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Allergic contact dermatitis and contact hypersensitivity (CHS) are characterized by allergen-specific activation
of CD8þ and CD4þ T cells and the production of cytokines resulting in an inflammatory response and tissue
damage. We show here that the immunosuppressive compound leflunomide (N-[4-trifluoro-methylphenyl]-5-
methylisoxazol-4 carboxamide, HWA 486) (LF) inhibited the contact allergic response induced in mice by
epicutaneous application of the haptens dinitrofluorobenzene (DNFB) and oxazolone. The extent of ear
swelling remained significantly reduced following repeated challenge with DNFB for up to 18 weeks. LF and
DNFB had to be applied simultaneously for inhibition to occur. The loss of CHS responses was shown to be
antigen-specific. Adoptive transfer of leukocytes from LF-treated mice into naı̈ve mice resulted in a loss of CHS
responsiveness. Transfer of both CD4þ and CD8þ cells was required for maximal loss of CHS responses, with
CD8þ cells playing a major role. Significantly enhanced levels of IL-10 mRNA were detected in CD8þ T cells, but
not in CD4þ T cells, following LF treatment of mice. LF also suppressed CHS responses in mice previously
sensitized and challenged with hapten, when administered together with the hapten. Our data suggest that LF
induces a long-lived tolerance in mice by inducing CD8þ and CD4þ regulatory T cells.
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INTRODUCTION
Leflunomide (N-[4-trifluoro-methylphenyl]-5-methylisoxa-
zol-4 carboxamide, HWA 486) (LF) is an immunoregulatory
and anti-inflammatory compound, which is successfully used
in the treatment of rheumatoid arthritis (Strand et al., 1999).
After administration, LF is chemically converted to the
pharmacologically active metabolite A77 1726 (Figure 1).
The mechanisms of action of A77 1726 in vivo remain to be
clarified. In vitro, however, A77 1726 inhibits dihydro-
orotate dehydrogenase, an enzyme involved in the de novo
synthesis of pyrimidines (Cherwinski et al., 1995). As a conse-
quence, proliferation of activated T and B cells, which depends
on de novo synthesis of purine and pyrimidine nucleotides, is
inhibited (Herrmann et al., 2000). As a further consequence,
A77 1726 inhibits tumor necrosis factor-a-induced

cellular responses by blocking the activation of
NF-kB (Manna et al., 2000; Imose et al., 2004). Both effects
are reversed by the addition of uridine or cytidine (Cao et al.,
1995; Manna et al., 2000). Besides inhibition of dehydro-
orotate dehydrogenase activity, A77 1726 directly inhibits
the phosphorylation of Scr kinases p56lck and p59fyn (Xu
et al., 1995, 1996b) involved in T-cell receptor signal
transduction, and of Janus kinase 1 and Janus kinase 3
(Elder et al., 1997; Siemasko et al., 1998), which play a role
in IL-2 and IL-4 receptor signalling. However, as high
concentrations of LF had to be used to reveal these activities
in vitro, their relevance in vivo is unclear at present.
Furthermore, an inhibitory effect on the activity of cyclo-
oxygenase-2 was observed (Hamilton et al., 1999). Reduced
expression levels of the adhesion molecule intercellular
adhesion molecule-1 by macrophages as well as decreased
production of the cytokines tumor necrosis factor-a and IL-1
by macrophages and Kupffer cells after treatment with
A77 1726 in vitro were reported (Cutolo et al., 2003, Yao
et al., 2004).

Beside the potency of LF in the treatment of rheumatoid
arthritis, this compound is also effective in inhibiting
inflammatory responses in animal models of autoimmune
diseases (Glant et al., 1994; Korn et al., 2004), transplantation
(Williams et al., 1994), and type I allergy (Jarman et al.,
1999). Experimental models of skin inflammation have
shown that LF is effective in reducing edema formation,
neutrophil infiltration, and the release of inflammatory medi-
ators such as leukotriene B4 (Kurtz et al., 1995). LF might
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therefore be effective in the treatment of T-cell-mediated skin
diseases such as atopic dermatitis and psoriasis (Schmitt
et al., 2004).

Allergic contact dermatitis and contact hypersensitivity
(CHS) are triggered by low molecular weight molecules or
metal ions, which on penetrating the skin bind to both
extracellular as well as intracellular proteins or even major
histocompatibility complex-bound peptides expressed on the
surface of antigen-presenting cells. These complexes are
processed by Langerhans cells, which are the principle
population of antigen-presenting cells residing in the
epidermal layer of the skin, and are transported to regional
lymph nodes. During this process, Langerhans cells undergo
maturation, and once in the paracortical region of a lymph
node, they present hapten-modified peptides in association
with major histocompatibility complex class I and class II
molecules to hapten-specific CD8þ and CD4þ T cells,
respectively, resulting in their activation (sensitization phase).
On subsequent re-exposure to the antigenic stimulus
(challenge phase), memory effector T cells are recruited to
peripheral tissues, where they interact with hapten-presenting
cells to release lymphokines, thereby exerting cytotoxicity.
This results in a localized inflammatory response and ensuing
tissue damage. Major histocompatibility complex class I-
restricted CD8þ T cells are the principle effector cells
involved in CHS responses to many types of haptens, with
IL-4- and IL-10-producing CD4þ T cells exerting a regulatory
function (Bour et al., 1995; Xu et al., 1996a).

In this study, we have investigated the ability of LF to
inhibit CHS responses induced in mice following the
epicutaneous application of the hapten dinitrofluorobenzene
(DNFB). Here, we show that LF abrogates the CHS response
antigen specifically. Inhibition of the CHS response in mice
administered LF was maintained over time, with the extent of
ear swelling remaining significantly reduced on repeated re-
challenge with DNFB, despite the absence of further LF treat-
ment. The loss of CHS responsiveness to DNFB in LF-treated
mice could be adoptively transferred to naı̈ve recipients.
Transfer of both CD4þ and CD8þ cells was required for
maximal loss of DNFB-induced CHS responses in the
recipients, with CD8þ T cells expressing elevated levels of
IL-10 mRNA playing a dominant role. Suppression of CHS
responses following treatment with LF in the presence of
hapten also occurred in previously hapten-sensitized mice.

RESULTS
LF inhibits the induction of a CHS response

Mice were orally administered LF dissolved in 1% carboxy-
methyl–cellulose–sodium solution (CMC) at a predetermined

optimal dose of 40 mg/kg every 24 hours for 6 days (day –1 to
day 4). Control mice received 1% CMC orally or were left
untreated. Mice were sensitized by topical application of the
contact allergens DNFB or oxazolone (OXA) to the shaved
abdomen on days 0 and 1 (DNFB) or day 1 (OXA). Three days
later, they were challenged by applying the allergen on the
right ear and the vehicle on the left ear. Ear swelling was
measured every 24 hours on subsequent days. Oral admin-
istration of LF at the time of sensitization significantly
inhibited (Po0.05) the induction of a CHS response to DNFB
(Figure 2a) and OXA (Figure 2b).

LF treatment provides long-lasting protection against the
induction of CHS responses to DNFB

In order to determine whether the inhibitory effect of LF on
CHS responses could be maintained in the absence of further
treatment, groups of mice treated with LF in CMC or with
CMC alone were sensitized and challenged with DNFB
using the standard protocol. Efficient abrogation of the ear
swelling response by LF was verified by ear swelling
measurements (Figure 3a). On days 15 and 16, mice were
again sensitized with DNFB, but this time in the absence of
LF or CMC. Following challenge 3 days later, ear swelling
responses were not detectable in the group of mice formerly
treated with LF (Figure 3b). This finding suggests that during
the second sensitization phase performed in the absence
of LF induction of T effector cells could not take place,
pointing towards the generation of regulatory T cells during
the first round of sensitization with DNFB in the presence
of LF.

In another type of experiment groups of mice treated with
LF in CMC, with CMC alone or left untreated as a reference,
were sensitized and then repeatedly challenged with DNFB
on days 4, 18, 49, and 123 after the start of sensitization.
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Figure 1. Structure of the prodrug LF and of its active metabolite A77 1726.
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Figure 2. LF, administered orally, inhibits CHS responses to DNFB and OXA.

Mice were orally administered LF in CMC for 6 days starting day �1 before

sensitization. Control mice received CMC alone or, as a reference, were left

untreated. (a) Mice (n¼ 3) were sensitized with 25 ml of 0.5% DNFB on the

shaved abdomen on day 0 and 1, and were challenged with 10ml of 0.2%

DNFB on each side of the right ear on day 4. (b) Mice (n¼3) were sensitized

with 25 ml of 3% OXA on the shaved abdomen on day 1 and challenged with

10ml of 0.15% OXA on each side of the right ear on day 4. In all experiments,

the left ear was treated with the vehicle for control. The increase in ear

thickness was measured at the indicated time points following challenge.

Data are presented as mean swelling values7SEM and are representative of

12 independent experiments with three to eight mice per group for (a) and

three independent experiments with three to six mice per group for (b).

Asterisks denote statistically significant differences (Po0.05) as compared

with mice receiving CMC.
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Although the inhibitory effect of LF on CHS responses was
most pronounced following the first localized challenge of
mice with DNFB, inflammatory responses, as characterized
by tissue swelling, were still significantly inhibited (Po0.05)
on subsequent challenges at later time points (inhibition at
the time point of maximal swelling, as compared with CMC-
treated mice, for challenge on day 4: 84.2%; day 18: 63.7%;
day 49: 63.2%; and day 123: 48.9%) (Figure 4). Thus, LF,
when administered at the time of sensitization, can confer
long-lasting protection against the induction of inflammatory
responses induced by contact allergens.

LF confers protection against CHS responses to DNFB, when
administered during sensitization and before subsequent
challenge

We next analyzed the optimal time frame for the application
of LF. Groups of mice were treated with LF for 6 consecutive
days, whereby the groups differed with regard to the time
point of first administration of LF as outlined in the schedule
of Figure 5. The extent to which LF abrogated CHS responses,
induced on challenge with DNFB, was most marked when
administration started one day before sensitization (Figure 5).
Nevertheless, while the suppressive capacity of LF decreased
when administration was initiated at increasing time intervals
post-sensitization, the levels of inhibition were still marked,
provided that administration of LF to mice started before
challenge (inhibition, as compared with untreated mice, on
day 2 after challenge amounted for group 1 to 91.8%; for
group 2 to 83.6%; for group 3 to 80.0%; for group 4 to
72.7%; for group 5 to 56.4%; for group 6 to 30.9%). The
treatment of mice with LF one day after challenge resulted in
an enhancement of the CHS response. Mice given LF for 6
days starting on day –12, that is, before sensitization with
DNFB, developed normal CHS responses (data not shown).
These data indicate that LF and DNFB had to be applied
simultaneously for effective inhibition to occur.

The inhibitory effect of LF is antigen-specific

To determine whether the inhibitory effect of LF on CHS
responses was antigen-specific, re-challenge experiments
were performed. Briefly, groups of mice treated with LF or
CMC as a control were sensitized and challenged with
DNFB, using the standard protocol. The ear swelling
response was efficiently inhibited by LF as shown in Figure
6a. On day 13, mice were sensitized with OXA on the back
skin. Five days later, challenge was performed by applying
DNFB to the right ear and OXA to the left ear. Measurements
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Figure 3. LF inhibits CHS responses induced by a second round of

sensitization. (a) Groups of mice (n¼5) were orally administered LF in CMC

or CMC alone and were sensitized and challenged with DNFB as outlined in

the legend to Figure 1a. (b) On days 15 and 16, mice were again sensitized

with DNFB and challenged with this hapten 3 days later. The extent of ear

swelling at the indicated time points following challenge is presented as mean

swelling values7SEM. Data are representative of two independent experi-

ments with five mice per group. Asterisks denote statistically significant

differences (Po0.05) as compared with mice receiving CMC.
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Figure 4. LF confers long-lasting protection against the induction of CHS

responses to DNFB. Groups of mice (n¼ 6) orally administered LF in CMC,

CMC alone, or left untreated were sensitized with DNFB and then challenged

as outlined in the legend to Figure 1a. Mice were rechallenged repeatedly at

increasing intervals. LF significantly abrogated the inflammatory response as

assessed by the extent of ear swelling, (a) during the initial challenge 3 days

after sensitization, as well as during subsequent challenges on (b) day 18,

(c) day 49, and (d) day 123. Data represent mean swelling values7SEM and

are representative of two independent experiments with six to eight mice per

group. Asterisks denote statistically significant differences (Po0.05) as

compared with mice receiving CMC.
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Figure 5. The inhibitory effect of LF on induction of CHS responses is

optimal when the compound is applied during the sensitization phase.

Groups of mice (n¼3) were orally administered LF for 6 days. In each case,

the starting point of administration was postponed by 1 day, as indicated.

Control groups received CMC alone, starting on day �1, or were left

untreated as a reference. All groups were sensitized and challenged with

DNFB as outlined in the legend to Figure 1a. The extent of ear swelling is

presented as mean7SEM. Statistically significant differences (Po0.05) were

found between values obtained with untreated mice and with mice of groups

1–5 throughout challenge, with mice of group 6 starting day 3 of challenge,

and with mice of group 7 on days 1 and 4 of challenge.
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of ear thickness were performed immediately before chal-
lenge and on the indicated time points after challenge, and
were used to calculate ear swelling. Whereas the extent of ear
swelling remained substantially reduced (Po0.05) in the LF-
treated group on re-challenge with DNFB, the response of the
group challenged with OXA was not efficiently inhibited,
when compared with the group receiving CMC (Figure 6b)
and with a control group solely sensitized and challenged
with OXA (Figure 6c). This finding suggests that the observed
inhibitory effect of LF on secondary challenge was dependent
on prior administration at the time of antigen-specific priming
of effector T-cell responses.

LF-induced suppression of CHS can be adoptively transferred to
naı̈ve recipients
To determine whether the inhibitory effect of LF on the
induction of CHS responses was owing to the induction of
tolerance, we performed adoptive transfer experiments, in
which leukocytes isolated from secondary lymphoid tissues
of LF-treated mice were transferred to naı̈ve recipient mice.
Mice exposed to LF or CMC were sensitized and challenged
with DNFB. The ear swelling response was completely
inhibited by LF treatment (data not shown). Seven days after
the start of sensitization, spleen and regional lymph node
cells from both groups of mice were obtained and transferred
intravenously into naı̈ve syngeneic recipients. The recipient
mice were sensitized with DNFB 24 and 48 hours after cell

transfer and then challenged after another 3 days. The extent
of tissue swelling observed after challenge with DNFB was
significantly reduced (Po0.05) in recipient mice, which had
received cells from LF-treated donors as compared with
recipients that had received cells from CMC-treated mice, or
the control group in which no cells were adoptively
transferred (Figure 7a).

In a further step, naı̈ve recipient mice were adoptively
transferred with whole mononuclear cell populations or with
CD4þ and CD8þ cell-depleted populations, respectively,
obtained from secondary lymphoid organs of mice, treated
with LF at the time of sensitization with DNFB. Depletion was
performed by immunomagnetic separation using standard
procedures and the efficiency of depletion was verified by
flow cytometric analysis. In the control group of mice that did
not receive cells by adoptive transfer, but were sensitized and
challenged with DNFB using the standard protocol, tissue
swelling reached a plateau at between 24 and 96 hours
following challenge (Figure 7b). Mice receiving unseparated
cells from LF-treated mice exhibited a significant inhibition
(Po0.05) in the inflammatory response induced by DNFB
challenge, as determined by the extent of tissue swelling,
which was maintained throughout the challenge period. Both
groups of recipient mice that had received CD4þ cell-
depleted or CD8þ cell-depleted leukocyte populations from
LF-treated mice exhibited comparable levels of suppression
of tissue swelling at 24 hours following challenge. In mice
receiving CD8þ cell-depleted cells, there was a delayed
increase in the swelling response, which first reached levels
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Figure 6. Antigen specificity of the inhibitory effect of LF. Groups of mice

(n¼6) were orally administered LF or CMC for 6 days starting day �1.

(a) Mice were sensitized and challenged with DNFB as outlined in the legend

to Figure 1a, and ear swelling was measured. On day 13, mice were

sensitized with 25 ml of 3% OXA on the shaved back. Five days later, mice

were rechallenged with 10 ml of 0.2% DNFB on both sides of the right ear and

with 10ml of 0.15% OXA on both sides of the left ear. The increase in ear

thickness is shown in (b). (c) Further control mice were solely sensitized

and challenged with OXA or were only ear challenged with OXA without

prior sensitization. Data represent mean swelling values7SEM and are

representative of two experiments with six mice per group. Asterisks

denote statistically significant differences (Po0.05) as compared

(a, b) with mice treated with CMC or (c) with sensitized mice.
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Figure 7. Suppression of CHS responses upon adoptive transfer of leukocytes

obtained from secondary lymphoid organs of LF-treated mice. Mice were

orally administered LF or, as a control, CMC alone on days �1 to 4, and were

sensitized and challenged with DNFB as described in the legend to Figure 1a.

On day 7, spleen and draining (cervical, axillary, and inguinal) lymph node

cells were prepared. (a and b) Unseparated cells or (b) cell suspensions

depleted of CD4þ or CD8þ cells were transferred intravenously into

syngeneic recipients (108 cells per recipient; n¼ 6 per group). After 24 and

48 hours, recipient mice were sensitized and were then challenged with

DNFB following the standard protocol. The left ear was treated with vehicle.

Two groups of control mice, which did not receive donor cells, were set up in

parallel. Group 1 mice were sensitized and challenged with DNFB. Group 2

mice were solely challenged with DNFB without prior sensitization. Data

represent mean increases in ear swelling7SEM in (a); for the sake of clarity,

error bars were omitted in (b). Asterisks denote statistically significant

differences (Po0.05) of mice receiving cells from LF-treated donors as

compared with mice receiving cells from CMC-treated donors. Data are

representative of three and two independent experiments with five to six mice

per group for (a) and (b), respectively.
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comparable to those observed in mice, which had received
cells from CMC-treated donors, at 72 hours following
challenge. In contrast, recipient mice that had received
CD4þ cell-depleted leukocyte populations exhibited a
sustained inhibition of the inflammatory response. The
marked reduction in swelling observed at 24 hours was
maintained for the duration of the challenge period. These
data suggest that although both CD4þ and CD8þ cells
play a role in suppression of the CHS response to antigen,
CD8þ cells are predominantly responsible for the observed
immunoregulation.

CD8þ suppressor T cells were reported to express CD25
on the cell surface and to lack CD28 (Liu et al., 1998). CD4þ

regulatory T cells (Treg), on the other hand, are characterized
by constitutive expression of CD25, cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4), and glucocorticoid-induced
tumor necrosis factor receptor (GITR) (Fehervari and
Sakaguchi, 2004). The T cells to be transferred were thus
analyzed for the expression of these cell surface markers
using flow cytometric analysis. We did not observe an
increase either in CD4þCD25þCTLA-4þGITRþ cells or in
CD8þCD25þCD28� cells (data not shown).

Foxp3 is a transcription factor characteristically expressed
by naturally occurring CD4þ Treg as well as Treg induced on
contact with tumor growth factor-b (Chen et al., 2003;
Fehervari and Sakaguchi, 2004). The transcription factor
repressor of GATA (ROG) and the regulator of G-protein
signalling (RGS1) have also been reported to be specifically
expressed in induced Treg (Cobbold et al., 2003). Induction
of CD5 expression on activated T cells by steady-state
dendritic cells was reported to result in antigen-specific T-cell
unresponsiveness (Hawiger et al., 2004). Lymphocyte activa-
tion gene-3 (LAG-3) is expressed on the surface of induced
Treg and contributes to their suppressive activity (Huang
et al., 2004). Moreover, induced Treg are characterized by
secretion of high amounts of IL-10 (Tr1) and tumor growth
factor–b (T-helper type 3 cells (Th3)), respectively (Levings
et al., 2002). Using real-time reverse transcriptase-PCR, we
quantified the level of the respective mRNA in purified CD4þ

and CD8þ T cells within the draining lymph node and spleen
cell populations transferring suppression. Significantly
(Po0.05) enhanced levels of IL-10 mRNA were detected
in CD8þ T cells, but not in CD4þ T cells following the
treatment of mice with LF (Figure 8). The mRNA levels
of Foxp3, ROG, RGS1, tumor growth factor–b1, CD5, and
LAG-3 were not augmented.

LF abrogates CHS responses when administered to previously
sensitized mice

The question arose whether LF would also be effective in
inhibiting already existing CHS responses and might thus be
of use for the treatment of allergic contact dermatitis. Mice
were sensitized with OXA once on the abdomen in the
absence of LF and were ear challenged 5 days later, resulting
in an efficient ear swelling response (Figure 9a). On day 19,
half the mice were again sensitized and challenged with
OXA, but this time in the presence of LF, or CMC for control.
As depicted in Figure 9b, the extent of ear swelling was

substantially reduced (Po0.05) in the LF-treated group as
compared with the CMC-treated group, pointing to thera-
peutic potential of LF in allergic contact dermatitis.

DISCUSSION
In this study, we used a mouse model of allergic contact
dermatitis to evaluate whether the immunomodulatory
compound LF inhibited a contact allergic response induced
by epicutaneous application of the haptens DNFB and OXA.
We demonstrate that the inhibition of CHS responses by LF is
antigen-specific and long-lasting. This compound induced
regulatory T cells that could transfer hapten-specific toler-
ance to naı̈ve recipient mice. Inhibition was also observed,
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indicate the relative changes in mRNA expression in the CD4þ and CD8þ

T-cell populations of LF-treated versus CMC-treated mice. Data represent

the mean7SEM obtained from two separate experiments with three mice

per group performed in duplicate.
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Figure 9. Inhibition of the CHS response by LF administered to hapten-

presensitized mice. Mice (n¼ 20) were sensitized with 25 ml of 3% OXA on

the shaved abdomen on day 0 and challenged with 10 ml of 0.15% OXA on

each side of the right ear on day 5. The left ear was treated with the vehicle for

control. The mean increase in ear thickness7SEM is depicted in (a). Half the

mice were orally administered LF in CMC for 6 days starting day 18 of

sensitization, whereas the other half received CMC alone. On day 19, both

groups of mice were again sensitized with OXA on the back and challenged 5

days later. Mean values of ear swelling7SEM are shown in (b). Data are

compiled from two independent experiments with eight and 12 mice for

(a) and four and six mice per group for (b). Asterisks denote statistically

significant differences (Po0.05) as compared with mice treated with CMC.
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when LF was administered together with the hapten to
hapten-presensitized mice.

The observed suppression of CHS responses in LF-treated
mice suggested that expansion of contact allergen-specific
effector T cells was inhibited by LF and/or that T cells with
counter-regulatory potential had developed. LF may inhibit
activation of hapten-specific effector T cells owing to its
effect on de novo pyrimidine biosynthesis. The active
metabolite of LF, A77 1726, was shown to bind with high
affinity to dehydro-orotate dehydrogenase, the rate-limiting
enzyme in the de novo biosynthetic pathway of pyrimidines,
inhibiting its enzymatic activity and thus causing a loss of de
novo pyrimidine synthesis (Williamson et al., 1995). During
T-cell activation, the pyrimidine pool expands about eight-
fold, and the expression of T-cell effector functions is
dependent on de novo biosynthesis of pyrimidines (Fairbanks
et al., 1995). Therefore, as a result of LF action, proliferation
of T cells is suppressed (Ruckemann et al., 1998; Herrmann
et al., 2000). Another consequence of the inhibitory activity
of LF on dehydro-orotate dehydrogenase is inhibition of NF-
kB-associated kinases (Manna et al., 2000). Several cytokine
genes, for example, the IFN-g gene, harbor NF-kB binding
site(s) in their promoter region (Sica et al., 1997). The
production of IFN-g by myelin-basic protein-specific T-cell
lines stimulated with their cognate antigen in vitro was
reported to be inhibited by LF (Korn et al. 2004). In the CHS
model used here, we observed reduced production of IFN-g
in draining lymph node cells from LF-treated versus CMC-
treated mice isolated 24 hours after challenge of CHS and
stimulated in vitro with DNFB (data not shown). This finding
is in line with the notion that expansion of hapten-specific
T cells was inhibited by the treatment of mice with LF.

The loss of CHS responsiveness was long-lasting and could
be transferred to naive recipient mice by regional lymph node
and spleen cells from mice previously treated with LF.
Transfer of both CD4þ and CD8þ cells was required for
maximal inhibition of allergic responses in the recipient
mice, with CD8þ cells playing a major role. These findings
indicate that cells with counter-regulatory activity were
induced as a consequence of LF treatment of mice. The most
likely explanation would be that CD4þ and CD8þ T
lymphocytes were responsible for transferring tolerance.
Th2 cells have previously been shown to regulate CHS
responses to DNFB (Xu et al., 1996a). LF was reported to
promote Th2 differentiation from uncommitted precursors
(Dimitrova et al., 2002). Increased levels of antigen-specific
IgG1 antibodies were observed in mice immunized with
keyhole limpet hemocyanin in the presence of LF, which
correlated with an increase in IL-4 and a decrease in IFN-g
production by splenocytes obtained from these mice on
restimulation with keyhole limpet hemocyanin in vitro.
Contrary to this report, we had previously shown that LF
suppressed ovalbumin-specific IgG1 and IgE as well as IgG2a
antibody responses, in a murine model of type I allergy
(Jarman et al., 1999). Similarly, ovalbumin-stimulated spleno-
cytes obtained from mice sensitized with ovalbumin
adsorbed to aluminum hydroxide, in the presence of LF,
produced reduced levels of the Th2 cytokines IL-4 and IL-5 as

compared with splenocytes from CMC-treated mice. In the
experiments outlined here, we could not detect elevated
levels of IL-4 or IL-5 in supernatants obtained from DNFB-
stimulated spleen and lymph node cells isolated from
LF-treated mice, 24 hours after challenge with DNFB (data
not shown).

Treg have been shown to exert suppressive activity for
CD4þ Th1 and Th2 as well as CD8þ T-cell responses in
several experimental systems and disease states. Treg
expressing CD4þ and CD8þ phenotypes have been de-
scribed (Fehervari and Sakaguchi, 2004; Faunce et al., 2004).
Naturally occurring CD4þCD25þ Treg seem to suppress
T-cell responses by cell-to-cell contact, whereas the inhibitory
activity of induced Treg is dependent on the secretion of
soluble factors like IL-10 (Tr1) or tumor growth factor–b
(Th3). Induced CD4þ Treg were shown to express high levels
of CD25, CTLA-4, and GITR as well as the transcription
factors Foxp3 and ROG, and the regulator of G-protein
signalling, RGS1 (Cobbold et al., 2003; Fehervari and
Sakaguchi, 2004). We did not find an enhanced level of
CD4þCD25þ cells co-expressing CTLA-4 or GITR in spleen
and lymph node cell populations obtained from LF-treated
and DNFB-challenged mice by cytofluorometry (data not
shown). Nor could we detect by real-time PCR elevated
levels of mRNA for Foxp3, ROG, RGS1, or for IL-10 and
tumor growth factor–b1 in the CD4þ T-cell population
isolated from the leukocyte preparation shown to transfer
tolerance. We did not observe increased expression of the
cell surface markers CD5, reported to be associated with
T-cell unresponsiveness (Hawiger et al., 2004), or LAG-3,
which contributes to the suppressor activity of induced Treg
(Huang et al., 2004). These findings, however, do not exclude
that a minor population of DNFB-specific CD4þ Treg was
induced by LF, which was not detectable owing to the
presence of a dominant population of natural Treg.

CD8þ Tregs have not been as intensely studied as their
CD4þ counterparts. The most extensively characterized
population of induced CD8þ Treg are the human
CD8þCD28� suppressor T cells, which express Foxp3 and
induce a cell-to-cell contact-dependent tolerogenic pheno-
type in antigen-presenting cells owing to downregulation of
costimulatory molecules and an upregulation of the inhibi-
tory receptors ILT3 and ILT4 (Manavalan et al., 2004). A
second distinct population of CD8þCD28� suppressor
T cells has been shown to exert inhibitory activity on
CD4þ and CD8þ T cells in an antigen-nonspecific manner,
through the release of soluble factors (Filaci et al., 2004). We
did not observe an increase in the frequency of CD8þCD28�

cells, as determined by cytofluorometric analysis, in the
leukocyte population capable of transferring suppression
(data not shown). Nor did we detect an increment in Foxp3
transcripts in CD8þ T cells isolated from this population.
Again, a minor population of DNFB-specific CD8þ Treg with
these characteristics might have escaped from detection. A
separate study described CD8þ Treg induced on stimulation
with allogeneic plasmacytoid dendritic cell, which inhibited
CD4þ as well as CD8þ T cells via IL-10 secretion (Gilliet
and Liu, 2002). In our study, CD8þ T cells from LF- and

www.jidonline.org 1529

B Weigmann et al.
Induction of Treg by Leflunomide



DNFB-treated mice similarly expressed significantly augmen-
ted levels of IL-10 mRNA. Therefore, it is conceivable that
these cells represent the Treg population. In accordance with
these findings, we demonstrated that spleen and draining
lymph node cells from LF- and DNFB-treated mice depleted
of CD4þ cells efficiently inhibited CHS responses to DNFB
after transfer into naı̈ve mice, whereas following depletion of
CD8þ cells, the resulting leukocytes exerted less efficient
suppressive capacity. Nevertheless, both CD8þ and CD4þ

cells were required for optimal suppression, as transfer of the
non-depleted leukocyte population was required for maximal
suppression.

The mechanisms leading to induction of CD8þ T
suppressor cells are not known. As an explanation, one
may invoke a different sensitivity of effector T cells and Treg
towards LF. It was shown recently that LF was extruded from
cells by the action of multidrug-resistant pumps (van der
Heijden et al., 2004). Different T-cell subsets, namely resting
Th1 and Th2 cells, were reported to differ with respect to the
activity of these pumps (Lohoff et al., 1998). The possibility
therefore exists that Treg are superior to effector T cells in
their capacity to extrude LF, rendering T effector cells more
prone to the detrimental effects of the compound.

Treg cells are known to be induced by stimulation with
their cognate antigen presented by dendritic cells matured in
the presence of exogenous IL-10 Steinbrink et al., 1997;
Müller et al., 2002) or secreting endogenous IL-10 (Wakkach
et al., 2003). In a recent report, LF was demonstrated to
enhance production of IL-10 in LPS-stimulated microglia
(Korn et al., 2004). It remains to be tested whether LF has a
similar effect on dendritic cell function.

The inhibitory effect of LF on CHS responses was even
observed when mice presensitized with hapten were treated
with LF in the presence of the hapten. This finding may
suggest that Treg induced by LF treatment efficiently inhibited
pre-existing effector T cells of CHS responses. Further studies
are required to verify that LF-induced Treg indeed are
responsible for suppression of effector T cells in this setting.
The capacity of Treg to efficiently suppress CHS effector
T cells was recently demonstrated using Treg induced
by epicutaneous application of haptens to UV-exposed
skin (Schwarz et al., 2004). These Treg efficiently inhibited
the elicitation of CHS, when injected into the ears of
sensitized mice, but were not effective, when injected
intravenously. On the other hand, intravenously injected
Treg were capable of inhibiting the induction of CHS.
Expression of the lymph node homing receptor L-selectin,
but not of the ligands for the skin-homing receptors E- and
P-selectin by Treg was the basis of this finding. It will be
interesting to test whether LF-induced Treg express ligands for
E- and P-selectin.

Taken together, our findings imply that short-term admin-
istration of LF at the time of encounter with a contact allergen
leads to a long-lasting inhibition of CHS reactivity despite
renewed encounter with the hapten and to inhibition of
a pre-existing CHS response. The use of LF may thus provide
new opportunities for the treatment of allergic contact
dermatitis.

MATERIALS AND METHODS
Mice

BALB/c mice were bred and maintained under specific pathogen free

conditions on a standard diet. They were used at 8–16 weeks of age.

The ‘‘Principles of Laboratory Animal Care’’ (NIH publication no.

85–23, revised 1985) were followed. The experiments were

approved by the Ethics Commission according to the German Law

on the Protection of Animals.

Induction of CHS and treatment with LF
CHS was induced as described (Weigmann et al., 1997) with

modifications. Mice were sensitized on days 0 and 1 by applying

25 ml of a 0.5% solution of DNFB (Sigma, Deisenhofen, Germany) in

acetone/olive oil (4:1) to the shaved abdomen. On day 4, mice were

challenged by applying 10ml of 0.2% DNFB solution to both sides of

the right ear. When OXA was used as a contact allergen, mice were

sensitized once with 25ml of 3% OXA (Sigma) in acetone/olive oil

(4:1) and challenged with 10 ml of 0.15% OXA on both sides of the

right ear 5 days later, unless indicated otherwise. In all cases, 10 ml of

the vehicle acetone/olive oil were applied to both sides of the left

ear. Measurements of ear thickness were performed blindly using an

engineer’s micrometer (Mitutoyo, Japan) both before and at the

indicated time points following challenge. Ear swelling was

calculated by subtracting the thickness of the vehicle-challenged

contralateral ear (p0.02 mm) from the swelling recorded for the

hapten-challenged ear in sensitized animals. Age-matched mice that

were challenged without previous sensitization exhibited ear

swelling p0.03 mm for DNFB and p0.05 for OXA.

LF HWA486 was a generous gift from Aventis Pharma (Frankfurt

am Main, Germany). Mice received 40 mg/kg body weight of LF in

1% CMC (100ml) via a stomach tube daily for 6 days starting on day

–1 before sensitization. The solution was prepared shortly before-

hand by sonication to emulsify LF in CMC. The prodrug LF is rapidly

converted to the active metabolite A77 1726. The structures of LF

and A77 1726 are depicted in Figure 1.

Adoptive transfer of lymphocytes

CHS was induced in LF- and CMC-treated mice, respectively, as

described above. Spleens and draining (cervical, axillary, and

inguinal) lymph nodes were prepared 7 days after the start of

sensitization with DNFB and were pooled. Single-cell suspensions

were prepared by teasing the tissue apart and passing it through a

fine wire mesh to remove cell debris. For depletion of T-cell subsets,

the cells were incubated with anti-CD4 monoclonal antibody clone

GK1.5 (Dialynas et al., 1983) or anti-CD8 monoclonal antibody

clone 53.6.72 (Ledbetter and Herzenberg, 1979). Subsequently,

CD4þ and CD8þ cells were depleted by immunomagnetic

separation using sheep anti-rat IgG Dynabeads (Dynal, Oslo,

Norway) as recommended by the manufacturer. The efficiency of

depletion was determined by flow cytometric analysis: 1.771.5%

CD4þ cells remained in the CD4-depleted cell suspension and

2.071.6% CD8þ cells remained in the CD8-depleted cell suspen-

sion. Unseparated leukocytes or leukocyte preparations depleted of

CD4þ and CD8þ cells, respectively, were injected intravenously

(108 cells) into naive syngeneic recipients. After 24 and 48 hours,

recipient mice were sensitized, and 3 days later, challenged with

DNFB as described. One group of mice did not receive donor cells,

but was sensitized and challenged with DNFB in parallel with the
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recipient mice. A separate group was challenged with DNFB alone

without prior sensitization and cell transfer. The increase in ear

thickness was measured at the indicated time points following

challenge.

Positive isolation of CD4þ and CD8þ T cells

CD4þ and CD8þ T cells in draining lymph node and spleen cell

suspensions from LF-treated mice as well as CMC-treated control

mice, sensitized and challenged with DNFB, were enriched by

magnetic separation as described previously (Sudowe et al., 2000).

The purity of positively selected T-cell populations was verified by

cytofluorometric analysis and constituted 87.073.7% for CD4þ

T cells and 91.072.0% for CD8þ T cells.

Real-time reverse transcription-polymerase chain reaction-PCR
analysis

To assess transcriptional changes of markers of induced regulatory

T cells at the mRNA level, CD4þ and CD8þ T cells from mice

treated with LF or CMC as control before and following elicitation of

CHS were isolated on day 7 as described above. Total RNA was

isolated from at least 4� 105 cells per group by using the RNeasy

MiniPrep kit (Qiagen, Hilden, Germany) and performing on-column

DNase treatment (Qiagen) according to the protocol recommended

by the manufacturer. Ten microliters of eluted RNA was reverse-

transcribed applying 1 ml of a 1:1 mix of Oligo-dT and

random hexamer primers and using the Reverse-IT RTase Blend kit

(ABgene, Hamburg, Germany) as recommended by the manufac-

turer. Primer sequences were designed using Primer3 software

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi; Rozen

and Skaletsky, 2000), and primer pairs bridging intron–exon

bounderies were chosen (Table 1). Primers were purchased from

MWG Biotech (Ebersberg, Germany). Reaction mixtures for real-

time PCR had a final volume of 25 ml and included 200 ng of cDNA,

12.5ml of SYBRGreen mastermix (Absolute QPCR SYBRGreen

Fluorescein Mix; ABgene), and 1.75 ml of premixed forward and

reverse primer. PCR conditions were: 15 minutes at 951C, and 50

cycles of 951C for 15 seconds and 601C for 1 minute. Each sample

was run in duplicate. The housekeeping gene ubiquitin C served as

control and was used for subsequent normalization. Real-time

PCR was performed in an iCycler iQ Multicolor Real-Time PCR

system (Bio-Rad, München, Germany) and analyzed by using the

iCycler iQ Optical System Software vers. 3.0a (Bio-Rad). Specificity

of product amplification was confirmed by automated melting

curve analysis. Relative quantification of gene expression was

performed by applying the comparative threshold cycle method

(Winer et al., 1999).

Statistical analysis

Statistical evaluation of the experimental data was performed by

Student’s t-test. A value of Po0.05 was considered statistically

significant.
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Müller G, Müller A, Tüting T, Steinbrink K, Saloga J, Szalma C et al. (2002)
Interleukin-10-treated dendritic cells modulate immune responses of
naive and sensitized T cells in vivo. J Invest Dermatol 119:836–41

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for
biologist programmers. In: Bioinformatics methods and protocols:
methods in molecular biology (Krawetz S, Misener S, eds), Totowa, NJ:
Humana Press, 365–86

Ruckemann K, Fairbanks LD, Carrey EA, Hawrylowicz CM, Richards DF,
Kirschbaum B et al. (1998) Leflunomide inhibits pyrimidine de novo
synthesis in mitogen-stimulated T-lymphocytes from healthy humans.
J Biol Chem 273:21682–91

Schmitt J, Wozel G, Pfeiffer C (2004) Leflunomide as a novel treatment option
in severe atopic dermatitis. Br J Dermatol 150:1182–5

Schwarz A, Maeda A, Wild MK, Kernebeck K, Gross N, Aragane Y et al.
(2004) Ultraviolet radiation-induced regulatory T cells not only inhibit
the induction but can suppress the effector phase of contact hypersensi-
tivity. J Immunol 172:1036–43

Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N et al. (1997)
Interaction of NF-kB and NFAT with the interferon-gamma promoter.
J Biol Chem 272:30412–20

Siemasko K, Chong AS, Jack HM, Gong H, Williams JW, Finnegan A (1998)
Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the
immunosuppressive drug leflunomide leads to a block in IgG1
production. J Immunol 160:1581–8

Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of
tolerance by IL-10-treated dendritic cells. J Immunol 159:4772–80

Strand V, Cohen S, Schiff M, Weaver A, Fleischmann R, Cannon G et al.
(1999) Treatment of active rheumatoid arthritis with leflunomide
compared with placebo and methotrexate. Leflunomide Rheumatoid
Arthritis Investigators Group. Arch Intern Med 159:2542–50
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