 [3, Theorem 3.2, p. 42], where CðpÞ is the

nonsplit Cartan subgroup of GLð2; FpÞ; which has order ðp2 � 1Þ: &

It is convenient at this juncture to move freely between the language of Fp½G�-
modules and the equivalent language of representations of G over Fp: In particular,

since G has no nontrivial one-dimensional representations we see that the
representation of G on KerY is trivial. Thus, if T is a Z½G�-submodule of Q

containing pQ such that the trivial representation does not occur in T=pQ then Y
maps T=pQ isomorphically onto its image in U=Up: On the other hand, it is

immediate from the definition of U that the natural map U=Up-K	=K	p is also an
embedding. Therefore Kummer theory gives the following statement:

Proposition 1. Let T be a Z½G�-submodule of Q containing pQ; and let KT be the subfield

of M generated over K by the pth roots of the functions f m with mAT : Then KT is abelian

of exponent p over K and Galois over CðjÞ; and if the trivial representation of G does not

occur in T=pQ then GalðKT=KÞ is isomorphic as an Fp½G�-module to the dual of T=pQ:

For example if T ¼ pM then the trivial representation does not occur in T=pQ

because pM=pQ is irreducible of dimension 41: To verify the irreducibility consider
the isomorphic module M=Q: It is easy to see that the representation of G on M=Q is
nontrivial, and of course any nontrivial representation of a simple group is faithful.
Furthermore, dim M=Q ¼ 3 because the quadratic relations amount to the
simultaneous vanishing of three linearly independent linear forms on M=pM: On
the other hand, the only irreducible representation of G of dimension o3 is the
trivial representation. Hence if M=Q is reducible then relative to a basis underlying a
Jordan–Hölder filtration the matrices representing G are unipotent. Since G is not a
p-group it follows that the representation is not faithful, a contradiction.

Returning to Proposition 1, we see that there is a Galois extension KpM of CðjÞ
such that KpM is abelian of exponent p over K and such that the representation of G

on GalðKpM=KÞ is the irreducible three-dimensional representation (which of course

is self-dual).

Proposition 2. KpM ¼ MGðp2Þ:

Proof. By definition KpM ¼ Kðff m : mAMgÞ; and therefore KpMCMGðp2Þ [3,

Formula K3, p. 28]. But we have just seen that ½KpM : K� ¼ p3 ¼ ½MGðp2Þ : K�: &

Remark. Another way to see that the containment KpMCMGðp2Þ is actually an

equality is to recognize the representation of G on GðpÞ=Gðp2Þ as the adjoint
representation. The irreducibility of pM=pQ is then a corollary.
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The next statement concerns a submodule N of M which figured implicitly in the
original definition of Q: The proof will be given in Section 2.

Proposition 3. Let N be the Z½G�-submodule of M consisting of all nAM such that %n

coincides with the function R-Fp defined by a homogeneous polynomial over Fp of

degree two. Then NCQ; and the exact sequence of vector spaces over Fp

f0g-pM=pQ-N=pQ-N=pM-f0g

splits as an exact sequence of Fp½G�-modules.

It is immediate from the definition of N that the representation of G on N=pM is
isomorphic to the representation of G on the space of binary quadratic forms over
Fp; or in other words to the symmetric square of the standard projective

representation. Of course, we already know that the representation of G on
pM=pQ is likewise the irreducible three-dimensional representation. Thus we can
appeal to the uniqueness of Jordan–Hölder constituents (or simply to the uniqueness
of direct summands, in light of Proposition 3) to conclude that the trivial
representation of G does not occur in N=pQ: Hence taking T ¼ N in Proposition 1
we obtain an extension KN of K; abelian of exponent p and Galois over CðjÞ;
such that the hypotheses of the following proposition are satisfied with
S ¼ GalðKN=CðjÞÞ; A ¼ GalðKN=KÞ; and B ¼ GalðKN=KpMÞ:

Proposition 4. Let S be a finite group and let A and B be abelian normal subgroups of

exponent p; with BCA: Put G ¼ PSLð2;Z=pZÞ and J ¼ PSLð2;Z=p2ZÞ; and suppose

that there is an isomorphism S=BDJ mapping A=B onto the kernel of the reduction

map J-G: Assume also that B is irreducible and three-dimensional as a module for

GDS=A: If

f0g-B-A-A=B-f0g

splits as an exact sequence of Fp½G�-modules then

f0g-B-S-J-f1g

splits as an exact sequence of abstract groups.

Proposition 4 will be proved in Section 3. Now put L ¼ Zp½½X ��; and for nX1; let

Ln denote the quotient ring L=ðp;XÞn: Under the hypotheses of Proposition 4 we
obtain the following corollary:

Corollary 1. SDPSLð2;L2Þ:

Proof. The isomorphism class of B as a J-module is intrinsic to J—i.e. can be
described without reference to S—because there is a unique isomorphism class of
irreducible three-dimensional representations of G and there is also a unique normal
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subgroup H of J such that GDJ=H (the uniqueness of H holds more generally for

any normal subgroup of order pk�1 in a finite group with a nonnormal Sylow

subgroup of order pk). Now according to Proposition 4, S is the split extension of J

by B: Hence, to deduce the corollary it will suffice to show that PSLð2;L2Þ has the
same description.

Let slð2; FpÞ denote the space of 2	 2 matrices over Fp of trace 0. We view slð2; FpÞ
as a J-module via the adjoint representation of G; so that slð2; FpÞDB: To see that

PSLð2;L2Þ is the split extension of J by slð2;FpÞ; consider the ring homomorphism

L2 ¼ Z½X �=ðp;X Þ2-Z=p2Z specializing X to 0. This homomorphism has a section

embedding Z=p2Z as a subring of L2; and consequently the induced map
PSLð2;L2Þ-J has a section also. So to complete the proof it suffices to identify
the kernel of PSLð2;L2Þ-J with slð2; FpÞ: An identification is provided by the map

sending the matrix DAslð2; FpÞ to 7ðI þ XDÞAPSLð2;L2Þ; the product of X and an

integer modulo p being interpreted as an element of L2: &

Returning to the application at hand, we obtain the structure of GalðKN=CðjÞÞ:

Corollary 2. GalðKN=CðjÞÞDPSLð2;L2Þ:

Our subsequent use of this information may appear inefficient but facilitates
appeals to [5], where Galois extensions with Galois group PSLð2;LnÞ are slighted in
favor of the intermediate extensions with group PSLð2;Z=pnZÞ: The following
proposition implies that when n ¼ 2 the big extension is the compositum of these
intermediate extensions, a property which fails for nXp þ 1:

Proposition 5. The intersection of the kernels of the p distinct epimorphisms

PSLð2;L2Þ-PSLð2;Z=p2ZÞ

afforded by the p possible specializations of X to an element of pZ=p2Z is trivial.

Proof. Given a; bAZp; one readily checks that if the specialization X/x maps a þ
bX to 0 for every choice of xApZ=p2Z then aAp2Zp and bApZp: It follows that the

intersection of the kernels of the ring homomorphisms L2-Z=p2Z is trivial. The

corresponding statement for PSLð2;L2Þ-PSLð2;Z=p2ZÞ is an immediate conse-
quence. &

We now descend from C to the subfield

eQQ ¼
[
nX1

Qðe2pi=pnÞ:

Let K denote the subfield of K consisting of modular functions for GðpÞ with Fourier

coefficients in eQQ; so that K is Galois over eQQðjÞ with CK ¼ K and K-CðjÞ ¼ eQQðjÞ:
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These last two properties amount respectively to the injectivity and surjectivity

of the restriction map GalðK=CðjÞÞ-GalðK=eQQðjÞÞ; so our identification of
G with the first Galois group becomes an identification of G with the second
as well.

Proposition 6. Let T be a Z½G�-submodule of Q containing pQ; and let KT be the

extension of K generated by the pth roots of the functions f m with mAT : Assume that

the trivial representation of G does not occur in T=pQ: Then KT is Galois over eQQðjÞ
with CKT ¼ KT and CðjÞ-KT ¼ eQQðjÞ; and consequently the restriction map

GalðKT=CðjÞÞ-GalðKT=eQQðjÞÞ is an isomorphism.

Proof. The explicit formula for the Fourier expansion of a Siegel function shows
that if mAQ then f mAK : Thus KT is a Kummer extension of K and hence in
particular a Galois extension, and since T is stable under G it follows that KT

is actually Galois over eQQðjÞ: As CK ¼ K the definitions give CKT ¼ KT ; so to see

that CðjÞ-KT ¼ eQQðjÞ it suffices to see that ½KT : eQQðjÞ� ¼ ½KT : CðjÞ�: In fact since

½K : eQQðjÞ� ¼ ½K : CðjÞ� it suffices to see that

½KT : K � ¼ ½KT : K�:

This last equality is equivalent by Kummer theory to jCðT=pQÞj ¼ jU ðT=pQÞj;
where the maps C : Q=pQ-K	=K	p and U : Q=pQ-K	=K	p send the coset

represented by an element mAQ to the coset of f m in K	=K	p and K	=K	p;
respectively. Now, U is the composition of Y with the natural embedding

U=Up-K	=K	p: Since the restriction of Y to T=pQ is by assumption injective, so
is the restriction of U : As U factors through C it follows that CjðT=pQÞ is also
injective, whence jCðT=pQÞj ¼ jT=pQj ¼ jU ðT=pQÞj: &

Remark. The kernel of Y is spanned by the coset of the function m0AQ which is
identically 1 on R: This follows both from the fact that the representation of G on

KerY is trivial and also from the ‘‘distribution relation’’ f m0 ¼ zp12; where z is a pth

root of unity [3, p. 45]. The fact that zp12 is a pth power in C but not in eQQ shows that
Proposition 6 is false without the assumption that the trivial representation does not
occur in T=pQ:

Finally, let L be the Galois extension of eQQðjÞ defined in [5] (take F ¼ eQQ in
Theorem 2 on p. 250 or in Proposition 7 on p. 278). The key properties of L are

that L contains K and that GalðL=eQQðjÞÞDPSLð2;LÞ: Now for a positive integer
n the kernel of the reduction map PSLð2;LÞ-PSLð2;LnÞ is a characteristic
subgroup of PSLð2;LÞ and hence determines a fixed field LnCL which is

independent of the choice of identification GalðL=eQQðjÞÞDPSLð2;LÞ: By Galois
theory we have L1 ¼ K; because an open normal subgroup of PSLð2;LÞ with
quotient group G is unique.
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Theorem 2. The extension L2=L1 is generated by pth roots of Siegel units. More

precisely, L2 ¼ L1ðfðf mÞ1=p : mANgÞ:

Proof. In the notation of Proposition 6, L1ðfðf mÞ1=p : mANgÞ ¼ KN ; so the assertion

to be proved is that L2 ¼ KN : Since KN has the same degree over eQQðjÞ as L2; namely
jPSLð2;L2Þj (Corollary 1), it suffices to see that KNCL2: In fact it suffices to see

that L2 contains every subfield of KN which is Galois over eQQðjÞ with Galois

group PSLð2;Z=p2ZÞ; because Proposition 5 implies that KN is the compositum of

such subfields. But K is the unique subfield of KN which is Galois over eQQðjÞ with

Galois group PSLð2;Z=pZÞ: Hence a subfield of KN which is Galois over eQQðjÞ with
Galois group PSLð2;Z=p2ZÞ necessarily contains K and so by Kummer theory has
the form KT for some Z½G�-submodule T of N containing pQ: The field KT is then of

the form MG for some normal subgroup G of SLð2;ZÞ contained in GðpÞ7:
Consequently KT coincides with the field KG of [5, Proposition 3, p. 260] and is
therefore contained in L [5, Proposition 5, p. 272]. In fact KTCL2; because any

continuous epimorphism PSLð2;LÞ-PSLð2;Z=p2ZÞ factors through the reduction
map PSLð2;LÞ-PSLð2;L2Þ: &

Remark. The constant subfield of the field K ¼ L1 is by definition eQQ; and for
the application to Theorem 1 nothing smaller is needed. However, if we let K 0 be the

subfield of K consisting of functions with Fourier coefficients in Qðe2pi=p2Þ then the

Kummer extension L2=L1 is simply the compositum with eQQ of a Kummer extension
of K 0 of the same degree. This follows from the explicit formula for the q-expansion
of ga [3, K4, p. 29], which shows that the functions fr (hence also the functions f m

with mAN) are elements of K 0:

2. Proof of Proposition 3

To prove that NCQ we must show that the sum
P

rAR nðrÞn0ðrÞ vanishes mod p

for all n; n0AN: Now modulo p the expression nðrÞn0ðrÞ is a homogeneous polynomial
of degree four over Fp; hence a linear combination of monomials of the form

ri
1r

j
2 with i; jX0 and i þ j ¼ 4: As p45 these conditions imply in particular that

i; jop � 1; whence the following lemma enables us to conclude that NCQ:

Lemma. Suppose that i and j are nonnegative integers, not both 0; satisfying i; jop �
1: Then X

rAR

ri
1r

j
2 ¼ 0;

with the understanding that 00 ¼ 1:
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Proof. At least one of i and j is strictly positive. Say i40; then

X
rAR

ri
1r

j
2 ¼

X
r1a0

ri
1

 ! X
r2AFp

r
j
2

0@ 1A:

Since 0oiop � 1 the map r1/ri
1 is a nontrivial character F

	
p -F	p ; and therefore the

first sum on the right is 0. &

It remains to see that the Fp½G�-submodule pM=pQ of N=pQ has a complement.

The following argument was suggested by the referee and is much more efficient than
the original proof.

Let o denote the Teichmüller character F	p -Z	
p ; and put

M ¼ Zp#ZM; N ¼ Zp#ZN and Q ¼ Zp#ZQ:

Given a rational integer k we define a Zp-linear endomorphism ek of M by

setting

ek ¼ 1

p � 1

X
xAF	p

o�kðxÞ/xS;

where /xS is the operator

ð/xSmÞðrÞ ¼ mðxrÞ ðmAMÞ:

Note that we are identifying elements of M with functions m : R-Zp satisfying

mð�rÞ ¼ mðrÞ: Similarly, N consists of all mAM such that %m is the function R-Fp

defined by a homogeneous polynomial of degree two, and Q consists of all m such
that

P
rAR %mðrÞ %nðrÞ ¼ 0 for nAN: The idempotents ek afford direct sum decom-

positions

M ¼
Mp�2

k¼0

Mk; N ¼
Mp�2

k¼0

Nk and Q ¼
Mp�2

k¼0

Qk

with Mk ¼ ekM; Nk ¼ ekN; and Qk ¼ ekQ; and since the action of G

commutes with the operators /xS we see that all of these direct summands are
Zp½G�-modules.

Proposition 7. Let k be an integer satisfying 0pkpp � 2:

(i) If ka2 then Nk ¼ pMk:
(ii) If kap � 3 then Mk ¼ Qk:
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Note that p � 3a2 as p45: Thus granting Proposition 7 we have

N=pQD
Mp�2

k¼0

Nk=pQkDN2=pM2"pMp�3=pQp�3DN=pM"pM=pQ:

Proposition 3 follows, for we have canonical identifications N=pQDN=pQ;
N=pMDN=pM; and pM=pQDpM=pQ:

Proof of Proposition 7. (i) If we think of the operators /xS as giving an action of F	p
on M then the submodules Mk; Nk; and Qk are the ok-isotypic components of M;
N; and Q; respectively. On the other hand, let V be the vector space over Fp

consisting of functions v : R-Fp satisfying vð�rÞ ¼ vðrÞ; and let Vk be the subspace

consisting of v such that vðxrÞ ¼ xkvðrÞ for xAF	p : Then V is the direct sum of the

subspaces Vk for 0pkpp � 2; and the natural isomorphism M=pMDV identifies
Mk=pMk with Vk: But this isomorphism also identifies N=pM with the space of
functions R-Fp defined by homogeneous binary polynomials of degree two over Fp;

and the latter space is contained in V2: We conclude that Nk=pMk ¼ f0g if ka2:

(ii) Given aAP1ðFpÞ let raAR be a point on the line represented by a: For mAMk

and nAN we haveX
rAR

%mðrÞ %nðrÞ ¼
X

aAP1ðFpÞ

X
xAF	p

%mðxraÞ %nðxraÞ ¼
X

aAP1ðFpÞ
%mðraÞ %nðraÞ

X
xAF	p

xkþ2:

If kap � 3 then k þ 2c0 mod p � 1 and consequently the inner sum is 0, whence
mAQk: &

3. Proof of Proposition 4

We must show that the extension class cAH2ðJ;BÞ determined by the
isomorphism S=BDJ is 0. Let P be a Sylow p-subgroup of J: The restriction–

corestriction sequence shows that the restriction map from H2ðJ;BÞ to H2ðP;BÞ is
injective, and consequently it suffices to see that the image of c under this map, say
cP; is 0.

Let P be the extension of P by B afforded by cP; and view P as a subgroup of S:
Then P is a Sylow p-subgroup and so contains the normal p-subgroup A:
Furthermore P=A is isomorphic to the image of P in G and hence to a Sylow
p-subgroup of G: Therefore, P=A is cyclic of order p: Choose pAP so that pB has

order p2 in P=B and maps to a generator of P=A (the latter condition actually
implies the former). Since A is a normal subgroup of P and a vector space over Fp we

may view p as a linear automorphism of A:We claim that there is a p-stable subspace
C of A such that ppAC and A ¼ B"C: The proof of this claim will complete the
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argument, for the claim implies that the subgroup generated by C and p is a
complement to B inside P; whence cP ¼ 0:

By hypothesis there is an Fp½G�-submodule B0 of A such that A ¼ B"B0:
Furthermore, both B and B0 realize the irreducible three-dimensional representation
of G; which sends an element of order p in G to a matrix with minimal polynomial

ðX � 1Þ3: It follows that B and B0 are free modules of rank 1 over the local ring

Fp½p�DFp½X �=ððX � 1Þ3Þ: Let b and b0 be generators of B and B0 respectively over

Fp½p�: Then ðp� 1Þ2b and ðp� 1Þ2b0 are a basis over Fp for the 1-eigenspace of p on

A; and consequently pp is a linear combination of ðp� 1Þ2b and ðp� 1Þ2b0: On the

other hand pp is not simply a multiple of ðp� 1Þ2b; for otherwise ppAB;

contradicting the fact that the image of p in P=B has order p2: It follows that

pp ¼ aðp� 1Þ2b þ a0ðp� 1Þ2b0

with a; a0AFp and a0a0: Now put c ¼ ab þ a0b0; and consider the classes of b and c in

A=ðp� 1ÞA: Since the classes of b and b0 constitute a basis for A=ðp� 1ÞA over Fp

the same is true of b and c (here we use the fact that a0a0). Hence b and c constitute
a basis for A over Fp½p� by Nakayama’s lemma. We conclude that the subspace C of

A spanned by c; ðp� 1Þc; and ðp� 1Þ2c ¼ pp has the required properties.

4. Proof of Theorem 1: reduction to a local statement

It is a standard remark, valid for any integral domain D; that the only subgroup of
SLð2;DÞ with projective image PSLð2;DÞ is SLð2;DÞ itself. Thus to prove that rA is
surjective it suffices to verify the surjectivity of the associated projective
representation PrA: The latter depends only on jðAÞ and can be described as

follows. Let r : GalðQðjÞ=eQQðjÞÞ-PSLð2;LÞ be the epimorphism with kernel

GalðQðjÞ=LÞ defined on p. 302 of [6]. Choose a place j : QðjÞ-Q,fNg extending

the place j ¼ jðAÞ of eQQðjÞ; and write D and I for the corresponding decomposition

and inertia subgroups of GalðQðjÞ=eQQðjÞÞ: Since the map r of [6] is unramified outside
f0; 1728;Ng and hence in particular at jðAÞ; the restriction of r to D factors through
D=I : Up to equivalence, PrA is simply the composition of the isomorphism

GalðQ=eQQÞDD=I induced by j and the homomorphism D=I-PSLð2;LÞ induced by
rjD: Thus to verify that PrA is surjective it suffices to see that the image of D in

GalðL=eQQðjÞÞ is all of GalðL=eQQðjÞÞ: In fact by the criterion of Boston [2, Proposition

2, p. 262] it suffices to verify that the image of D in GalðL2=eQQðjÞÞ is all of

GalðL2=eQQðjÞÞ: Equivalently, we want ½L2 : eQQðjÞ� ¼ ½c2 : eQQ�; where cn is the residue
class field of jjLn (i.e. cn ¼ jðLnÞ\fNg). Our assumption that %rA is surjective implies

that ½L1 : eQQðjÞ� ¼ ½c1 : eQQ�; so it suffices to prove that ½L2 : L1� ¼ ½c2 : c1�:
There is actually a further reduction. For simplicity, let k be an alternate notation

for c1 just as K is an alternate notation for L1: Also write c for the map
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Q=pQ-k	=k	p sending the coset represented by an element mAQ to the coset
represented by jðf mÞAk	: Then Theorem 2 and Kummer theory give ½L2 : L1� ¼
jN=pQj and ½c2 : c1�XjcðN=pQÞj: Hence Theorem 1 will follow if we prove that the

restriction of c to N=pQ is injective. But we have identified G with GalðK=eQQðjÞÞ and
hence via j with Galðk=eQQÞ; and under these identifications c becomes a G-map.
Furthermore the quotient modules in the filtration f0gkpM=pQkN=pQ both
afford the irreducible three-dimensional representation of G: Thus to see that c is
injective on N=pQ it suffices to see that f1gkcðpM=pQÞkcðN=pQÞ: Equivalently,
our task is to show that

kkkpMkkN ;

where for any Z½G�-submodule T of Q containing pQ we write kT to denote the
residue class field of jjKT : Of course the only point requiring proof is the strictness

of the above inclusions, in other words the fact that kakpMakN :

The first of these inequalities follows from our assumption that %rA is surjective.
Indeed, the surjectivity of %rA gives the surjectivity of the representation

GalðQ=eQQÞ-SLð2;ZpÞ afforded by the p-adic Tate module of A [8, Lemma 30,

p. IV-23] hence also the surjectivity of the associated projective representation and of

its reduction mod p2: As the extension of eQQ generated by the x-coordinates of the

points of order p2 on A coincides by Proposition 2 with kpM ; it follows that

GalðkpM=eQQÞDPSLð2;Z=p2ZÞ: In particular, kakpM :

To prove that kpMakN we work locally. After embedding Q in an algebraic

closure Qp of Qp we may form the composita k ¼ Qpk and kT ¼ QpkT ; and then it

suffices to prove that kpMakN : Thus we will be done if we show that for some mAN

we have jðf mÞ1=pekpM ; where jðf mÞ1=p denotes an arbitrary pth root of jðf mÞ: Now

we have already noted that kpM is the extension of eQQ generated by the x-coordinates

of the points of order p2 on A; and this statement remains true if A is replaced by any
other elliptic curve over Q with the same modular invariant. In fact an analogous

statement holds over the compositum eQQp ¼ Qp
eQQ: since vpðjðAÞÞo0 there is a unique

Tate curve B over Qp with jðBÞ ¼ jðAÞ; and kpM is the extension of eQQp generated by

the x-coordinates of the points of order p2 on B: In particular,

kpMCeQQpðB½pN�Þ;

where B½pN� ¼
S

nX1 B½pn� and B½pn� is the group of points on B of order dividing pn:

As eQQpðB½pN�Þ ¼ QpðB½pN�Þ the assertion that jðf mÞ1=pekpM for some mAN will

follow if we prove that jðf mÞ1=peQpðB½pn�Þ for some mAN and for all sufficiently

large n:
We have used the phrase ‘‘for all sufficiently large n’’ in preference to ‘‘for all

nX1’’ because the functions f m has until now been specified only up to multiplication
by a pth root of unity, so that for n ¼ 1 the validity of the statement
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jðf mÞ1=peQpðB½pn�Þ may appear to depend on the particular pth root of jðf mÞ
chosen. We can eliminate the ambiguity by making an explicit choice of fr for rAR:

Our understanding all along has been that fr ¼ g12
a with aAp�1Z2 and r ¼ pa mod

pZ2; but henceforth we demand that 0pa1; a2o1: With this requirement the
functions fr are uniquely determined, as is therefore f m; and the proof of Theorem 1
is reduced to the statement that there is a choice of mAN such that

jðf mÞ1=peQpðB½pn�Þ for nX1:

5. Proof of Theorem 1: the Tate curve

The preceding reduction holds for any place j : QðjÞ-Q,fNg extending the

place j ¼ jðAÞ of eQQðjÞ: However we now impose an additional condition. As usual,
let G1ðpÞ denote the subgroup of SLð2;ZÞ consisting of matrices which are strictly
upper triangular modulo p: Put

KG1ðpÞ ¼ K-MG1ðpÞ

and write O for the integral closure of eQQ½j� in KG1ðpÞ: Then O is the subring of KG1ðpÞ

consisting of functions which are holomorphic on the upper half-plane. We also put

qt ¼ e2pit; where t denotes an element of the upper half-plane. Every hAK is
represented for IðtÞ sufficiently large by a finite-tailed Laurent series in qt=p; and h

belongs to KG1ðpÞ if and only this series is actually a Laurent series in qt: Thus given

hAKG1ðpÞ we can write

hðtÞ ¼
X
nXn0

aðnÞqn
t ðIðtÞb0Þ

with n0AZ and aðnÞAeQQ for all n: In fact there exists some finite extension of Q insideeQQ which contains aðnÞ for all n: Furthermore, if hAO then there is a positive integer d

such that daðnÞ is integral for all n and hence lies in the ring of integers of some finite
extension of Q: Consequently if hAO and qApZp\f0g then the series

P
nXn0

aðnÞqn

converges in Qp: Henceforth we take q to be the unique element of pZp\f0g such that

jðqÞ ¼ jðBÞ ¼ jðAÞ; where jðqÞ ¼ q�1 þ 744þ 196884q þ? as usual (note that q

belongs to pZ	
p and not merely to pZp because vpðjðAÞÞ ¼ �1 by assumption). The

‘‘additional condition’’ on j alluded to at the beginning of the paragraph is that jjO
is required to be the map X

nXn0

aðnÞqn
t /

X
nXn0

aðnÞqn:

This map sends j to jðAÞ and extends uniquely to a place of the quotient field KG1ðpÞ

of O: For our purposes the extension from KG1ðpÞ to QðjÞ can be chosen arbitrarily.

Note that the residue class field of j is the subfield Q of Qp; as required.
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We now return to the task of showing that jðf mÞ1=peQpðB½pn�Þ for some mAN

and all nX1: The following proposition will be proved in Section 6.

Proposition 8. There exists mAN such that

jðf mÞ ¼ qmð1� uqÞð1� �q2Þ

with mAZ; uAZ	
p ; and �AZp: In particular, jðf mÞAQp:

Denoting f m simply by f ; and bearing in mind that vpðqÞ ¼ 1; we see that q�mjðf Þ
is a topological generator of the subgroup 1þ pZp of Z	

p : Hence the group Q	
p =Q

	pn

p

is generated by the cosets of q and jðf Þ: On the other hand, let Fn denote the
extension of Qp generated by the pnth roots of unity. An elementary cohomological

argument (using for example [7, Proposition 2.7, p. 60]) shows that the natural map

Q	
p =Q

	pn

p -F	
n =F	pn

n is injective, whence the subgroup of F	
n =F	pn

n generated by the

cosets of q and jðf Þ has the same order as Q	
p =Q

	pn

p ; namely p2n: It follows that

½Fnðq1=pn ;jðf Þ1=pnÞ : Fn� ¼ p2n:

Since ½Fnðq1=pn ;jðf Þ1=pnÞ : Fnðq1=pnÞ� and ½Fnðq1=pnÞ : Fn� are a priori ppn we deduce
that

½Fnðq1=pn ;jðf Þ1=pnÞ : Fnðq1=pnÞ� ¼ pn:

But the theory of the Tate curve shows that Fnðq1=pnÞ ¼ QpðB½pn�Þ; so we are saying

that jðf Þ1=pn has degree pn over QpðB½pn�Þ: Therefore jðf Þ1=p has degree p over

QpðB½pn�Þ; and in particular jðf Þ1=peQpðB½pn�Þ:

6. Proof of Proposition 8

As in [3], if c is a rational number then qc
t will mean e2pict: Furthermore, given an

element rAR (temporarily regarded as fixed) we put z ¼ a1tþ a2 and qz ¼ e2piz;

where a ¼ ða1; a2ÞAp�1Z2 is characterized by the properties r ¼ pa mod pZ2 and
0pa1; a2o1: With these conventions we have

frðtÞ ¼ q
6a2

1
�6a1þ1

t e12pia2ða1�1Þð1� qzÞ12
Y
nX1

ð1� qn
tqzÞ12ð1� qn

t=qzÞ12

[3, Formula K4, p. 29]. Let z ¼ e2pi=p and write al ¼ bl=p ðl ¼ 1; 2Þ; so that bl is the
integer which coincides modulo p with rl and satisfies 0pblpp � 1: Setting

f I
r ¼ q

6a2
1
�6a1þ1

t e12pib2ða1�1Þ=p ð15Þ
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and

f II
r ¼ ð1� qa1

t zr2Þ12
Y
nX1

ð1� qnþa1
t zr2Þ12ð1� qn�a1

t z�r2Þ12; ð16Þ

we have fr ¼ f I
r f II

r :
Given xAFp; let oðxÞ be the unique even integer defined by the requirements

joðxÞjpp � 1 and x ¼ oðxÞ mod p: (Thus in contrast to our notation in Section 2, o
is no longer the Teichmüller character but rather a Z-valued approximation to the
Teichmüller character.) Since oð�xÞ ¼ �oðxÞ; the function m : R-Z given by

mðrÞ ¼ oðr1Þ2

is even and therefore belongs to M: In fact since m reduces mod p to the function

r/r21 we see that mAN: Put f ¼ f m: Since oð0Þ ¼ 0 we can write

f ¼
Y
rAR

f oðr1Þ2
r ¼

Y
r1a0

Y
r2AFp

fr

0@ 1Aoðr1Þ2

; ð17Þ

and if we define f I and f II by the analogous iterated product with fr replaced by f I
r

and f II
r respectively then f ¼ f If II: To prove Proposition 8 it will suffice to see that f I

is an integral power of qt and that f II is a prime-to-p power of ð1� qtÞ times an
infinite product of factors of the form ð1� qn

tÞ with integers nX2: Indeed these

assertions imply first of all that fAKG1ðpÞ; whence fAU-KG1ðpÞ and in particular
fAO: Thus we can evaluate jðf Þ by formally replacing qt with q in the qt-expansion
of f : The result is an integral power of q times a prime-to-p power of ð1� qÞ times an
infinite product of factors of the form ð1� qnÞ with integers nX2: Proposition 8
follows.

It remains to see that f I and f II do have the required form. First consider f I: For
r1a0 a routine calculation using (15) givesY

r2AFp

f I
r ¼ q

pð6a2
1
�6a1þ1Þ

t z�3r1 :

Hence the definition of f I gives

f I ¼ qS1
t zS2

with S1 ¼ p
P

r1a0oðr1Þ
2ð6a2

1 � 6a1 þ 1Þ and S2 ¼ �3
P

r1a0r31: The latter sum is 0

because x/x3 is a nontrivial character F	p -F	p : As for S1; all we have to verify is its

integrality, and since pð�6a1 þ 1Þ is integral as it stands we need only check thatP
r1a0 r41 ¼ 0: But p45; so again we have the sum of the values of a nontrivial

character of F	p : Thus f I has the required form.
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Next we turn to f II: Using (16) one readily computes that if r1a0 thenY
r2AFp

f II
r ¼ ð1� qb1

t Þ12
Y
nX1

ð1� qpnþb1
t Þ12ð1� qpn�b1

t Þ12: ð18Þ

Let us write ½?� to denote a product of factors of the form ð1� qm
t Þ with mX2: If

r1 ¼ 1 (or what amounts to the same, b1 ¼ 1) or if r1 ¼ �1 (i.e. b1 ¼ p � 1) then the

right-hand side of (18) has the form ð1� qtÞ12½?�: In all other cases the right-hand

side of (18) has the form ½?�: Thus the definition of f II gives

f II ¼ ð1� qtÞ12ðoð1Þ
2þoð�1Þ2Þ½?�:

But oð71Þ ¼ 8ðp � 1Þ; so we find that f II ¼ ð1� qtÞ24ðp�1Þ2 ½?�; which is of the
required form.
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